1
|
Dolu MH, Öz Tunçer G, Akça Ü, Aydın S, Bahadir O, Sezer Ö, Aksoy A, Taşdemir HA. Hyperekplexia: A Single-Center Experience. J Child Neurol 2024; 39:260-267. [PMID: 39051604 DOI: 10.1177/08830738241263243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND Hyperekplexia is a rare neurogenetic disorder that is classically characterized by an exaggerated startle response to sudden unexpected stimuli. This study aimed to determine clinical and genetic characteristics of our patients with hyperekplexia. METHODS The age of onset and diagnosis, familial and perinatal history, clinical course, complications, metabolic screening tests, magnetic resonance imaging (MRI), medications, neuropsychometric evaluations, and gene mutations of patients diagnosed with hyperekplexia were reviewed retrospectively. RESULTS All hyperekplexia patients had displayed neonatal excessive startle response and muscle stiffness, which we accepted as the major form of the disorder. Sixteen patients had mutations in genes associated with hyperekplexia. The ages at clinical diagnosis and genetic confirmation ranged from newborn to 16 years old and from 2.5 to 19 years, respectively. Nine patients (56.25%) were initially misdiagnosed with epilepsy. Seven patients (43.75%) carried a diagnosis of intellectual disability, defined here as a total IQ <80. Delayed gross motor development was detected in 4 patients (25%), and speech delay was reported in 3 (18.75%). Mutations in GLRA1 (NM_000171.4) and SLC6A5 (NM_004211.5) were identified in 13 (81.25%) and 3 patients (18.75%), respectively. Fifteen of the 16 patients (93.75%) showed autosomal recessive inheritance. Only 1 patient (6.25%) showed autosomal dominant inheritance. CONCLUSION Although hyperekplexia is a potentially treatable disease, it can be complicated by delayed speech and/or motor acquisition and also by intellectual disability. This study shows that hyperekplexia is not always a benign condition and that all patients diagnosed with hyperekplexia should be evaluated for neuropsychiatric status and provided with genetic testing.
Collapse
Affiliation(s)
- Merve Hilal Dolu
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Gökçen Öz Tunçer
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ünal Akça
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Seren Aydın
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Oğuzhan Bahadir
- Department of Medical Genetics, Samsun Education and Research Hospital, Samsun, Turkey
| | - Özlem Sezer
- Department of Medical Genetics, Samsun Education and Research Hospital, Samsun, Turkey
| | - Ayşe Aksoy
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Haydar Ali Taşdemir
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
2
|
Schaefer N, Harvey RJ, Villmann C. Startle Disease: New Molecular Insights into an Old Neurological Disorder. Neuroscientist 2023; 29:767-781. [PMID: 35754344 PMCID: PMC10623600 DOI: 10.1177/10738584221104724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Startle disease (SD) is characterized by enhanced startle responses, generalized muscle stiffness, unexpected falling, and fatal apnea episodes due to disturbed feedback inhibition in the spinal cord and brainstem of affected individuals. Mutations within the glycine receptor (GlyR) subunit and glycine transporter 2 (GlyT2) genes have been identified in individuals with SD. Impaired inhibitory neurotransmission in SD is due to pre- and/or postsynaptic GlyR or presynaptic GlyT2 dysfunctions. Previous research has focused on mutated GlyRs and GlyT2 that impair ion channel/transporter function or trafficking. With insights provided by recently solved cryo-electron microscopy and X-ray structures of GlyRs, a detailed picture of structural transitions important for receptor gating has emerged, allowing a deeper understanding of SD at the molecular level. Moreover, studies on novel SD mutations have demonstrated a higher complexity of SD, with identification of additional clinical signs and symptoms and interaction partners representing key players for fine-tuning synaptic processes. Although our knowledge has steadily improved during the last years, changes in synaptic localization and GlyR or GlyT2 homeostasis under disease conditions are not yet completely understood. Combined proteomics, interactomics, and high-resolution microscopy techniques are required to reveal alterations in receptor dynamics at the synaptic level under disease conditions.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Robert J. Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, Australia
- Sunshine Coast Health Institute, Birtinya, Australia
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
He Y, Bo Q, Mao Z, Yang J, Liu M, Wang H, Kastin AJ, Pan W, Wang C, Sun Z. Reduced Serum Levels of Soluble Interleukin-15 Receptor α in Schizophrenia and Its Relationship to the Excited Phenotype. Front Psychiatry 2022; 13:842003. [PMID: 35356722 PMCID: PMC8959406 DOI: 10.3389/fpsyt.2022.842003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Our previous studies documented that interleukin-15 receptor α (IL-15Rα) knockout (KO) mice exhibited hyperactivity, memory impairment, and desperate behavior, which are core features of schizophrenia and depression. Due to the overlapping symptomology and pathogenesis observed for schizophrenia and depression, the present study attempted to determine whether IL-15Rα was associated with the risk of schizophrenia or depression. One hundred fifty-six participants, including 63 schizophrenia patients, 29 depressive patients, and 64 age-matched healthy controls, were enrolled in the study. We investigated the circulating levels of soluble IL-15Rα and analyzed potential links between the IL-15Rα levels and clinical symptoms present in schizophrenia or depressive patients. We observed reduced serum IL-15Rα levels in schizophrenia patients, but not depressive patients compared with controls. Moreover, a significant negative association was observed between the circulating IL-15Rα levels and excited phenotypes in the schizophrenia patients. The IL-15Rα KO mice displayed pronounced pre-pulse inhibition impairment, which was a typical symptom of schizophrenia. Interestingly, the IL-15Rα KO mice exhibited a remarkable elevation in the startle amplitude in the startle reflex test compared to wild type mice. These results demonstrated that serum levels of soluble IL-15Rα were reduced in schizophrenia and highlighted the relationship of IL-15Rα and the excited phenotype in schizophrenia patients and mice.
Collapse
Affiliation(s)
- Yi He
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qijing Bo
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zhen Mao
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Min Liu
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Haixia Wang
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Abba J Kastin
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Weihong Pan
- BioPotentials Consult, Sedona, AZ, United States
| | - Chuanyue Wang
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zhan FX, Wang SG, Cao L. Advances in hyperekplexia and other startle syndromes. Neurol Sci 2021; 42:4095-4107. [PMID: 34379238 DOI: 10.1007/s10072-021-05493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
Startle, a basic alerting reaction common to all mammals, is described as a sudden involuntary movement of the body evoked by all kinds of sudden and unexpected stimulus. Startle syndromes are heterogeneous groups of disorders with abnormal and exaggerated responses to startling events, including hyperekplexia, stimulus-induced disorders, and neuropsychiatric startle syndromes. Hyperekplexia can be attributed to a genetic, idiopathic, or symptomatic cause. Excluding secondary factors, hereditary hyperekplexia, a rare neurogenetic disorder with highly genetic heterogeneity, is characterized by neonatal hypertonia, exaggerated startle response provoked by the sudden external stimuli, and followed by a short period of general stiffness. It mainly arises from defects of inhibitory glycinergic neurotransmission. GLRA1 is the major pathogenic gene of hereditary hyperekplexia, along with many other genes involved in the function of glycinergic inhibitory synapses. While about 40% of patients remain negative genetic findings. Clonazepam, which can specifically upgrade the GABARA1 chloride channels, is the main and most effective administration for hereditary hyperekplexia patients. In this review, with the aim at enhancing the recognition and prompting potential treatment for hyperekplexia, we focused on discussing the advances in hereditary hyperekplexia genetics and the expound progress in pathogenic mechanisms of the glycinergic-synapse-related pathway and then followed by a brief overview of other common startle syndromes.
Collapse
Affiliation(s)
- Fei-Xia Zhan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Shi-Ge Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|