1
|
Blees NR, Teunissen M, Dobenecker B, Prawitt J, Tryfonidou MA, Jan Corbee R. Collagen Hydrolysates as Nutritional Support in Canine Osteoarthritis: A Narrative Review. J Anim Physiol Anim Nutr (Berl) 2025; 109:590-600. [PMID: 39604106 PMCID: PMC11919810 DOI: 10.1111/jpn.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Osteoarthritis (OA) is a common disease in dogs with severe impact on their welfare. The multimodal management of OA includes feeding therapeutic diets and nutraceuticals to slow down OA progression. Collagen hydrolysates (CH) are a nutritional supplement that may exert anabolic effects on osteoarthritic joint cartilage as well as disease-modifying effects. After oral intake, CH is absorbed, mainly as amino acids, di- and tripeptides that are transported amongst others to the joint. In addition to reducing cartilage degradation, CH metabolites may reduce synovial inflammation and subchondral bone sclerosis during OA. Preliminary evidence in dogs suffering from the consequences of OA support the clinical efficacy of CH with reported reductions in lameness. However, effects on biomarker level of cartilage metabolism and inflammation are inconclusive. Additionally, current studies show a lack of standardised dosing regimens and the use of not validated outcomes. Future work should therefore elucidate further on the bioavailability of CH in dogs in order to establish adequate dosing recommendations. Furthermore, high-quality placebo-controlled randomised controlled trials are essential to dstudies have evaluated the cetermine the clinical efficacy of CH to reduce lameness, prevent OA progression and thereby improve the level of evidence.
Collapse
Affiliation(s)
- Niels R. Blees
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Michelle Teunissen
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Britta Dobenecker
- Department of Animal Sciences, Chair of Animal Nutrition and DieteticsLudwig‐Maximilians‐Universität MunichOberschleissheimGermany
| | | | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Ronald Jan Corbee
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
2
|
Genç AS, Yılmaz AK, Anıl B, Korkmaz Salkılıç E, Akdemir E, Sancaklı A, Mor A, Ermiş E, Baraz LS, Güzel N, Kehribar L. Effect of supplementation with type 1 and type 3 collagen peptide and type 2 hydrolyzed collagen on osteoarthritis-related pain, quality of life, and physical function: A double-blind, randomized, placebo-controlled study. Jt Dis Relat Surg 2025; 36:85-96. [PMID: 39719905 PMCID: PMC11734850 DOI: 10.52312/jdrs.2025.1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 12/26/2024] Open
Abstract
OBJECTIVES The aim of this study was to assess the effect of Naturagen® 4 Joint product, containing type 1, 2, and 3 collagen, on pain associated with osteoarthritis (OA) and to evaluate its effects on quality of life and physical functioning. PATIENTS AND METHODS This double-blind, randomized, placebo-controlled clinical study included a total of 31 patients (8 males, 23 females; mean age: 53.5±9.1 years; range, 35 to 65 years) with Grade 2-3 OA according to the Kellgren-Lawrence (KL) classification system between June 2023 and November 2023. The patients were divided into two groups: a collagen group (n=16) and a placebo group (n=15). The Visual Analog Scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score (KOOS-PS), Oxford Knee Score (OKS), Tampa Scale for Kinesiophobia (TSK), Short Form Health Survey (SF-12), Foot Function Index (FFI), Timed Up and Go (TUG), 6-Min Walking Test (6MWT), Five Repetition Sit to Stand Test (5STS), Stair Climbing Test (SCT), and Berg Balance Scale (BBS) were used. All tests were performed before and after eight weeks of collagen supplementation. RESULTS Eight weeks of collagen supplementation yielded notable enhancements across all osteoarthritis-related pain and quality of life scales evaluated, including VAS, WOMAC, KOOS-PS, OKS, TSK, SF-12, and FFI scores (p<0.05). In functional evaluations, there were significant positive effects of collagen use in BBS and 6MWT results (p<0.05). In TUG, 5STS, and SCT tests, no significant difference was found between the groups (p>0.05). CONCLUSION Our study results suggest that the eight-week collagen-based supplement exerts a favorable effect on pain and quality of life levels, as well as some functional test results.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Egemen Ermiş
- Ondokuz Mayıs Üniversitesi, Yaşar Doğu Spor Bilimleri Fakültesi, 55280 Atakum, Samsun, Türkiye.
| | | | | | | |
Collapse
|
3
|
Liu C, Yan Z, Zhang X, Xia T, Ashaolu JO, Olatunji OJ, Ashaolu TJ. Food-derived bioactive peptides potentiating therapeutic intervention in rheumatoid arthritis. Heliyon 2024; 10:e31104. [PMID: 38778960 PMCID: PMC11109807 DOI: 10.1016/j.heliyon.2024.e31104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the joints of the human body and is projected to have a prevalence age-standardized rate of 1.5 million new cases worldwide by 2030. Several conventional and non-conventional preventive and therapeutic interventions have been suggested but they have their side effects including nausea, abdominal pain, liver damage, ulcers, heightened blood pressure, coagulation, and bleeding. Interestingly, several food-derived peptides (FDPs) from both plant and animal sources are increasingly gaining a reputation for their potential in the management or therapy of RA with little or no side effects. In this review, the concept of inflammation, its major types (acute and chronic), and RA identified as a chronic type were discussed based on its pathogenesis and pathophysiology. The conventional treatment options for RA were briefly outlined as the backdrop of introducing the FDPs that potentiate therapeutic effects in the management of RA.
Collapse
Affiliation(s)
- Chunhong Liu
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Zheng Yan
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Xiaohai Zhang
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Taibao Xia
- Second People's Hospital of Wuhu City, 241001, Anhui, China
| | - Joseph Opeoluwa Ashaolu
- Department of Public Health, Faculty of Basic Medical Sciences, Redeemers University, PMB 230, Ede, Osun State, Nigeria
| | | | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam
- Faculty of Medicine, Duy Tan University, Da Nang, 550000, Viet Nam
| |
Collapse
|
4
|
Hwang JM, Lee MH, Kwon Y, Chung HC, Kim DU, Lee JH. In Vitro and In Vivo Bone-Forming Effect of a Low-Molecular-Weight Collagen Peptide. J Microbiol Biotechnol 2024; 34:415-424. [PMID: 38044675 PMCID: PMC10940753 DOI: 10.4014/jmb.2307.07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
This study reveals that low-molecular-weight collagen peptide (LMWCP) can stimulate the differentiation and the mineralization of MC3T3-E1 cells in vitro and attenuate the bone remodeling process in ovariectomized (OVX) Sprague-Dawley rats in vivo. Moreover, the assessed LMWCP increased the activity of alkaline phosphatase (ALP), synthesis of collagen, and mineralization in MC3T3-E1 cells. Additionally, mRNA levels of bone metabolism-related factors such as the collagen type I alpha 1 chain, osteocalcin (OCN), osterix, bone sialoprotein, and the Runt family-associated transcription factor 2 were increased in cells treated with 1,000 μg/ml of LMWCP. Furthermore, we demonstrated that critical bone morphometric parameters exhibited significant differences between the LMWCP (400 mg/kg)-receiving and vehicle-treated rat groups. Moreover, the expression of type I collagen and the activity of ALP were found to be higher in both the femur and lumbar vertebrae of OVX rats treated with LMWCP. Finally, the administration of LMWCP managed to alleviate osteogenic parameters such as the ALP activity and the levels of the bone alkaline phosphatase, the OCN, and the procollagen type 1 N-terminal propeptide in OVX rats. Thus, our findings suggest that LMWCP is a promising candidate for the development of food-based prevention strategies against osteoporosis.
Collapse
Affiliation(s)
- Jae Min Hwang
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Mun-Hoe Lee
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Yuri Kwon
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Hee-Chul Chung
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Do-Un Kim
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Jin-Hee Lee
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| |
Collapse
|
5
|
Kim Y, Lee JO, Lee JM, Lee MH, Kim HM, Chung HC, Kim DU, Lee JH, Kim BJ. Low Molecular Weight Collagen Peptide (LMWCP) Promotes Hair Growth by Activating the Wnt/GSK-3β/β-Catenin Signaling Pathway. J Microbiol Biotechnol 2024; 34:17-28. [PMID: 37830229 PMCID: PMC10840484 DOI: 10.4014/jmb.2308.08013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
Low molecular weight collagen peptide (LMWCP) is a collagen hydrolysate derived from fish. We investigated the effects of LMWCP on hair growth using human dermal papilla cells (hDPCs), human hair follicles (hHFs), patch assay, and telogenic C57BL/6 mice, while also examining the underlying mechanisms of its action. LMWCP promoted proliferation and mitochondrial potential, and the secretion of hair growth-related factors, such as EGF, HB-EGF, FGF-4, and FGF-6 in hDPCs. Patch assay showed that LMWCP increased the neogeneration of new HFs in a dose-dependent manner. This result correlated with an increase in the expression of dermal papilla (DP) signature genes such as, ALPL, SHH, FGF7, and BMP-2. LMWCP upregulated phosphorylation of glycogen synthase kinase-3β (GSK-3β) and β-catenin, and nuclear translocation of β-catenin, and it increased the expression of Wnt3a, LEF1, VEGF, ALP, and β-catenin. LMWCP promoted the growth of hHFs and increased the expression of β-catenin and VEGF. Oral administration of LMWCP to mice significantly stimulated hair growth. The expression of Wnt3a, β-catenin, PCNA, Cyclin D1, and VEGF was also elevated in the back skin of the mice. Furthermore, LMWCP increased the expression of cytokeratin and Keratin Type I and II. Collectively, these findings demonstrate that LMWCP has the potential to increase hair growth via activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Jung Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jung Min Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Mun-Hoe Lee
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Hyeong-Min Kim
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Hee-Chul Chung
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Do-Un Kim
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Jin-Hee Lee
- Health Food Research and Development, NEWTREE Co., Ltd., Seoul 05604, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| |
Collapse
|
6
|
Chuu J, Lu J, Chang H, Chu Y, Peng Y, Ho Y, Shen P, Cheng Y, Cheng C, Liu Y, Wang C. Attenuative effects of collagen peptide from milkfish ( Chanos chanos) scales on ovariectomy-induced osteoporosis. Food Sci Nutr 2024; 12:116-130. [PMID: 38268910 PMCID: PMC10804110 DOI: 10.1002/fsn3.3746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 01/26/2024] Open
Abstract
Osteoporosis is characterized by low bone mass, bone microarchitecture disruption, and collagen loss, leading to increased fracture risk. In the current study, collagen peptides were extracted from milkfish scales (MS) to develop potential therapeutic candidates for osteoporosis. MS was used to synthesize a crude extract of fish scales (FS), collagen liquid (COL), and hydroxyapatite powder (HA). COL samples were further categorized according to the peptide size of total COL (0.1 mg/mL), COL < 1 kDa (0.1 mg/mL), COL: 1-10 kDa (0.1 mg/mL), and COL > 10 kDa (0.1 mg/mL) to determine it. Semi-quantitative reverse transcription polymerase chain reaction (sqRT-PCR) and immunofluorescence labeling were used to assess the expression levels of specific mRNA and proteins in vitro. For in vivo studies, mice ovariectomy (OVX)-induced postmenopausal osteoporosis were developed, while the sham surgery (Sham) group was treated as a control. Collagen peptides (CP) from MS inhibited osteoclast differentiation in RAW264.7 cells following an insult with nuclear factor kappa-B ligand (RANKL). CP also enhanced osteoblast proliferation in MG-63 cells, possibly through downregulating NFATc1 and TRAP mRNA expression and upregulating ALP and OPG mRNA levels. Furthermore, COL1 kDa also inhibited bone density loss in osteoporotic mice. Taken together, CP may reduce RANKL-induced osteoclast activity while promoting osteoblast synthesis, and therefore may act as a potential therapeutic agent for the prevention and control of osteoporosis.
Collapse
Affiliation(s)
- Jiunn‐Jye Chuu
- Department of Biotechnology and Food TechnologyCollege of Engineering, Southern Taiwan University of ScienceTainanTaiwan
| | - Jeng‐Wei Lu
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Finsen LaboratoryRigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Hung‐Ju Chang
- Department of Biotechnology and Food TechnologyCollege of Engineering, Southern Taiwan University of ScienceTainanTaiwan
| | - You‐Hsiang Chu
- Department of PathologyTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Yi‐Jen Peng
- Department of PathologyTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Yi‐Jung Ho
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
- School of Pharmacy, National Defense Medical CenterTaipeiTaiwan
| | - Pei‐Hung Shen
- Department of OrthopedicsTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Yu‐Shuan Cheng
- Department of Biotechnology and Food TechnologyCollege of Engineering, Southern Taiwan University of ScienceTainanTaiwan
| | - Chia‐Hui Cheng
- Department of Biotechnology and Food TechnologyCollege of Engineering, Southern Taiwan University of ScienceTainanTaiwan
| | - Yi‐Chien Liu
- Department of Biotechnology and Food TechnologyCollege of Engineering, Southern Taiwan University of ScienceTainanTaiwan
| | - Chih‐Chien Wang
- Department of OrthopedicsTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| |
Collapse
|
7
|
Leem KH, Kim S, Lim J, Park HJ, Shin YC, Lee JS. Hydrolyzed Collagen Tripeptide Promotes Longitudinal Bone Growth in Childhood Rats via Increases in Insulin-Like Growth Factor-1 and Bone Morphogenetic Proteins. J Med Food 2023; 26:809-819. [PMID: 37862561 DOI: 10.1089/jmf.2023.k.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Previous studies have reported that collagen tripeptide (CTP) derived from collagen hydrolysate has various beneficial effects on health by protecting against skin aging and improving bone formation and cartilage regeneration. Collagen-Tripep20TM (CTP20), which is a low-molecular-weight CTP derived from fish skin, contains a bioactive CTP, Gly-Pro-Hyp >3.2% with a tripeptide content >20%. Herein, we investigated the osteogenic effects and mechanisms of CTP20 (<500 Da) on MG-63 osteoblast-like cells and SW1353 chondrocytes. And we measured promoting ratio of the longitudinal bone growth in childhood rats. First, CTP20 at 100 μg/mL elevated the proliferation (15.0% and 28.2%), alkaline phosphatase activity (29.3% and 32.0%), collagen synthesis (1.25- and 1.14-fold), and calcium deposition (1.18- and 1.15-fold) in MG-63 cells and SW1353, respectively. In addition, we found that CTP20 could promote the longitudinal growth and height of the growth plate of the tibia in childhood rats. CTP20 enhanced the protein expression of insulin-like growth factor-1 (IGF-1) in MG-63 and SW1353 cells, and in the growth plate of childhood rats, along with Janus Kinase 2, and signal transducer and activator of transcription 5 activation in MG-63 and SW1353 cells. CTP20 also elevated the expression levels of bone morphogenetic proteins (BMPs) in MG-63 and SW1353 cells and in the growth plates of childhood rats. These results indicate that CTP20 may promote the endochondral ossification and longitudinal bone growth, through enhancing of IGF-1 and BMPs. (Clinical Trial Registration number: smecae 19-09-01).
Collapse
Affiliation(s)
- Kang Hyun Leem
- College of Korean Medicine, Semyung University, Jecheon, Korea
| | - Sanga Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Junsik Lim
- College of Korean Medicine, Semyung University, Jecheon, Korea
| | - Hae Jeong Park
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | |
Collapse
|
8
|
Xu R, Wu J, Zheng L, Zhao M. Undenatured type II collagen and its role in improving osteoarthritis. Ageing Res Rev 2023; 91:102080. [PMID: 37774932 DOI: 10.1016/j.arr.2023.102080] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, affecting 32.5 million US adults or 242 million people worldwide. There is no cure for OA. Many animal and clinical trials showed that oral administration of undenatured type II collagen could significantly reduce the incidence of OA or alleviate the symptoms of articular cartilage. Type II collagen is an important component of cartilage matrix. This article reviewed research progress of undenatured type II collagen including its methods of extraction and preparation, structure and characterization, solubility, thermal stability, gastrointestinal digestive stability, its role in improving OA, and the mechanism of its action in improving OA. Type II collagen has been extensively explored for its potential in improving arthritis. Methods of extraction of type II collagen are inefficient and tedious. The method of limited enzymatic hydrolysis is mainly used to prepare soluble undenatured type II collagen (SC II). The solubility, thermal and gastrointestinal digestive stability of SC II are affected by the sources of raw material, pH, salt ions, and temperature. Oral administration of undenatured type II collagen improves OA, whereas its activity is affected by the sources, degree of denaturalization, intervention methods and doses. However, the influence of the structure of undenatured type II collagen on its activity and the mechanism are unclear. The findings in this review support that undenatured type II collagen can be used in the intervention or auxiliary intervention of patients with OA.
Collapse
Affiliation(s)
- Rong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
9
|
Lin CR, Tsai SHL, Huang KY, Tsai PA, Chou H, Chang SH. Analgesic efficacy of collagen peptide in knee osteoarthritis: a meta-analysis of randomized controlled trials. J Orthop Surg Res 2023; 18:694. [PMID: 37717022 PMCID: PMC10505327 DOI: 10.1186/s13018-023-04182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND The management of knee osteoarthritis involves various treatment strategies. It is important to explore alternative therapies that are both safe and effective. Collagen peptides have emerged as a potential intervention for knee osteoarthritis. This study aims to evaluate the analgesic effects and safety of collagen peptide in patients diagnosed with knee osteoarthritis. METHODS We conducted a systematic literature search following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Multiple databases including PubMed, Scopus, EMBASE, Web of Science, Cochrane, and ClinicalTrials.gov were searched for randomized controlled trials (RCTs) published up to 27 May 2023 that focused on the analgesic outcomes and adverse events associated with collagen peptides or hydrolyzed collagen in patients with osteoarthritis. We assessed the quality of the included studies and the strength of evidence using the Cochrane ROB 2.0 tool and Grading of Recommendations, Assessment, Development, and Evaluations. RESULTS Four trials involving 507 patients with knee osteoarthritis were included and analyzed using the random-effects model. All these trials were considered to have a high risk of bias. Our results revealed a significant difference in pain relief between the collagen peptide group and the placebo group in patients with knee osteoarthritis (standardized mean difference: - 0.58; 95% CI - 0.98, - 0.18, p = 0.004; I2: 68%; quality of evidence: moderate). However, there was no significant difference in the risk of adverse events between collagen peptide and placebo (odds ratio: 1.66; 95% CI 0.99, 2.78, p = 0.05; I2: 0%; quality of evidence: very low). CONCLUSIONS Our findings demonstrate significant pain relief in patients with knee osteoarthritis who received collagen peptides compared to those who received placebo. In addition, the risk of adverse events did not differ significantly between the collagen peptide group and the placebo group. However, due to potential biases and limitations, well-designed randomized controlled trials are needed to validate and confirm these findings.
Collapse
Affiliation(s)
- Chun-Ru Lin
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
| | - Sung Huang Laurent Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Keelung Branch, and Chang Gung University, F7, No 222 Mai-King Road, Keelung, Taiwan
| | - Ko-Yen Huang
- Department of Medical Education, Taipei Medical University-Shuang Ho Hospital, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 235041, Taiwan
| | - Po-An Tsai
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
| | - Hsuan Chou
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242008, Taiwan
| | - Shu-Hao Chang
- Department of Orthopedics, Fu Jen Catholic University Hospital, Fu Jen Catholic University, No. 69, Guizi Rd., Taishan Dist., New Taipei City, 24352, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 24205, Taiwan.
| |
Collapse
|
10
|
Martínez-Puig D, Costa-Larrión E, Rubio-Rodríguez N, Gálvez-Martín P. Collagen Supplementation for Joint Health: The Link between Composition and Scientific Knowledge. Nutrients 2023; 15:nu15061332. [PMID: 36986062 PMCID: PMC10058045 DOI: 10.3390/nu15061332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, generating pain, disability, and socioeconomic costs worldwide. Currently there are no approved disease-modifying drugs for OA, and safety concerns have been identified with the chronic use of symptomatic drugs. In this context, nutritional supplements and nutraceuticals have emerged as potential alternatives. Among them, collagen is being a focus of particular interest, but under the same term different types of collagens coexist with different structures, compositions, and origins, leading to different properties and potential effects. The aim of this narrative review is to generally describe the main types of collagens currently available in marketplace, focusing on those related to joint health, describing their mechanism of action, preclinical, and clinical evidence. Native and hydrolyzed collagen are the most studied collagen types for joint health. Native collagen has a specific immune-mediated mechanism that requires the recognition of its epitopes to inhibit inflammation and tissue catabolism at articular level. Hydrolyzed collagen may contain biologically active peptides that are able to reach joint tissues and exert chondroprotective effects. Although there are preclinical and clinical studies showing the safety and efficacy of food ingredients containing both types of collagens, available research suggests a clear link between collagen chemical structure and mechanism of action.
Collapse
|
11
|
Xiong L, Luo T, Wang L, Weng Z, Song H, Wang F, Shen X. Potential of food protein-derived peptides for the improvement of osteoarthritis. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Li X, Cui L, Feng G, Yu S, Shao G, He N, Li S. Collagen peptide promotes DSS-induced colitis by disturbing gut microbiota and regulation of macrophage polarization. Front Nutr 2022; 9:957391. [PMID: 36313077 PMCID: PMC9608506 DOI: 10.3389/fnut.2022.957391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease caused by mucosal immune system disorder, which has increased steadily all over the world. Previous studies have shown that collagen peptide (CP) has various beneficial biological activities, it is not clear whether the effect of CP on UC is positive or negative. In this study, 2.5% dextran sulfate sodium (DSS) was used to establish acute colitis in mice. Our results suggested that CP supplementation (200, 400 mg/kg/day) promoted the progression of colitis, increased the expression of inflammatory factors and the infiltration of colonic lamina propria macrophages. Gut microbiota analysis showed the composition changed significantly and inflammation promoted bacteria was after CP treatment. Meanwhile, the effect of CP on macrophage polarization was further determined in Raw264.7 cell line. The results showed that CP treatment could increase the polarization of M1 macrophages and promote the expression of inflammatory factors. In conclusion, our results showed that CP treatment could disrupt the gut microbiota of host, promote macrophage activation and aggravate DSS-induced colitis. This may suggest that patients with intestinal inflammation should not take marine derived CP.
Collapse
Affiliation(s)
| | | | | | | | | | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|