1
|
Mohan H, Muthukumar Sathya P, Acharya S, Park JH, Ramalingam V, Yang HJ, Jeong DY, Oh BT. Anti-obesity potential of chickpea fermented by Lactiplantibacillus sp. (PMS-A6) from salted oyster: UPLC-ESI-Q-TOF-MS E profiling and in-vitro/in-vivo validation. Food Res Int 2025; 208:116133. [PMID: 40263781 DOI: 10.1016/j.foodres.2025.116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 04/24/2025]
Abstract
Obesity, a major public health concern, contributes to numerous metabolic disorders and increases the risk of chronic diseases such as diabetes and cardiovascular conditions. This study investigates the anti-adipogenic and anti-obesity potential of chickpea extracts, comparing raw and fermented chickpea extracts. Fermentation, using bacterial strains isolated from salted oysters, was optimized with Lactiplantibacillus plantarum (PMS-A6), which showed the highest total polyphenol content (26 °C, pH 6.5). UPLC-ESI-Q-TOF-MSE revealed significant enhancement in the bioactive profile of the fermented chickpea extract, including the emergence of new compounds with potential health benefits. The fermented extract exhibited superior biological activity, including near-total inhibition of α-glucosidase and α-amylase, notable anti-hypertensive effects, and enhanced antimicrobial and antioxidant capacities. In-vitro analysis in 3T3-L1 preadipocyte cells showed improved cell viability, reduced lipid accumulation, and downregulated adipogenesis-related genes, indicating anti-adipogenic effects. Further, in-vivo studies with a high-fat diet-induced obese mice model demonstrated significant reductions in body weight and fat accumulation including white adipose tissues, as well as improved serum cholesterol, triglycerides, and glucose levels. These findings highlight the fermented chickpea extract as a promising dietary intervention for obesity management and underscore the need for innovative approaches in treating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596, Republic of Korea
| | - Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596, Republic of Korea
| | - Satabdi Acharya
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk State, 54896, Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596, Republic of Korea
| | - Vaikundamoorthy Ramalingam
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk State, 56048, South Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk State, 56048, South Korea.
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596, Republic of Korea.
| |
Collapse
|
2
|
Pham VD, Gänzle MG. Fructilactobacillus frigidiflavus sp. nov., a pigmented species, and Levilactobacillus lettrarii sp. nov., a propionate-producing species isolated from sourdough. Int J Syst Evol Microbiol 2025; 75:006726. [PMID: 40111394 PMCID: PMC11925284 DOI: 10.1099/ijsem.0.006726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
The sourdough isolates FUA3702, FUA3912 and FUA3913T, as well as FUA3695T and FUA3914, could not be identified to known species of the Lactobacillaceae. The 16S rRNA gene sequences of FUA3702 and FUA3913, FUA3695 and FUA3914 were>99% identical to Fructilactobacillus sanfranciscensis and Levilactobacillus lanxiensis, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strain FUA3913T when compared to Fl. sanfranciscensis were 83.67 and 26.60%, respectively. In addition, strains FUA3702, FUA3912 and FUA3913T produce different levels of a yellow C30 carotenoid, but pigmentation has not been described in Fl. sanfranciscensis. The ANI and dDDH values of FUA3695T and FUA3914 when compared to Lv. langxiensis were 95.22 and 61.20%, respectively. In addition, FUA3695 and FUA3914 convert lactate to 1,2-propanediol and further to propionate. The conversion of lactate to propionate by a single strain has not been documented for any of the species in the Lactobacillaceae. Based on the genomic and physiological characteristics, we proposed the novel species Fructilactobacillus frigidiflavus sp. nov. FUA3913T (=DSM 118650T=LMG 33758T) and Levilactobacillus lettrarii sp. nov. FUA3695T (=DSM 118651T=LMG 33759T).
Collapse
Affiliation(s)
- Vi D. Pham
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Raman J, Ko YJ, Kim JS, Kim DH, Kim SJ. Overproduction of Xanthophyll Pigment in Flavobacterium sp. JSWR-1 under Optimized Culture Conditions. J Microbiol Biotechnol 2024; 34:710-724. [PMID: 38044702 PMCID: PMC11016774 DOI: 10.4014/jmb.2310.10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Flavobacterium can synthesize xanthophyll, particularly the pigment zeaxanthin, which has significant economic value in nutrition and pharmaceuticals. Recently, the use of carotenoid biosynthesis by bacteria and yeast fermentation technology has shown to be very efficient and offers significant advantages in large-scale production, cost-effectiveness, and safety. In the present study, JSWR-1 strain capable of producing xanthophyll pigment was isolated from a freshwater reservoir in Wanju-gun, Republic of Korea. Based on the morphological, physiological, and molecular characteristics, JSWR-1 classified as belonging to the Flavobacterium species. The bacterium is strictly aerobic, Gram-negative, rod-shaped, and psychrophilic. The completed genome sequence of the strain Flavobacterium sp. JSWR-1 is predicted to be a single circular 3,425,829-bp chromosome with a G+C content of 35.2% and 2,941 protein-coding genes. The optimization of carotenoid production was achieved by small-scale cultivation, resulting in zeaxanthin being identified as the predominant carotenoid pigment. The enhancement of zeaxanthin biosynthesis by applying different light-irradiation, variations in pH and temperature, and adding carbon and nitrogen supplies to the growth medium. A significant increase in intracellular zeaxanthin concentrations was also recorded during fed-batch fermentation achieving a maximum of 16.69 ± 0.71 mg/l, corresponding to a product yield of 4.05 ± 0.15 mg zeaxanthin per gram cell dry weight. Batch and fed-batch culture extracts exhibit significant antioxidant activity. The results demonstrated that the JSWR-1 strain can potentially serve as a source for zeaxanthin biosynthesis.
Collapse
Affiliation(s)
- Jegadeesh Raman
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Young-Joon Ko
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jeong-Seon Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Da-Hye Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Soo-Jin Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
4
|
Hwang CY, Cho ES, Yoon DJ, Seo MJ. Probiotic and antioxidant properties of C 30 carotenoid-producing Lactiplantibacillus plantarum isolated from kimchi. Food Sci Biotechnol 2023; 32:543-552. [PMID: 36911323 PMCID: PMC9992479 DOI: 10.1007/s10068-022-01226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 12/26/2022] Open
Abstract
This study focuses on the development of functional probiotics using caroteonid-producing lactic acid bacteria (LAB) with antioxidant properties. Thirty LAB strains were evaluated for their probiotic properties. Carotenoid biosynthesis gene cluster (crtMN operon) was detected using polymer chain reaction (PCR). The carotenoid identified as 4,4'-diaponeurosporene was analyzed via UV visible absorption spectra and HPLC. Five carotenoid-producing strains showed antioxidant activities. Lactiplantibacillus plantarum MGB0112, which showed the highest carotenoid production measuring at 470 nm of absorbance per ml of culture broth (0.014 A470nm/ml), showed low pH (56.5%) and bile salt (97.8%) tolerance with high adhesion properties (55.1% for toluene). Furthermore, this strain and 4,4'-diaponeurosporene extract exhibited antioxidant activity (99.5 and 40.1%, respectively) against DPPH free radicals in vitro. Their antioxidant properties were confirmed in vivo (45.6 and 55.2% survival rates in Caenorhabditis elegans). Therefore, C30 carotenoid-producing strain MGB0112 demonstrates outstanding antioxidant effects and can be a potential functional probiotics.
Collapse
Affiliation(s)
- Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012 Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012 Republic of Korea
| | - Deok Jun Yoon
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012 Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012 Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|