1
|
Shiraishi T, Katsuki R, Kumeta H, Sakata S, Yokota SI. Chemical structure of lipoteichoic acid in the probiotic strain Latilactobacillus curvatus CP2998. FEMS Microbiol Lett 2025; 372:fnaf005. [PMID: 39814573 DOI: 10.1093/femsle/fnaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/26/2024] [Accepted: 01/14/2025] [Indexed: 01/18/2025] Open
Abstract
Latilactobacillus curvatus, found in various fermented foods, is a promising probiotic with unique health benefits. Lipoteichoic acid (LTA) is a characteristic amphiphilic surface polymer of Gram-positive bacteria and exhibits immunomodulatory activities. Despite the structural diversity of LTA among different bacterial species and strains, no information is available on the chemical structure of LTA in L. curvatus. In this study, we aimed to determine the structure of LTA isolated from L. curvatus CP2998. One- and two-dimensional nuclear magnetic resonance spectra of intact LTA revealed that LTA had a glycerolphosphate polymer as a hydrophilic main chain with partial substitutions of α-linked glucose and d-alanine at the hydroxy group at position 2 of the glycerol residue. The anchor glycolipid fraction was obtained by hydrofluoric acid treatment. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry spectrum of the anchor glycolipid revealed that it contained diglucosyldiacylglycerol and diglucosylmonoacylglycerol. Our results suggest that L. curvatus CP2998 possesses a typical type I LTA structure; however, the lactic acid bacteria-specific anchor glycolipid structures, such as tri- or tetra-saccharides and three fatty acid residues, were not identified.
Collapse
Affiliation(s)
- Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Ryo Katsuki
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd, Moriya, Ibaraki 302-0106, Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Shinji Sakata
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd, Moriya, Ibaraki 302-0106, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| |
Collapse
|
2
|
Sun X, Yun L, Xie K, Liu R, Ren X, Zeng B, Cao X, Li Z, Zhou G, Liu B, Peng L, Yuan L. Probiotic Bacillus pumilus LV149 enhances gut repair, modulates microbiota, and alters transcriptome in DSS-induced colitis mice. Front Microbiol 2025; 15:1507979. [PMID: 39845056 PMCID: PMC11753000 DOI: 10.3389/fmicb.2024.1507979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Purpose Gut microbiota dysbiosis significantly impacts ulcerative colitis (UC) progression and exacerbation. Probiotics show promise in UC management. This study evaluated the effects of different doses of Bacillus pumilus LV149, an aquatic-derived probiotic, on gut injury repair in male C57BL/6 mice with dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) and investigated the underlying mechanisms. Methods UC was induced by allowing mice free access to a 3% DSS solution for 7 days, with concurrent daily oral gavage of either a low (LV149-L, 1 × 108 CFU/day/mouse) or high (LV149-H, 1 × 109 CFU/day/mouse) dose of LV149. The effects were assessed through physiological parameters, intestinal barrier integrity, inflammation, gut microbiota composition, and transcriptomic changes. Results LV149 significantly improved pathological symptoms, including weight loss and disease activity index (DAI), and reduced colon shortening in a dose-dependent manner and inflammatory damage. The intervention also restored gut barrier function by upregulating mucins, goblet cell counts, and tight junction proteins (ZO-1, occludin, and claudin-1) in colonic tissue, along with reducing serum lipopolysaccharide (LPS) levels. Notably, only the LV149-H significantly decreased the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, while both doses increased the expression of the anti-inflammatory cytokine IL-10 in a dose-dependent in colonic tissue. LV149 further modulated the gut microbiota, increasing beneficial bacteria and reducing pathogenic populations. Transcriptomic analysis indicated that LV149-L may exert gut repair effects via the IL-17 signaling pathway, whereas LV149-H appears to act through the JAK-STAT signaling pathway. Conclusion This study demonstrated that LV149, particularly at a higher dose, effectively mitigated DSS-induced colonic injury by modulating gut microbiota, enhancing gut barrier integrity, and reducing inflammation. The dose-dependent effects underscored LV149-H's potential as a therapeutic agent for UC due to its stronger anti-inflammatory properties and gut-protective effects.
Collapse
Affiliation(s)
- Xinyu Sun
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Long Yun
- Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Keming Xie
- Medical College of Jiaying University, Jiaying University, Meizhou, China
| | - Renhui Liu
- School of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Xinyue Ren
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bokun Zeng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Zhi Li
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Guihao Zhou
- Division of Medicine, University College London, London, United Kingdom
| | - Bang Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Luo Peng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lihong Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Park S, Son S, Park MA, Kim DH, Kim Y. Complete genome sequence of Latilactobacillus curvatus CACC879 and its functional probiotic properties. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:630-634. [PMID: 38975571 PMCID: PMC11222110 DOI: 10.5187/jast.2023.e50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 07/09/2024]
Abstract
Latilactobacillus curvatus CACC879 originated from swine feces in Korea, and its probiotic properties have been analyzed. The complete genome of strain CACC879 contained one chromosome 1,398,247 bp in length and three circular plasmids, namely, pCACC879-1 (591,981 bp), pCACC879-2 (14,542 base pairs [bp]), and pCACC879-3 (45,393 bp). The complete genome encodes a total of 2,077 genes, including 25 rRNA genes and 90 tRNA genes. In addition, probiotic stability- genes acid/bile related to salts tolerance, the biosynthesis of cobalamin (vitamin B12), riboflavin (vitamin B2), and CRISPR/Cas9 were found in the whole genomes. Remarkably, L. curvatus CACC879 contained the antioxidant-related (peroxiredoxin) and bacteriocin-related genes (lysM and blpA). Overall, these results demonstrate that L. curvatus CACC879 is a functional probiotic candidate for animal industry applications.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Seoyun Son
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Mi Ae Park
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Dae-Hyuk Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
- Department of Molecular Biology, Department of Bioactive Material Science, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| |
Collapse
|
4
|
Li D, Wang X, Park DJ, Lee DH, Oh S. Inhibitory Effects of Latilactobacillus curvatus BYB3 Cell-Free Extract on Human Melanoma B16F10 Cells and Tumorigenic Mice. J Microbiol Biotechnol 2024; 34:589-595. [PMID: 38044715 PMCID: PMC11016762 DOI: 10.4014/jmb.2309.09002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 12/05/2023]
Abstract
Latilactobacillus curvatus BYB3 (BYB3) is a species of lactic acid bacteria, formerly named Lactobacillus curvatus, which is isolated from kimchi. In this study, the effect of BYB3, Lactobacillus rhamnosus GG, and Lactobacillus acidophilus GP1B strain extracts at various concentrations was examined on B16F10, a mouse melanoma cell line. Cell viability was examined via MTT assay, and the results indicated that compared to the other two probiotics, BYB3 significantly decreased the total percentages of viable cells. The effects of BYB3 on cell migration and proliferation in B16F10 cells were evaluated using wound healing mobility and proliferation assays, respectively; the results indicated that BYB3 inhibits cell migration and proliferation in a concentration-dependent manner. Using human dermal fibroblast cells to investigate BYB3 extract in vivo had no effect on skin-related cells. Nonetheless, the BYB3 extract inhibited tumor growth in a mouse model, as demonstrated by liver slices. Therefore, this suggests that using BYB3 extract to inhibit melanoma may be a novel approach.
Collapse
Affiliation(s)
- Dingyun Li
- Division of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xing Wang
- Division of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Biochemistry Microbiology and Immunology, Wayne State University, Detroit, MI 48202, USA
| | - Dong-June Park
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Dong Hun Lee
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
6
|
Wang X, Yong CC, Oh S. Metabolites of Latilactobacillus curvatus BYB3 and Indole Activate Aryl Hydrocarbon Receptor to Attenuate Lipopolysaccharide-Induced Intestinal Barrier Dysfunction. Food Sci Anim Resour 2022; 42:1046-1060. [PMID: 36415578 PMCID: PMC9647186 DOI: 10.5851/kosfa.2022.e51] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2023] Open
Abstract
This study aimed to investigate the effects of the metabolites of Latilactobacillus curvatus BYB3 and indole-activated aryl hydrocarbon receptor (AhR) to increase the tight junction (TJ) proteins in an in vitro model of intestinal inflammation. In a Western blot assay, the metabolites of L. curvatus BYB3 reduced the TJ demage in lipoploysaccharide (LPS) stimulated-Caco-2 cells. This reduction was a result of upregulating the expression of TJ-associated proteins and suppressing the nuclear factor-κB signaling. Immunofluorescence images consistently revealed that LPS disrupted and reduced the expression of TJ proteins, while the metabolites of L. curvatus BYB3 and indole reversed these alterations. The protective effects of L. curvatus BYB3 were observed on the intestinal barrier function when measuring transepithelial electrical resistance. Using high-performance liquid chromatography analysis the metabolites, the indole-3-latic acid and indole-3-acetamide concentrations were found to be 1.73±0.27 mg/L and 0.51±0.39 mg/L, respectively. These findings indicate that the metabolites of L. curvatus BYB3 have increasing mRNA expressions of cytochrome P450 1A1 (CYP1A1) and AhR, and may thus be applicable for therapy of various inflammatory gut diseases as postbiotics.
Collapse
Affiliation(s)
- Xing Wang
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Cheng Chung Yong
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| |
Collapse
|