1
|
Hirai M, Kobori R, Doge R, Tsuji I, Saito A. Efficient Concentration of Functional Polyphenols Using Their Interaction with Gelatin. Foods 2021; 10:698. [PMID: 33805993 PMCID: PMC8064473 DOI: 10.3390/foods10040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Among polyphenol compounds, the flavan-3-ol structure, which is the basic unit of green tea catechins and the galloyl groups contained in green tea catechins are known to exhibit various functions. In this paper, we discuss how to concentrate highly functional polyphenol compounds by exploiting the interaction between gelatin and the catechol structures. First, we confirmed the interaction between heat-stabilized gelatin and flavan-3-ol derivatives, including synthesized compounds. When green tea leaf extract containing a large amount of flavan-3-ol derivatives was incubated with gelatin, most of the polyphenol compounds it contained were adsorbed. Because the compounds adsorbed on gelatin could not be eluted, DPPH radical and ABTS radical scavenging activity tests were conducted using the as-prepared gelatin-polyphenol complex. Radical scavenging activity was observed when the compounds were adsorbed on gelatin and heating at 90 °C for 5 min did not have a significant effect on their activity. These results suggest that functional polyphenols can be efficiently concentrated using heat-stabilized gelatin and retain their functionality while adsorbed.
Collapse
Affiliation(s)
| | | | | | | | - Akiko Saito
- Graduate School of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan; (M.H.); (R.K.); (R.D.); (I.T.)
| |
Collapse
|
2
|
Kobori R, Hashimoto S, Koshimizu H, Yakami S, Hirai M, Noro K, Kawasaki T, Saito A. Flavan-3-ols Content in Red Raspberry Leaves Increases under Blue Led-Light Irradiation. Metabolites 2019; 9:E56. [PMID: 30901937 PMCID: PMC6468916 DOI: 10.3390/metabo9030056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/15/2023] Open
Abstract
Berry fruits are well known to contain large amounts of polyphenol compounds. Among them, flavan-3-ol derivatives are a group of secondary metabolism compounds currently attracting a great deal of attention owing to their health benefits. Not only the fruits, but also the leaves of raspberry plants, are highly esteemed for tea making around the world and are largely used for food. In this report, we discuss the results of our study on the effect of light and temperature on polyphenol accumulation in raspberry leaves. When raspberry was cultivated in a plant factory unit and light intensity, wavelength, and temperature were varied, the amount of total polyphenol increased under blue light. Quantitative determination of (+)-catechin, (⁻)-epicatechin, procyanidin B4, flavan-3-ol trimer, which are flavan-3-ol derivatives, was carried out using HPLC, whereby we confirmed their increase under blue light. Semi-quantitative RT-PCR showed correlation between chalcone synthase (CHS) gene expression and the amounts of the compounds measured in the leaves.
Collapse
Affiliation(s)
- Ryo Kobori
- Graduate School of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Seiya Hashimoto
- Faculty of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Hayato Koshimizu
- Faculty of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Shuich Yakami
- Graduate School of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Mizuki Hirai
- Graduate School of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Kenta Noro
- Graduate School of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Takashi Kawasaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Akiko Saito
- Graduate School of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
- Faculty of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| |
Collapse
|
3
|
Regioselective Synthesis of Procyanidin B6, A 4-6-Condensed (+)-Catechin Dimer, by Intramolecular Condensation. Molecules 2018; 23:molecules23010205. [PMID: 29346322 PMCID: PMC6017110 DOI: 10.3390/molecules23010205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 11/17/2022] Open
Abstract
Proanthocyanidins, also known as condensed tannins or oligomeric flavonoids, are found in many edible plants and exhibit interesting biological activities. Herein, we report a new, simple method for the stereoselective synthesis of procyanidin B6, a (+)-catechin-(4-6)-(+)-catechin dimer, by Lewis acid-catalyzed intramolecular condensation. The 5-O-t-butyldimethylsilyl (TBDMS) group of 5,7,3′4′-tetra-O-TBDMS-(+)-catechin was regioselectively removed using trifluoroacetic acid, leading to the “regio-controlled” synthesis of procyanidin B6. The 5-hydroxyl group of the 7,3′,4′-tri-O-TBDMS-(+)-catechin nucleophile and the 3-hydroxyl group of 5,7,3′,4′-tetra-O-benzylated-(+)-catechin electrophile were connected with an azelaic acid. The subsequent SnCl4-catalyzed intramolecular condensation proceeded smoothly to give the 4-6-condensed catechin dimer. This is the first report on the complete regioselective synthesis of a 4-6-connected oligomer without modifying the 8-position.
Collapse
|
4
|
Okamoto S, Ishihara S, Okamoto T, Doi S, Harui K, Higashino Y, Kawasaki T, Nakajima N, Saito A. Inhibitory activity of synthesized acetylated Procyanidin B1 analogs against HeLa S3 cells proliferation. Molecules 2014; 19:1775-85. [PMID: 24500007 PMCID: PMC6271516 DOI: 10.3390/molecules19021775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 11/17/2022] Open
Abstract
Proanthocyanidins, also known as condensed tannins and/or oligomeric flavonoids, occur in many edible plants and have various interesting biological activities. Previously, we reported a synthetic method for the preparation of various procyanidins in pure form and described their biological activities. Here, we describe the synthesis of procyanidin B1 acetylated analogs and discuss their inhibition activities against HeLa S3 cell proliferation. Surprisingly, the lower-unit acetylated procyanidin B1 strongly inhibited the proliferation of HeLa S3 cells. This molecule showed much stronger inhibitory activity than did epigallocatechin-3-O-gallate (EGCG), green tea polyphenol, and dimeric compounds that included EGCG as a unit. This result suggests that the phenolic hydroxyl groups of the upper-units in flavan-3-ols are important for their inhibitory activity against cancer cell proliferation and that a hydrophobic lower unit dimer enhances this activity.
Collapse
Affiliation(s)
- Syuhei Okamoto
- Graduate School of Engineering, Osaka Electro-communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Sayaka Ishihara
- Graduate School of Engineering, Osaka Electro-communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Taisuke Okamoto
- Graduate School of Engineering, Osaka Electro-communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Syoma Doi
- Graduate School of Engineering, Osaka Electro-communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Kota Harui
- Graduate School of Engineering, Osaka Electro-communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Yusuke Higashino
- Graduate School of Engineering, Osaka Electro-communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Takashi Kawasaki
- Department of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| | - Noriyuki Nakajima
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Akiko Saito
- Graduate School of Engineering, Osaka Electro-communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| |
Collapse
|