2
|
Han Y, Jiang N, Su T, Yang QC, Yan CC, Ye L, Yuan Q, Zhu PW, Li W, Liu ZG, Shao Y. Netrin-1 promotes epithelium repair in corneal injury. Int J Ophthalmol 2020; 13:206-212. [PMID: 32090028 DOI: 10.18240/ijo.2020.02.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/25/2019] [Indexed: 11/23/2022] Open
Abstract
AIM To explore netrin-1 functions on corneal epithelium in vitro and in vivo. METHODS In vitro the human corneal epithelial (HCE) cells were treated with serum free DMEM-F12 basic media containing 0, 50, 100, 200, 300, 500, 800, and 1000 ng/mL of netrin-1, respectively. The cells viability was detected by cell counting kit-8 (CCK-8). The wound-healing assay was applied to assess the migration proficiency of HCE cells. Flow cytometry was used to analyze the cell-cycle distribution and apoptosis. In vivo, normal c57 (6wk) mice were demarcated with a trephine in the middle of the cornea to produce a 3-mm circular wound. Mice corneas were inflicted no epithelium with a 3-mm wound displayed, but remained the limbal epithelium intact. A blunt scalpel blade was used to remove the corneal epithelian cells, followed by topical netrin-1 application (200 ng/mL), and the group treated by PBS as control. The treated group was injected netrin-1 into the normal c57 mice inferior subconjunctival 4h before trauma. Mouse corneal inflammation and neovascularization were observed under slit lamp microscope. The apoptosis of corneal cells was determined by TUNEL staining. RESLUTS A concentration of 200 ng/mL netrin-1 enhanced 25% of the HCE viability. The relative migration rates were 76.3% and 100% in control and netrin-1 treated group after cultured 72h. Treated with netrin-1 (200 ng/mL) decreased the apoptosis of HCE cells, as well as decreased their percentage from 19.3%±0.57% to 12.7%±0.42% of the total. The remaining wound area was 1.22 mm2 in control group but 0.22 mm2 in the netrin-1 treated group. Exogenous Netrin-1 inhibits apoptosis of corneal epithelial cells of c57 mice. TUNEL-positive cells at the epithelial layer of the corneas of the control and netrin-1 treated c57 mice at 24h after wounding were 43.3% and 16.7% respectively. CONCLUSION Netrin-1 can reduce HCE apoptosis as well as promote its proliferation and migration. Topical application of netrin-1 promotes the injuryed cornea epithelial wound repair and inhibits apoptosis of corneal epithelial cells. These findings may offer potential therapies to repair the defects of corneal epithelial based on netrin-1.
Collapse
Affiliation(s)
- Yun Han
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Nan Jiang
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Ting Su
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Qi-Chen Yang
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Cong-Cong Yan
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Lei Ye
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qing Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Pei-Wen Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wei Li
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Zu-Guo Liu
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
3
|
Crespo-Garcia S, Reichhart N, Wigdahl J, Skosyrski S, Kociok N, Strauß O, Joussen AM. Lack of netrin-4 alters vascular remodeling in the retina. Graefes Arch Clin Exp Ophthalmol 2019; 257:2179-2184. [PMID: 31451908 DOI: 10.1007/s00417-019-04447-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Netrin-4 (NTN4) is a protein that plays an important role in the regulation of angiogenesis in the pathological retina. Some evidences show that it can also have a role in inflammation and vascular stability. We will explore these questions in vivo in the mature mouse retina. METHODS We created a NTN4 knockout that expresses EGFP in mononuclear phagocytes (CSFR1-positive cells) to track inflammation in vivo in the retina by scanning laser ophthalmoscopy (SLO). Fundus angiography permitted to study blood vessels. Retinal function was assessed with electroretinography (ERG). RESULTS Lack of NTN4 leads to an increased amount of amoeboid mononuclear phagocytes in the adult retina, and blood vessels displayed increased tortuosity when compared with the wildtype. Inner retina function also seemed affected in NTN4 null. Lack of NTN4 resulted in a higher persistence of hyaloid artery and spontaneous leakage in the adult retina. No differences were found regarding vessel bifurcation, vessel width, or vein/artery ratio. CONCLUSIONS These in vivo data show for the first time that lack of NTN4 induces changes in the retinal vascular phenotype in a non-pathological scenario. This evidence widens the role of NTN4 as a guidance cue in vascular remodeling.
Collapse
Affiliation(s)
- Sergio Crespo-Garcia
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany. .,Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Canada. .,Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Canada.
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | - Sergej Skosyrski
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Norbert Kociok
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Antonia M Joussen
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
4
|
Reuten R, Patel TR, McDougall M, Rama N, Nikodemus D, Gibert B, Delcros JG, Prein C, Meier M, Metzger S, Zhou Z, Kaltenberg J, McKee KK, Bald T, Tüting T, Zigrino P, Djonov V, Bloch W, Clausen-Schaumann H, Poschl E, Yurchenco PD, Ehrbar M, Mehlen P, Stetefeld J, Koch M. Structural decoding of netrin-4 reveals a regulatory function towards mature basement membranes. Nat Commun 2016; 7:13515. [PMID: 27901020 PMCID: PMC5141367 DOI: 10.1038/ncomms13515] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/09/2016] [Indexed: 02/07/2023] Open
Abstract
Netrins, a family of laminin-related molecules, have been proposed to act as guidance cues either during nervous system development or the establishment of the vascular system. This was clearly demonstrated for netrin-1 via its interaction with the receptors DCC and UNC5s. However, mainly based on shared homologies with netrin-1, netrin-4 was also proposed to play a role in neuronal outgrowth and developmental/pathological angiogenesis via interactions with netrin-1 receptors. Here, we present the high-resolution structure of netrin-4, which shows unique features in comparison with netrin-1, and show that it does not bind directly to any of the known netrin-1 receptors. We show that netrin-4 disrupts laminin networks and basement membranes (BMs) through high-affinity binding to the laminin γ1 chain. We hypothesize that this laminin-related function is essential for the previously described effects on axon growth promotion and angiogenesis. Our study unveils netrin-4 as a non-enzymatic extracellular matrix protein actively disrupting pre-existing BMs. Netrins are secreted guidance factors that promote axon outgrowth and orientation during nervous system development. Here the authors present structural and biological evidence that netrin-4 is not a guidance cue per se, but rather functions to modulate laminin-laminin interactions.
Collapse
Affiliation(s)
- Raphael Reuten
- Institute for Dental Research and Oral Musculoskeletal Biology, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada.,School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Matthew McDougall
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon 69008, France
| | - Denise Nikodemus
- Institute for Dental Research and Oral Musculoskeletal Biology, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon 69008, France
| | - Jean-Guy Delcros
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon 69008, France
| | - Carina Prein
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Lothstrasse 34, Munich D-80335, Germany.,Laboratory of Experimental Surgery and Regenerative Medicine - ExperiMed, Department of Surgery, Clinical Center University of Munich, Nussbaumstrasse 20, Munich D-80336, Germany.,Center for Nanoscience-CeNS, Geschwister-Scholl-Platz 1, Munich D-80539, Germany
| | - Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Stéphanie Metzger
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital Zurich, Schmelzbergstr. 12, Zurich 8091, Switzerland
| | - Zhigang Zhou
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Jennifer Kaltenberg
- Institute for Dental Research and Oral Musculoskeletal Biology, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany
| | - Karen K McKee
- Department of Pathology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Tobias Bald
- Department of Dermatology, University Hospital Magdeburg, Magdeburg 39120, Germany.,Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, Bonn 53105, Germany
| | - Thomas Tüting
- Department of Dermatology, University Hospital Magdeburg, Magdeburg 39120, Germany.,Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, Bonn 53105, Germany
| | - Paola Zigrino
- Department of Dermatology and Venerology, University of Cologne, Cologne 50931, Germany
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, Bern 3000, Switzerland
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne 50933, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Lothstrasse 34, Munich D-80335, Germany.,Center for Nanoscience-CeNS, Geschwister-Scholl-Platz 1, Munich D-80539, Germany
| | - Ernst Poschl
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Peter D Yurchenco
- Department of Pathology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Martin Ehrbar
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital Zurich, Schmelzbergstr. 12, Zurich 8091, Switzerland
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon 69008, France
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany
| |
Collapse
|