Hann JL, Lyall CL, Kociok-Köhn G, Faverio C, Pantoş GD, Lewis SE. Unusual Regio- and Chemoselectivity in Oxidation of Pyrroles and Indoles Enabled by a Thianthrenium Salt Intermediate.
Angew Chem Int Ed Engl 2024;
63:e202405057. [PMID:
38830180 DOI:
10.1002/anie.202405057]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
A dearomative oxidation of pyrroles to Δ3-pyrrol-2-ones is described, which employs a sulfoxide as oxidant, in conjunction with a carboxylic acid anhydride and a Brønsted acid additive. 3-substituted pyrroles undergo regioselective oxidation to give the product isomer in which oxygen has been introduced at the more hindered position. Regioselectivity is rationalized by a proposed mechanism that proceeds by initial thianthrenium introduction at the less-hindered pyrrole α-position, followed by distal attack of an oxygen nucleophile and subsequent elimination of thianthrene. The same reaction conditions are also able to effect a chemoselective oxidation of indoles to indolin-3-ones and additionally of indolin-3-ones to 2-hydroxyindolin-3-ones. Here again, the regio- and chemoselectivities are rationalized through the intermediacy of a thianthrenium salt.
Collapse