1
|
Listratova AV, Borisov RS, Polovkov NY, Kulikova LN. Synthesis and Biological Activity of Chromeno[3,2- c]Pyridines. Molecules 2024; 29:4997. [PMID: 39519637 PMCID: PMC11547192 DOI: 10.3390/molecules29214997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The review summarizes all synthetic methodologies for the preparation of chromeno[3,2-c]pyridines and chromeno[3,2-c]quinolines. The proposed approaches are systemized based on ways for the construction of the heterocyclic system. The presence of these compounds in nature and their bioactivity are also discussed. Natural products with an annelated chromeno[3,2-c]pyridine fragment are well-known and a number of alkaloids derived from this system as a key core have been recently isolated. These compounds demonstrate antimicrobial, antivirus, and cytotoxic activities, making chromeno[3,2-c]pyridine structural motifs promising for medicinal chemistry.
Collapse
Affiliation(s)
- Anna V. Listratova
- Organic Chemistry Department, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Roman S. Borisov
- A.V.Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia; (R.S.B.); (N.Y.P.)
| | - Nikolay Yu. Polovkov
- A.V.Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia; (R.S.B.); (N.Y.P.)
| | - Larisa N. Kulikova
- Organic Chemistry Department, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| |
Collapse
|
2
|
Yang FX, Ma YY, Wu YP, Zhao GK, Li YP, Li ZJ, Li XM, Li YK, Wang WG, Zhou M, Kong GH, Hu QF. Extraction and characterization of anti-virus anthraquinones from Nicotiana tabacum-derived Aspergillus oryzae YNCA1220. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105613. [PMID: 37945230 DOI: 10.1016/j.pestbp.2023.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 11/12/2023]
Abstract
In this study, seven novel anthraquinones (1-7) and four described anthraquinones (8-11) were purified from Nicotiana tabacum-derived Aspergillus oryzae YNCA1220. It is worth noting that only analogs of 4 and 5 have been reported as natural products to date, while the nuclei of compounds 1-3, 6 and 7 were isolated for the first time in nature. Among them, compounds 1-3 bear an unusual anthra[2,3-b]furan-9,10-dione nucleus, 4 and 5 possess a rare 3-methyl-1H-pyrrol-2-yl substituent, and 6 and 7 are new framework anthraquinones bearing a 6-methyl-1,7-dihydro-2H-azepin-2-one ring. Interestingly, the in vivo assays indicated that 1, 4 and 5 had inactivation effects against tobacco mosaic virus (TMV) with inhibition rates of 41.6%, 55.4% and 38.6%, respectively, at a concentration of 50 μg/mL, which were better than that of the positive control agent, ningnanmycin (33.8%). Compounds 1, 4 and 5 also had protective effects with inhibition rates of 48.7%, 60.2% and 43.5% at the same concentration, while 4 had a better curative effect than ningnanmycin at a concentration of 100 μg/mL. In addition, mechanistic studies also revealed that a potent direct effect on TMV, the induction of SAR in tobacco plants, and the effective regulation of defense enzymes, defense genes, and defense hormones may be the reasons for the significant effects of 4 against TMV. At the same time, downregulation of the expression of total NtHsp70 protein by inhibiting the related Hsp70 genes may also be involved in tobacco resistance to TMV. To evaluate whether compounds have broader antiviral activities, the antirotavirus activities of new isolates were also evaluated and found to be highly effective with a therapeutic index (TI) value ranging from 11.6 to 17.7. This study suggests that the above anthraquinone compounds, particularly 4, have broad spectrum antiviral activities. The successful isolation and structure identification of the above anthraquinones provide new materials for the screening of anti-TMV agents and contribute to the improved utilization of N. tabacum-derived fungi.
Collapse
Affiliation(s)
- Feng-Xian Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China; Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, PR China
| | - Yue-Yu Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Yu-Ping Wu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, PR China
| | - Gao-Kun Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, PR China
| | - Yong-Ping Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, PR China
| | - Zhen-Jie Li
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650031, PR China
| | - Xue-Mei Li
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650031, PR China
| | - Yin-Ke Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China; Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, PR China
| | - Wei-Guang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Min Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China
| | - Guang-Hui Kong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, PR China.
| | - Qiu-Fen Hu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, PR China; Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, PR China.
| |
Collapse
|
3
|
Yang GY, Dai JM, Li ZJ, Wang J, Yang FX, Liu X, Li J, Gao Q, Li XM, Li YK, Wang WG, Zhou M, Hu QF. Isoindolin-1-ones from the stems of Nicotiana tabacum and their antiviral activities. Arch Pharm Res 2022; 45:572-583. [DOI: 10.1007/s12272-022-01399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
|
4
|
Indole Alkaloids and Chromones from the Stem Bark of Cassia alata and Their Antiviral Activities. Molecules 2022; 27:molecules27103129. [PMID: 35630603 PMCID: PMC9144915 DOI: 10.3390/molecules27103129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
The Cassia (Leguminosae) genus has attracted a lot of attention as a prolific source of alkaloids and chromones with diverse structures and biological properties. The aim of this study is to screen the antiviral compounds from Cassia alata. The extract of the stem bark of this plant was separated using silica gel, MCI, ODS C18, and Sephadex LH-20 column chromatography, as well as semi-preparative HPLC. As a result, three new indole alkaloids, alataindoleins A–C (1–3); one new chromone, alatachromone A (4); and a new dimeric chromone-indole alkaloid, alataindolein D (5) were isolated. Their structures were determined by means of HRESIMS and extensive 1D and 2D NMR spectroscopic studies. Interestingly, alataindolein D (5) represents a new type of dimeric alkaloid with an unusual N-2−C-16’ linkage, which is biogenetically derived from a chromone and an indole alkaloid via an intermolecular nucleophilic substitution reaction. Compounds 1–5 were tested for their anti-tobacco mosaic virus (TMV) and anti-rotavirus activities, and the results showed that compounds 2–4 showed high anti-TMV activities with inhibition rates of 44.4%, 66.5%, and 52.3%, respectively. These rates were higher than those of the positive control (with inhibition rate of 32.8%). Compounds 1 and 5 also showed potential anti-TMV activities with inhibition rates of 26.5% and 31.8%, respectively. In addition, compounds 1–5 exhibited potential anti-rotavirus activities with therapeutic index (TI) values in the range of 9.75~15.3. The successful isolation and structure identification of the above new compounds provided materials for the screening of antivirus drugs, and contributed to the development and utilization of C. alata.
Collapse
|
5
|
Li YK, Xiong W, Hu QF, Zhang LF, Cai BB, Li Y, Wang HS, Cai HC, Liu MX. Three New Quinoline Alkaloids from the Whole Plant of Thalictrum atriplex and Their Bioactivities. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|