1
|
Tsagkaraki E, Guilherme A, Nicoloro SM, Kelly M, Lifshitz LM, Wang H, Min K, Rowland LA, Santos KB, Wetoska N, Friedline RH, Maitland SA, Chen M, Weinstein LS, Wolfe SA, Kim JK, Czech MP. Crosstalk between corepressor NRIP1 and cAMP signaling on adipocyte thermogenic programming. Mol Metab 2023; 76:101780. [PMID: 37482187 PMCID: PMC10410517 DOI: 10.1016/j.molmet.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVES Nuclear receptor interacting protein 1 (NRIP1) suppresses energy expenditure via repression of nuclear receptors, and its depletion markedly elevates uncoupled respiration in mouse and human adipocytes. We tested whether NRIP1 deficient adipocytes implanted into obese mice would enhance whole body metabolism. Since β-adrenergic signaling through cAMP strongly promotes adipocyte thermogenesis, we tested whether the effects of NRIP1 knock-out (NRIP1KO) require the cAMP pathway. METHODS NRIP1KO adipocytes were implanted in recipient high-fat diet (HFD) fed mice and metabolic cage studies conducted. The Nrip1 gene was disrupted by CRISPR in primary preadipocytes isolated from control vs adipose selective GsαKO (cAdGsαKO) mice prior to differentiation to adipocytes. Protein kinase A inhibitor was also used. RESULTS Implanting NRIP1KO adipocytes into HFD fed mice enhanced whole-body glucose tolerance by increasing insulin sensitivity, reducing adiposity, and enhancing energy expenditure in the recipients. NRIP1 depletion in both control and GsαKO adipocytes was equally effective in upregulating uncoupling protein 1 (UCP1) and adipocyte beiging, while β-adrenergic signaling by CL 316,243 was abolished in GsαKO adipocytes. Combining NRIP1KO with CL 316,243 treatment synergistically increased Ucp1 gene expression and increased the adipocyte subpopulation responsive to beiging. Estrogen-related receptor α (ERRα) was dispensable for UCP1 upregulation by NRIPKO. CONCLUSIONS The thermogenic effect of NRIP1 depletion in adipocytes causes systemic enhancement of energy expenditure when such adipocytes are implanted into obese mice. Furthermore, NRIP1KO acts independently but cooperatively with the cAMP pathway in mediating its effect on adipocyte beiging.
Collapse
Affiliation(s)
- Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sarah M Nicoloro
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kyounghee Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kaltinaitis B Santos
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicole Wetoska
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Stacy A Maitland
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Min Chen
- Metabolic Diseases Branch, NIDDK, NIH, Bethesda, MD, 20892-1752, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, NIDDK, NIH, Bethesda, MD, 20892-1752, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Zhang X, Yamada Y, Sagayama H, Ainslie PN, Blaak EE, Buchowski MS, Close GL, Cooper JA, Das SK, Dugas LR, Gurven M, El Hamdouchi A, Hu S, Joonas N, Katzmarzyk P, Kraus WE, Kushner RF, Leonard WR, Martin CK, Meijer EP, Neuhouser ML, Ojiambo RM, Pitsiladis YP, Plasqui G, Prentice RL, Racette SB, Ravussin E, Redman LM, Reynolds RM, Roberts SB, Sardinha LB, Silva AM, Stice E, Urlacher SS, Van Mil EA, Wood BM, Murphy-Alford AJ, Loechl C, Luke AH, Rood J, Schoeller DA, Westerterp KR, Wong WW, Pontzer H, Speakman JR. Human total, basal and activity energy expenditures are independent of ambient environmental temperature. iScience 2022; 25:104682. [PMID: 35865134 PMCID: PMC9294192 DOI: 10.1016/j.isci.2022.104682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022] Open
Abstract
Lower ambient temperature (Ta) requires greater energy expenditure to sustain body temperature. However, effects of Ta on human energetics may be buffered by environmental modification and behavioral compensation. We used the IAEA DLW database for adults in the USA (n = 3213) to determine the effect of Ta (-10 to +30°C) on TEE, basal (BEE) and activity energy expenditure (AEE) and physical activity level (PAL). There were no significant relationships (p > 0.05) between maximum, minimum and average Ta and TEE, BEE, AEE and PAL. After adjustment for fat-free mass, fat mass and age, statistically significant (p < 0.01) relationships between TEE, BEE and Ta emerged in females but the effect sizes were not biologically meaningful. Temperatures inside buildings are regulated at 18-25°C independent of latitude. Hence, adults in the US modify their environments to keep TEE constant across a wide range of external ambient temperatures.
Collapse
Affiliation(s)
- Xueying Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Yosuke Yamada
- Institute for Active Health, Kyoto University of Advanced Science, Kyoto, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Hiroyuki Sagayama
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Philip N. Ainslie
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
- University of British Columbia, Okanagan Campus School of Health and Exercise Sciences, Faculty of Health and Social Development Kelowna, Kelowna, BC, Canada
| | - Ellen E. Blaak
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Maciej S. Buchowski
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jamie A. Cooper
- Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Sai Krupa Das
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, USA
| | - Lara R. Dugas
- Department of Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University, Maywood, IL, USA
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Asmaa El Hamdouchi
- Unité Mixte de Recherche en Nutrition et Alimentation, CNESTEN- Université Ibn Tofail URAC39, Regional Designated Center of Nutrition Associated with AFRA/IAEA, Rabat, Morocco
| | - Sumei Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Noorjehan Joonas
- Central Health Laboratory, Ministry of Health and Wellness, Port Louis, Mauritius
| | | | | | | | | | | | - Erwin P. Meijer
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Marian L. Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Center and School of Public Health, University of Washington, Seattle, WA, USA
| | - Robert M. Ojiambo
- Moi University, Eldoret, Kenya
- University of Global Health Equity, Kigali, Rwanda
| | | | - Guy Plasqui
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, the Netherlands
| | - Ross L. Prentice
- Division of Public Health Sciences, Fred Hutchinson Cancer Center and School of Public Health, University of Washington, Seattle, WA, USA
| | - Susan B. Racette
- Program in Physical Therapy and Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Rebecca M. Reynolds
- Centre for Cardiovascular Sciences, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Susan B. Roberts
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA, USA
| | - Luis B. Sardinha
- Exercise and Health Laboratory, CIPER, Department of Sport and Health, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Analiza M. Silva
- Exercise and Health Laboratory, CIPER, Department of Sport and Health, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | | | - Samuel S. Urlacher
- Department of Anthropology, Baylor University, Waco, TX, USA
- Child and Brain Development Program, CIFAR, Toronto, Canada
| | - Edgar A. Van Mil
- Maastricht University, Maastricht and Lifestyle Medicine Center for Children, Jeroen Bosch Hospital’s-Hertogenbosch, the Netherlands
| | - Brian M. Wood
- University of California Los Angeles, Los Angeles, USA
- Max Planck Institute for Evolutionary Anthropology, Department of Human Behavior, Ecology, and Culture. Leipzig, Germany
| | - Alexia J. Murphy-Alford
- Nutritional and Health Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Cornelia Loechl
- Nutritional and Health Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Amy H. Luke
- Division of Epidemiology, Department of Public Health Sciences, Loyola University School of Medicine, Maywood, IL, USA
| | - Jennifer Rood
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Dale A. Schoeller
- Biotech Center and Nutritional Sciences University of Wisconsin, Madison, WI, USA
| | | | - William W. Wong
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Herman Pontzer
- Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - John R. Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming, China
| |
Collapse
|
3
|
Silvério R, Barth R, Heimann AS, Reckziegel P, dos Santos GJ, Romero-Zerbo SY, Bermúdez-Silva FJ, Rafacho A, Ferro ES. Pep19 Has a Positive Effect on Insulin Sensitivity and Ameliorates Both Hepatic and Adipose Tissue Phenotype of Diet-Induced Obese Mice. Int J Mol Sci 2022; 23:ijms23084082. [PMID: 35456900 PMCID: PMC9030859 DOI: 10.3390/ijms23084082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022] Open
Abstract
Peptide DIIADDEPLT (Pep19) has been previously suggested to improve metabolic parameters, without adverse central nervous system effects, in a murine model of diet-induced obesity. Here, we aimed to further evaluate whether Pep19 oral administration has anti-obesogenic effects, in a well-established high-fat diet-induced obesity model. Male Swiss mice, fed either a standard diet (SD) or high-fat diet (HFD), were orally administrated for 30 consecutive days, once a day, with saline vehicle or Pep19 (1 mg/kg). Next, several metabolic, morphological, and behavioral parameters were evaluated. Oral administration of Pep19 attenuated HFD body-weight gain, reduced in approximately 40% the absolute mass of the endocrine pancreas, and improved the relationship between circulating insulin and peripheral insulin sensitivity. Pep19 treatment of HFD-fed mice attenuated liver inflammation, hepatic fat distribution and accumulation, and lowered plasma alanine aminotransferase activity. The inguinal fat depot from the SD group treated with Pep19 showed multilocular brown-fat-like cells and increased mRNA expression of uncoupling protein 1 (UCP1), suggesting browning on inguinal white adipose cells. Morphological analysis of brown adipose tissue (BAT) from HFD mice showed the presence of larger white-like unilocular cells, compared to BAT from SD, Pep19-treated SD or HFD mice. Pep19 treatment produced no alterations in mice behavior. Oral administration of Pep19 ameliorates some metabolic traits altered by diet-induced obesity in a Swiss mice model.
Collapse
Affiliation(s)
- Renata Silvério
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; (R.B.); (G.J.d.S.)
| | - Robson Barth
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; (R.B.); (G.J.d.S.)
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil
| | - Andrea S. Heimann
- Proteimax BioTechnology Israel LTD, 4 Duvdevan Street, Pardes Hana, Haifa 3708973, Israel;
| | - Patrícia Reckziegel
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Gustavo J. dos Santos
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; (R.B.); (G.J.d.S.)
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil
| | - Silvana Y. Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain; (S.Y.R.-Z.); (F.J.B.-S.)
- Biomedical Research Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
| | - Francisco J. Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain; (S.Y.R.-Z.); (F.J.B.-S.)
- Biomedical Research Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
| | - Alex Rafacho
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil; (R.B.); (G.J.d.S.)
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil
- Correspondence: (A.R.); (E.S.F.)
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
- Correspondence: (A.R.); (E.S.F.)
| |
Collapse
|
4
|
El Midaoui A, Fantus IG, Ait Boughrous A, Couture R. Beneficial Effects of Alpha-Lipoic Acid on Hypertension, Visceral Obesity, UCP-1 Expression and Oxidative Stress in Zucker Diabetic Fatty Rats. Antioxidants (Basel) 2019; 8:antiox8120648. [PMID: 31888243 PMCID: PMC6943617 DOI: 10.3390/antiox8120648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Evidence suggests that oxidative stress plays a major role in the development of metabolic syndrome. This study aims to investigate whether α-lipoic acid (LA), a potent antioxidant, could exert beneficial outcomes in Zucker diabetic fatty (ZDF) rats. Male 6-week-old ZDF rats and their lean counterparts (ZL) were fed for six weeks with a standard diet or a chow diet supplemented with LA (1 g/kg feed). At 12 weeks of age, ZDF rats exhibited an increase in systolic blood pressure, epididymal fat weight per body weight, hyperglycemia, hyperinsulinemia, insulin resistance (HOMA index), adipocyte hypertrophy and a rise in basal superoxide anion (O2•−) production in gastrocnemius muscle and a downregulation of epididymal uncoupled protein-1 (UCP-1) protein staining. Treatment with LA prevented the development of hypertension, the rise in whole body weight and O2•− production in gastrocnemius muscle, but failed to affect insulin resistance, hyperglycemia and hyperinsulinemia in ZDF rats. LA treatment resulted in a noticeable increase of pancreatic weight and a further adipocyte hypertrophy, along with a decrease in epididymal fat weight per body weight ratio associated with an upregulation of epididymal UCP-1 protein staining in ZDF rats. These findings suggest that LA was efficacious in preventing the development of hypertension, which could be related to its antioxidant properties. The anti-visceral obesity effect of LA appears to be mediated by its antioxidant properties and the induction of UCP-1 protein at the adipose tissue level in ZDF rats. Disorders of glucose metabolism appear, however, to be mediated by other unrelated mechanisms in this model of metabolic syndrome.
Collapse
Affiliation(s)
- Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada;
- Research Team “Biology, Environment and Health”, Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, 52000 Errachidia, Morocco;
- Correspondence: ; Tel.: +1-514-343-6111 (ext. 3320)
| | - I. George Fantus
- Department of Medicine, Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, McGill University, Montreal, QC H4A3J1, Canada;
| | - Ali Ait Boughrous
- Research Team “Biology, Environment and Health”, Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, 52000 Errachidia, Morocco;
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada;
| |
Collapse
|
5
|
de Goede P, Sen S, Oosterman JE, Foppen E, Jansen R, la Fleur SE, Challet E, Kalsbeek A. Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks. Neurobiol Sleep Circadian Rhythms 2017; 4:24-33. [PMID: 31236504 PMCID: PMC6584485 DOI: 10.1016/j.nbscr.2017.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/01/2022] Open
Abstract
The effects of feeding behavior and diet composition, as well as their possible interactions, on daily (clock) gene expression rhythms have mainly been studied in the liver, and to a lesser degree in white adipose tissue (WAT), but hardly in other metabolic tissues such as skeletal muscle (SM) and brown adipose tissues (BAT). We therefore subjected male Wistar rats to a regular chow or free choice high-fat-high sugar (fcHFHS) diet in combination with time restricted feeding (TRF) to either the light or dark phase. In SM, all tested clock genes lost their rhythmic expression in the chow light fed group. In the fcHFHS light fed group rhythmic expression for some, but not all, clock genes was maintained, but shifted by several hours. In BAT the daily rhythmicity of clock genes was maintained for the light fed groups, but expression patterns were shifted as compared with ad libitum and dark fed groups, whilst the fcHFHS diet made the rhythmicity of clock genes become more pronounced. Most of the metabolic genes in BAT tissue tested did not show any rhythmic expression in either the chow or fcHFHS groups. In SM Pdk4 and Ucp3 were phase-shifted, but remained rhythmically expressed in the chow light fed groups. Rhythmic expression was lost for Ucp3 whilst on the fcHFHS diet during the light phase. In summary, both feeding at the wrong time of day and diet composition disturb the peripheral clocks in SM and BAT, but to different degrees and thereby result in a further desynchronization between metabolically active tissues such as SM, BAT, WAT and liver. Both timing of feeding and diet composition affect clock genes in BAT and SM. Light phase time-restricted feeding abolishes SM clock gene rhythms. A fcHSHS diet strengthens rhythmic expression of several clock genes in BAT and SM. Metabolic genes PDK4 and UCP1/3 are affected by both timing of feeding and diet. Light phase time-restricted feeding causes desynchronization of BAT and SM clocks.
Collapse
Affiliation(s)
- Paul de Goede
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Satish Sen
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands.,Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - Johanneke E Oosterman
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands.,Metabolism and Reward, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
| | - Ewout Foppen
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Remi Jansen
- Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
| | - Etienne Challet
- Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - Andries Kalsbeek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
| |
Collapse
|
6
|
Filgueira CS, Nicolov E, Hood RL, Ballerini A, Garcia-Huidobro J, Lin JZ, Fraga D, Webb P, Sabek OM, Gaber AO, Phillips KJ, Grattoni A. Sustained zero-order delivery of GC-1 from a nanochannel membrane device alleviates metabolic syndrome. Int J Obes (Lond) 2016; 40:1776-1783. [PMID: 27460601 DOI: 10.1038/ijo.2016.129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/16/2016] [Accepted: 06/25/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES Our objective was to assess the sustained, low-dose and constant administration of the thyroid receptor-β (TRβ)-selective agonist GC-1 (sobetirome) from a novel nanochannel membrane device (NMD) for drug delivery. As it known to speed up metabolism, accomplish weight loss, improve cholesterol levels and possess anti-diabetic effects, GC-1 was steadily administered by our NMD, consisting of an implantable nanochannel membrane, as an alternative to conventional daily administration, which is subject to compliance issues in clinical settings. SUBJECTS/METHODS Diet-induced obese C57BL/J6 male mice were fed a very high-fat diet (VHFD) and received NMD implants subcutaneously. Ten mice per group received capsules containing GC-1 or phosphate-buffered saline (control). Weight, lean and fat mass, as well as cholesterol, triglycerides, insulin and glucose, were monitored for 24 days. After treatment, plasma levels of thyroid-stimulating hormone (TSH) and thyroxine were compared. mRNA levels of a panel of thermogenic markers were examined using real-time PCR in white adipose tissue (WAT) and brown adipose tissue (BAT). Adipose tissue, liver and local inflammatory response to the implant were examined histologically. Pancreatic islet number and β-cell area were assessed. RESULTS GC-1 released from the NMD reversed VHFD-induced obesity and normalized serum cholesterol and glycemia. Significant reductions in body weight and fat mass were observed within 10 days, whereas reductions in serum cholesterol and glucose levels were seen within 7 days. The significant decrease in TSH was consistent with TRβ selectivity for GC-1. Levels of transcript for Ucp1 and thermogenic genes PGC1a, Cidea, Dio2 and Cox5a showed significant upregulation in WAT in NMD-GC-1-treated mice, but decreased in BAT. Although mice treated by NMD-GC-1 showed a similar number of pancreatic islets, they exhibited significant increase in β-cell area. CONCLUSIONS Our data demonstrate that the NMD implant achieves steady administration of GC-1, offering an effective and tightly controlled molecular delivery system for treatment of obesity and metabolic disease, thereby addressing compliance.
Collapse
Affiliation(s)
- C S Filgueira
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - E Nicolov
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - R L Hood
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - A Ballerini
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - J Garcia-Huidobro
- Deparment of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - J Z Lin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - D Fraga
- Department of Surgery, The Methodist Hospital, Houston, TX, USA
| | - P Webb
- Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - O M Sabek
- Department of Surgery, The Methodist Hospital, Houston, TX, USA.,Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - A O Gaber
- Department of Surgery, The Methodist Hospital, Houston, TX, USA.,Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - K J Phillips
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - A Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
7
|
Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species. Biosci Rep 2016; 36:BSR20150193. [PMID: 26795216 PMCID: PMC4776627 DOI: 10.1042/bsr20150193] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/04/2016] [Indexed: 12/29/2022] Open
Abstract
Brown adipose tissue (BAT) cells have a very high oxidative capacity. On the other hand, in obesity and obesity-related diabetes, levels of pro-inflammatory cytokines are elevated, which might promote BAT dysfunction and consequently impair carbohydrate metabolism and thereby exacerbate cellular dysfunction and promote diabetes progression. Therefore, the antioxidative enzyme status of a brown adipocyte cell line and its susceptibility towards pro-inflammatory cytokines, which participate in the pathogenesis of diabetes, and reactive oxygen species (ROS) were analysed. Mature brown adipocytes exhibited significantly higher levels of expression of mitochondrially and peroxisomally located antioxidative enzymes compared with non-differentiated brown adipocytes. Pro-inflammatory cytokines induced a significant decrease in the viability of differentiated brown adipocytes, which was accompanied by a massive ROS production and down-regulation of BAT-specific markers, such as uncoupling protein 1 (UCP-1) and β-Klotho. Taken together, the results strongly indicate that pro-inflammatory cytokines cause brown adipocyte dysfunction and death through suppression of BAT-specific proteins, especially of UCP-1 and β-Klotho, and consequently increased oxidative stress.
Collapse
|
8
|
Dong J, Dong Y, Dong Y, Chen F, Mitch WE, Zhang L. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int J Obes (Lond) 2015; 40:434-442. [PMID: 26435323 PMCID: PMC4783239 DOI: 10.1038/ijo.2015.200] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/04/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022]
Abstract
Background/Objective In mice, a high fat diet (HFD) induces obesity, insulin resistance and myostatin production. We tested whether inhibition of myostatin in mice can reverse these HFD-induced abnormalities. Subjects/Methods C57BL/6 mice were fed a HFD for 16 weeks including the final 4 weeks some mice were treated with an anti-myostatin peptibody. Body composition, the respiratory exchange ratio plus glucose and insulin tolerance tests were examined. Myostatin knock down in C2C12 cells was performed using ShRNA lentivirus. Adipose tissue-derived stem cells were cultured to measure their reponses to conditioned media from C2C12 cells lacking myostatin, or to recombinant myostatin or Irisin. Isolated peritoneal macrophages were treated with myostatin or Irisin to determine if myostatin or Irisin induce inflammatory mechanisms. Results In HFD-fed mice, peptibody treatment stimulated muscle growth and improved insulin resistance. The improved glucose and insulin tolerances were confirmed when we found increased muscle expression of p-Akt and the glucose transporter, Glut4. In mice fed the HFD, the peptibody suppressed macrophage infiltration and the expression of proinflammatory cytokines in both muscle and adipocytes. Inhibition of myostatin caused the conversion of white (WAT) to brown adipose tissue (BAT) while stimulating fatty acid oxidation and increasing energy expenditure. The related mechanism is a muscle-to-fat cross talk mediated by Irisin. Myostatin inhibition increased PGC-1α expression and Irisin production in muscle. Irisin then stimulated WAT browning. Irisin also suppresses inflammation and stimulates macrophage polarization from M1 to M2 types. Concusion these results uncover a metabolic pathway from an increase in myostatin that suppresses Irisin leading to activation of inflammatory cytokines and insulin resistance. Thus, myostatin is a potential therapeutic target to treat insulin resistance of type II diabetes as well as the shortage of brown/beige fat in obesity.
Collapse
Affiliation(s)
- Jiangling Dong
- College of Life Sciences, Sichuan University, Chengdu 610065, China.,Baylor College of Medicine, Nephrology Division, Houston, TX, 77030
| | - Yanjun Dong
- Baylor College of Medicine, Nephrology Division, Houston, TX, 77030.,Beijing Institutes of Heart, Lung, and Blood Vessel Diseases, An Zhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Yanlan Dong
- Baylor College of Medicine, Nephrology Division, Houston, TX, 77030
| | - Fang Chen
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - William E Mitch
- Baylor College of Medicine, Nephrology Division, Houston, TX, 77030
| | - Liping Zhang
- Baylor College of Medicine, Nephrology Division, Houston, TX, 77030
| |
Collapse
|