1
|
Aili R, Nakata H, Miyasaka M, Kuroda S, Tamura Y, Yokoi T, Kawashita M, Shimada Y, Kasugai S, Marukawa E. Evaluation of a hydroxyapatite-crosslinked fish gelatin membranes. J Dent Sci 2024; 19:900-908. [PMID: 38618111 PMCID: PMC11010609 DOI: 10.1016/j.jds.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/11/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose Porcine collagen is widely used in regenerative therapies to generate membranes for bone augmentation. However, porcine or bovine gelatin or collagen is often not appropriate for patients with creed and religious beliefs or for allergic reasons. In this study, we evaluated the potential of fish gelatin to generate membranes. Materials and methods Fish gelatin and hydroxyapatite (HAp) were used at three different ratios (2:0, 2:1, 2:1.5, and 2:2) to prepare gelatin-hydroxyapatite (G-HAp) membranes via freeze-drying and heat-crosslinking. The surface morphology and cell attachment of G-HAp membranes were observed using scanning electron microscopy and confocal laser microscopy. G-HAp membrane was placed at the bottom of a well plate, and MC3T3-E1 cells were seeded on it. Cell viability and cytotoxicity were tested after 1 and 3 days of culture. Alkaline phosphatase (ALP) and alizarin red staining was performed at 10 and 21 days, respectively. Results Viability of cells on G-HAp membrane with the gelatin:HAp ratio of 2:1.5 was significantly higher than that on membranes with other gelatin:HAp ratios. ALP and alizarin red staining showed that ALP-positive areas and calcium deposition were the highest on G-HAp membrane with the gelatin:HAp ratio of 2:1. These membranes showed negligible cytotoxicity. Conclusion Fish-derived G-HAp membranes have the potential to promote osteogenic differentiation of MC3T3-E1 cells with negligible cytotoxicity.
Collapse
Affiliation(s)
- Reziwanguli Aili
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Regenerative and Reconstructive Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Regenerative and Reconstructive Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Munemitsu Miyasaka
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Regenerative and Reconstructive Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Regenerative and Reconstructive Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Improvement of Gnatho-oral Function, Department of Stomatognathic, Faculty of Dental Medicine, Hokkaido University, Hokkaido, Japan
| | - Yukihiko Tamura
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taishi Yokoi
- Institute of Biomaterials and Bioengineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasushi Shimada
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Dental Clinic, Southern TOHOKU General Hospital, Fukushima, Japan
| | - Eriko Marukawa
- Department of Regenerative and Reconstructive Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Lin CC, Chiu JY. A novel γ-PGA composite gellan membrane containing glycerol for guided bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111404. [PMID: 33255007 DOI: 10.1016/j.msec.2020.111404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022]
Abstract
An ideal barrier membrane design should incorporate the function of a delivery vehicle for transporting drugs and osteoinductive factors to where the body is under inflammation. In the present study, a functional hydrogel-based barrier membrane is fabricated using calcium-form poly-γ-glutamic acid (γ-PGA) and glycerol blending into gellan gum. The concentration of the calcium-form poly-γ-glutamic acid (γ-PGA) and the glycerol ratio are studied for improving practicability in easy-handling and expanding the coverage area. Gellan gum-based membranes with uniformly distributed calcium aggregates are not only successfully manufactured but also providing excellent characteristics for protein adsorption, bioactivity, and bone cell maturation. Our composite gellan gum-based membranes were tested including to their morphology, mechanical properties, swelling behavior, protein adsorption, drug diffusion, and lysozyme degradation. The biocompatibility, proliferation, and osteoblastic response of membranes were examined by osteoblast-like (MG63) cells. Our results indicate that adequate physical cross-linking with γ-PGA improves the original mechanical properties and delays degradation. Growing glycerol ratio not only enhances the elongation at break and diffusion rate, but it also changes the tensile strength and the remaining weight. In vitro biocompatibility tests, an adequate ratio of γ-PGA modification significantly enhances the proliferation, the secretion of alkaline phosphatase (ALP) and mineralization. However, worth noting is the glycerol-modified membrane cannot bear a close resemblance with the non-glycerol group in the high level of osteoblastic response. In general, these tunable materials with biocompatibility, biodegradability, and positive osteoblastic responses were poised to be possible candidates for bone defect repair.
Collapse
Affiliation(s)
- Chi-Chang Lin
- Department of Chemical and Material Engineering, Tunghai University, Taichung 40704, Taiwan.
| | - Jiun-Yan Chiu
- Department of Chemical and Material Engineering, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
3
|
Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds. Int J Biol Macromol 2020; 148:434-448. [PMID: 31953173 DOI: 10.1016/j.ijbiomac.2020.01.112] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 01/02/2023]
Abstract
Design of bioactive three-dimensional scaffolds to support bone tissue repair and regeneration become a key area of research in tissue engineering. Herein, porous hybrid hydrogels composed of dextran incorporated with nanocrystalline β-tricalcium phosphate (β-TCP) particles were tailor made as scaffolds for bone tissue engineering. β-TCP was successfully introduced within the dextran networks crosslinked through intermolecular ionic interactions and hydrogen bonding confirmed by FTIR spectroscopy. The effect of β-TCP content on equilibrium water uptake and swelling kinetics of composite hydrogels was investigated. It was found that the homogeneous distribution of β-TCP nanoparticles through the hydrogel matrix contributes to higher porosity and swelling capacity. In depth swelling measurements revealed that while in the early stage of swelling, water diffusion follows the Fick's law, for longer time swelling behavior of hydrogels undergo the second order kinetics. XRD measurements represented the formation of apatite layer on the surface of nanocomposite hydrogels after immersion in the SBF solution, which implies their bioactivity. Cell culture assays confirmed biocompatibility of the developed hybrid hydrogels in vitro. The obtained results converge to offer dextran/β-TCP nanocomposite hydrogels as promising scaffolds for bone regeneration applications.
Collapse
|
4
|
Lowe B, Ottensmeyer MP, Xu C, He Y, Ye Q, Troulis MJ. The Regenerative Applicability of Bioactive Glass and Beta-Tricalcium Phosphate in Bone Tissue Engineering: A Transformation Perspective. J Funct Biomater 2019; 10:E16. [PMID: 30909518 PMCID: PMC6463135 DOI: 10.3390/jfb10010016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
The conventional applicability of biomaterials in the field of bone tissue engineering takes into consideration several key parameters to achieve desired results for prospective translational use. Hence, several engineering strategies have been developed to model in the regenerative parameters of different forms of biomaterials, including bioactive glass and β-tricalcium phosphate. This review examines the different ways these two materials are transformed and assembled with other regenerative factors to improve their application for bone tissue engineering. We discuss the role of the engineering strategy used and the regenerative responses and mechanisms associated with them.
Collapse
Affiliation(s)
- Baboucarr Lowe
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA 02114, USA.
| | - Mark P Ottensmeyer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
| | - Yan He
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
| | - Maria J Troulis
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA 02114, USA.
| |
Collapse
|