1
|
Talhami A, Swed A, Hess S, Ovadia O, Greenberg S, Schumacher-Klinger A, Rosenthal D, Shalev DE, Hurevich M, Lazarovici P, Hoffman A, Gilon C. Cyclizing Painkillers: Development of Backbone-Cyclic TAPS Analogs. Front Chem 2020; 8:532577. [PMID: 33282822 PMCID: PMC7689096 DOI: 10.3389/fchem.2020.532577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
Painkillers are commonly used medications. Native peptide painkillers suffer from various pharmacological disadvantages, while small molecule painkillers like morphine are highly addictive. We present a general approach aimed to use backbone-cyclization to develop a peptidomimetic painkiller. Backbone-cyclization was applied to transform the linear peptide Tyr-Arg-Phe-Sar (TAPS) into an active backbone-cyclic peptide with improved drug properties. We designed and synthesized a focused backbone-cyclic TAPS library with conformational diversity, in which the members of the library have the generic name TAPS c(n-m) where n and m represent the lengths of the alkyl chains on the nitrogens of Gly and Arg, respectively. We used a combined screening approach to evaluate the pharmacological properties and the potency of the TAPS c(n-m) library. We focused on an in vivo active compound, TAPS c(2-6), which is metabolically stable and has the potential to become a peripheral painkiller being a full μ opioid receptor functional agonist. To prepare a large quantity of TAPS c(2-6), we optimized the conditions of the on-resin reductive alkylation step to increase the efficiency of its SPPS. NMR was used to determine the solution conformation of the peptide lead TAPS c(2-6).
Collapse
Affiliation(s)
- Alaa Talhami
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Swed
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shmuel Hess
- Meytav Technologies Incubator, Kiryat Shmona, Israel
| | - Oded Ovadia
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sarit Greenberg
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Schumacher-Klinger
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Rosenthal
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah E Shalev
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem, Israel.,Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mattan Hurevich
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philip Lazarovici
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amnon Hoffman
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chaim Gilon
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Samarasimhareddy M, Shamir M, Shalev DE, Hurevich M, Friedler A. A Rapid and Efficient Building Block Approach for Click Cyclization of Peptoids. Front Chem 2020; 8:405. [PMID: 32509731 PMCID: PMC7248394 DOI: 10.3389/fchem.2020.00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclic peptide-peptoid hybrids possess improved stability and selectivity over linear peptides and are thus better drug candidates. However, their synthesis is far from trivial and is usually difficult to automate. Here we describe a new rapid and efficient approach for the synthesis of click-based cyclic peptide-peptoid hybrids. Our methodology is based on a combination between easily synthesized building blocks, automated microwave assisted solid phase synthesis and bioorthogonal click cyclization. We proved the concept of this method using the INS peptide, which we have previously shown to activate the HIV-1 integrase enzyme. This strategy enabled the rapid synthesis and biophysical evaluation of a library of cyclic peptide-peptoid hybrids derived from HIV-1 integrase in high yield and purity. The new cyclic hybrids showed improved biological activity and were significantly more stable than the original linear INS peptide.
Collapse
Affiliation(s)
| | - Mai Shamir
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah E. Shalev
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem, Israel
| | - Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Chandra K, Roy TK, Shalev DE, Loyter A, Gilon C, Gerber RB, Friedler A. A tandem in situ peptide cyclization through trifluoroacetic acid cleavage. Angew Chem Int Ed Engl 2014; 53:9450-5. [PMID: 24827640 DOI: 10.1002/anie.201402789] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 12/31/2022]
Abstract
We present a new approach for peptide cyclization during solid phase synthesis under highly acidic conditions. Our approach involves simultaneous in situ deprotection, cyclization and trifluoroacetic acid (TFA) cleavage of the peptide, which is achieved by forming an amide bond between a lysine side chain and a succinic acid linker at the peptide N-terminus. The reaction proceeds via a highly active succinimide intermediate, which was isolated and characterized. The structure of a model cyclic peptide was solved by NMR spectroscopy. Theoretical calculations support the proposed mechanism of cyclization. Our new methodology is applicable for the formation of macrocycles in solid-phase synthesis of peptides and organic molecules.
Collapse
Affiliation(s)
- Koushik Chandra
- Institute of Chemistry, Edmond J. Safra campus The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904 (Israel) http://chem.ch.huji.ac.il/∼assaf
| | | | | | | | | | | | | |
Collapse
|
4
|
Chandra K, Roy TK, Shalev DE, Loyter A, Gilon C, Gerber RB, Friedler A. A Tandem In Situ Peptide Cyclization through Trifluoroacetic Acid Cleavage. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Hurevich M, Ratner-Hurevich M, Tal-Gan Y, Shalev DE, Ben-Sasson SZ, Gilon C. Backbone cyclic helix mimetic of chemokine (C-C motif) receptor 2: a rational approach for inhibiting dimerization of G protein-coupled receptors. Bioorg Med Chem 2013; 21:3958-66. [PMID: 23706536 DOI: 10.1016/j.bmc.2013.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
Abstract
The transmembrane helical bundle of G protein-coupled receptors (GPCRs) dimerize through helix-helix interactions in response to inflammatory stimulation. A strategy was developed to target the helical dimerization site of GPCRs by peptidomimetics with drug like properties. The concept was demonstrated by selecting a potent backbone cyclic helix mimetic from a library that derived from the dimerization region of chemokine (C-C motif) receptor 2 (CCR2) that is a key player in Multiple Sclerosis. We showed that CCR2 based backbone cyclic peptide having a stable helix structure inhibits specific CCR2-mediated chemotactic migration.
Collapse
Affiliation(s)
- Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
6
|
Hayouka Z, Hurevich M, Levin A, Benyamini H, Iosub A, Maes M, Shalev DE, Loyter A, Gilon C, Friedler A. Cyclic peptide inhibitors of HIV-1 integrase derived from the LEDGF/p75 protein. Bioorg Med Chem 2010; 18:8388-95. [DOI: 10.1016/j.bmc.2010.09.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/17/2010] [Accepted: 09/18/2010] [Indexed: 01/29/2023]
|
7
|
Hurevich M, Swed A, Joubran S, Cohen S, Freeman NS, Britan-Rosich E, Briant-Longuet L, Bardy M, Devaux C, Kotler M, Hoffman A, Gilon C. Rational conversion of noncontinuous active region in proteins into a small orally bioavailable macrocyclic drug-like molecule: the HIV-1 CD4:gp120 paradigm. Bioorg Med Chem 2010; 18:5754-61. [PMID: 20619663 DOI: 10.1016/j.bmc.2010.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/16/2010] [Accepted: 04/17/2010] [Indexed: 11/19/2022]
Abstract
Rational conversion of noncontinuous active regions of proteins into a small orally bioavailable molecule is crucial for the discovery of new drugs based on inhibition of protein-protein interactions. We developed a method that utilizes backbone cyclization as an intermediate step for conversion of the CD4 noncontinuous active region into small macrocyclic molecules. We demonstrate that this method is feasible by preparing small inhibitor for human immunodeficiency virus infection. The lead compound, CG-1, proved orally available in the rat model.
Collapse
Affiliation(s)
- Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram Campus, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hurevich M, Tal-Gan Y, Klein S, Barda Y, Levitzki A, Gilon C. Novel method for the synthesis of urea backbone cyclic peptides using new Alloc-protected glycine building units. J Pept Sci 2010; 16:178-85. [DOI: 10.1002/psc.1218] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Rubinstein M, Niv MY. Peptidic modulators of protein-protein interactions: progress and challenges in computational design. Biopolymers 2009; 91:505-13. [PMID: 19226619 DOI: 10.1002/bip.21164] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the decline in productivity of drug-development efforts, novel approaches to rational drug design are being introduced and developed. Naturally occurring and synthetic peptides are emerging as novel promising compounds that can specifically and efficiently modulate signaling pathways in vitro and in vivo. We describe sequence-based approaches that use peptides to mimic proteins in order to inhibit the interaction of the mimicked protein with its partners. We then discuss a structure-based approach, in which protein-peptide complex structures are used to rationally design and optimize peptidic inhibitors. We survey flexible peptide docking techniques and discuss current challenges and future directions in the rational design of peptidic inhibitors.
Collapse
Affiliation(s)
- Mor Rubinstein
- The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | |
Collapse
|
10
|
Freeman NS, Hurevich M, Gilon C. Synthesis of N′-substituted Ddz-protected hydrazines and their application in solid phase synthesis of aza-peptides. Tetrahedron 2009. [DOI: 10.1016/j.tet.2008.11.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Dolle RE, Bourdonnec BL, Goodman AJ, Morales GA, Thomas CJ, Zhang W. Comprehensive Survey of Chemical Libraries for Drug Discovery and Chemical Biology: 2007. ACTA ACUST UNITED AC 2008; 10:753-802. [PMID: 18991466 DOI: 10.1021/cc800119z] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roland E. Dolle
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Bertrand Le Bourdonnec
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Allan J. Goodman
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Guillermo A. Morales
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Craig J. Thomas
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| | - Wei Zhang
- Adolor Corporation, 700 Pennsylvania Drive, Exton, Pennsylvania 19341, Semafore Pharmaceuticals Inc., 8496 Georgetown Road, Indianapolis, Indiana 46268, NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, and Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125
| |
Collapse
|