1
|
Palanichamy C, Nayak Ammunje D, Pavadai P, Ram Kumar Pandian S, Theivendren P, Kabilan SJ, Babkiewicz E, Maszczyk P, Kunjiappan S. Mimosa pudica Linn. extract improves aphrodisiac performance in diabetes-induced male Wister rats. J Biomol Struct Dyn 2025; 43:1621-1640. [PMID: 38088340 DOI: 10.1080/07391102.2023.2292302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/25/2023] [Indexed: 01/04/2025]
Abstract
Male sexual dysfunction is considered one of the major consequences of diabetes mellitus. The medicinal plant, Mimosa pudica Linn. is believed to have numerous therapeutic effects, including anti-diabetic, anti-obesity, aphrodisiac, and a sexual behaviour-enhancing properties. In the present study, the significant effect of ethanolic extract of M. pudica L. to scavenge excessive free radicals and alleviate the deleterious effects of alloxan-induced diabetes on the male sexual system of rats was demonstrated. The rats treated with the M. pudica L. extract recovered their body weight, the weight of their reproductive organs, the characteristics of the sperm and the histocellular arrangement of the testes. In addition, significant levels of hormones (testosterone, follicle-stimulating hormone and luteinising hormone) increased in both serum and testicular homogenates of male diabetic rats treated with M. pudica L. extract. Further, antioxidant enzymes, SOD, CAT, GSH, and GPx levels are increased, and oxidative stress markers MDA and ROS are reduced in both serum and testicular homogenates of M. pudica L. extract treated male rats. Furthermore, an in silico molecular docking study was performed to predict high potential compounds of M. pudica L. extract against the PDE5 receptor. Two bioactive compounds, namely 3-Dibenzofuranamine (-11.1 kcal × mol-1), Stigmasta-7,16-dien-3-ol (-10.4 kcal × mol-1) showed the highest binding affinities with PDE5 enzyme, much higher than the reference drug sildenafil (-9.9 kcal × mol-1). According to these findings, bioactive compounds rich in ethanolic extract of M. pudica L. have significant aphrodisiac performance in diabetic rats.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chandrasekar Palanichamy
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | | | | | | | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| |
Collapse
|
2
|
In Vitro and In Silico Analysis of Bergenia ciliata and Mimosa pudica for Inhibition of α-Amylase. J CHEM-NY 2022. [DOI: 10.1155/2022/6997173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The discovery of antidiabetic natural products is a flourishing field of opportunity in the sector of drug discovery. Various medicinal plants with diverse chemical constituents have been extensively studied for drug development. Bergenia ciliata and Mimosa pudica have been traditionally used for the treatment of diabetes and consist of valuable phytochemicals. In this study, we have analyzed total phenolic and flavonoid content along with the antioxidant and α-amylase inhibitory activity. The crude extract of B. ciliata contains higher levels of TPC whereas higher TFC was observed in M. pudica. The strong antioxidant activity was shown by B. ciliata with an IC50 value of 125.86 ± 4.16 μg/mL. The ethyl acetate extract of B. ciliata and M. pudica showed higher α-amylase inhibitory activity with an IC50 value of 13.97 ± 0.10 and 11.97 ± 0.36 μg/mL, respectively. The biological potential of the reported phytochemicals was also assessed by using bioinformatic tools. Furthermore, the active phytochemicals from these plants were docked with human pancreatic α-amylase to study their inhibitory activities to this enzyme. The docking analysis revealed that catechin has lower binding energy (−8.6 kcal/mol) as compared to the commercial drug acarbose (−7.3 kcal/mol) indicating higher affinity towards the enzyme. This study additionally sheds more light on medicinal plants’ antidiabetic activity. So, this study will aid in the investigation of the biological properties of these plants as well as the identification of potential compounds with antidiabetic properties.
Collapse
|
3
|
Phytochemical Analysis and Antioxidant and Antidiabetic Activities of Extracts from Bergenia ciliata, Mimosa pudica, and Phyllanthus emblica. Adv Pharmacol Pharm Sci 2022; 2022:4929824. [PMID: 35845257 PMCID: PMC9283070 DOI: 10.1155/2022/4929824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 01/26/2023] Open
Abstract
Diabetes is a metabolic disorder of high blood sugar levels which leads to various chronic health-related complications. The digestive enzymes α-amylase and α-glucosidase play a major role in the hydrolysis of starch to glucose; hence, inhibiting these enzymes is considered an important strategy for the treatment of diabetes. Medicinal plants such as Bergenia ciliata, Mimosa pudica, and Phyllanthus emblica are commonly used in traditional remedies due to their numerous health benefits. This study aimed to determine the phytochemicals as well as TPC and TFC contents in these plant extracts along with their antioxidant and enzyme inhibitory activity against α-glucosidase and α-amylase. The ethyl acetate extracts of selected plants have shown higher TPC and TFC contents. The aqueous extract of B. ciliata (IC50: 16.99 ± 2.56 μg/mL) and ethyl acetate extract of P. emblica (IC50: 11.98 ± 0.36 μg/mL) and M. pudica (IC50: 21.39 ± 3.76 μg/mL) showed effective antioxidant activities. Furthermore, ethyl acetate extract of B. ciliata showed significant inhibitory activity against α-amylase and α-glucosidase with IC50 values of 38.50 ± 1.32 μg/mL and 3.41 ± 0.04 μg/mL, respectively. Thus, secondary metabolites of these medicinal plants can be repurposed as effective inhibitors of digestive enzymes.
Collapse
|
4
|
Baharuddin NS, Roslan MAM, Bawzer MAM, Mohamad Azzeme A, Rahman ZA, Khayat ME, Rahman NAA, Sobri ZM. Response Surface Optimization of Extraction Conditions and In Vitro Antioxidant and Antidiabetic Evaluation of an Under-Valued Medicinal Weed, Mimosa pudica. PLANTS 2021; 10:plants10081692. [PMID: 34451737 PMCID: PMC8399142 DOI: 10.3390/plants10081692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/01/2023]
Abstract
Mimosa pudica Linn is a well-known perennial herb and is traditionally used in ayurvedic medicine for the treatment of various illnesses. Despite its abundance in nature, the therapeutic potential of this invasive weed is deemed to be underappreciated in Malaysia. Previous studies have found an abundance of bioactive compounds associated with potent antioxidant properties in all parts of the plant. However, the optimum parameters required for the extraction of antioxidant compounds are still unknown. Therefore, the present study aimed to optimize the solvent extraction parameters of M. pudica using response surface methodology to enrich the accumulation of antioxidant compounds in the extracts. The effects of the optimized M. pudica extracts were then evaluated on the cell viability and glucose uptake ability in a 3T3-L1 adipocyte cell line. The highest total phenolic (91.98 mg of gallic acid equivalent per g of the dry extract) and total flavonoid content (606.31 mg of quercetin equivalent per g of the dry extract) were recorded when using 100% ethanol that was five-fold and three-fold higher, respectively, as compared to using 50% ethanol. The extract concentration required to achieve 50% of antioxidant activity (IC50 value) was 42.0 µg/mL using 100% ethanol as compared to 975.03 µg/mL using 50% ethanol. The results indicated that the use of 100% ethanol solvent had the greatest impact on the accumulation of antioxidant compounds in the extract (p < 0.05). Cell viability assay revealed that all extract concentration treatments recorded a viability level of above 50%. Glucose uptake assay using 2-NBDG analog showed that the cells treated with 50 µg/mL extract combined with insulin were five-fold higher than the control group. Given the high antioxidant and antidiabetic properties of this plant, M. pudica can be easily highlighted as a plant subject of interest, which warrants further investigation for nutraceutical prospects.
Collapse
Affiliation(s)
- Nor Saffana Baharuddin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.B.); (M.A.M.R.); (M.A.M.B.); (N.A.A.R.)
| | - Muhamad Aidilfitri Mohamad Roslan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.B.); (M.A.M.R.); (M.A.M.B.); (N.A.A.R.)
| | - Mohsen Ahmed Mohammed Bawzer
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.B.); (M.A.M.R.); (M.A.M.B.); (N.A.A.R.)
| | - Azzreena Mohamad Azzeme
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.M.A.); (M.E.K.)
| | - Zuraida Ab Rahman
- Biotechnology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.M.A.); (M.E.K.)
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.B.); (M.A.M.R.); (M.A.M.B.); (N.A.A.R.)
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zulfazli M. Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.B.); (M.A.M.R.); (M.A.M.B.); (N.A.A.R.)
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
5
|
Rahman MM, Uddin MJ, Reza ASMA, Tareq AM, Emran TB, Simal-Gandara J. Ethnomedicinal Value of Antidiabetic Plants in Bangladesh: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:729. [PMID: 33918026 PMCID: PMC8070064 DOI: 10.3390/plants10040729] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
The use of conventional drugs to treat metabolic disorders and the pathological consequences of diabetes further increases the complications because of the side effects, and is sometimes burdensome due to relatively higher costs and occasionally painful route of administration of these drugs. Therefore, shifting to herbal medicine may be more effective, economical, have fewer side effects and might have minimal toxicity. The present review amasses a list of ethnomedicinal plants of 143 species belonging to 61 families, from distinctive domestic survey literature, reported to have been used to treat diabetes by the ethnic and local people of Bangladesh. Leaves of the medicinal plants were found leading in terms of their use, followed by fruits, whole plants, roots, seeds, bark, stems, flowers, and rhizomes. This review provides starting information leading to the search for and use of indigenous botanical resources to discover bioactive compounds for novel hypoglycemic drug development.
Collapse
Affiliation(s)
- Md. Masudur Rahman
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.J.U.); (A.S.M.A.R.); (A.M.T.)
| | - Md. Josim Uddin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.J.U.); (A.S.M.A.R.); (A.M.T.)
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - A. S. M. Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.J.U.); (A.S.M.A.R.); (A.M.T.)
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.J.U.); (A.S.M.A.R.); (A.M.T.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
6
|
Tasnuva ST, Qamar UA, Ghafoor K, Sahena F, Jahurul MHA, Rukshana AH, Juliana MJ, Al-Juhaimi FY, Jalifah L, Jalal KCA, Ali ME, Zaidul ISM. α-glucosidase inhibitors isolated from Mimosa pudica L. Nat Prod Res 2017; 33:1495-1499. [DOI: 10.1080/14786419.2017.1419224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. T. Tasnuva
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan Campus, Kuantan, Malaysia
| | - U. A. Qamar
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan Campus, Kuantan, Malaysia
| | - Kashif Ghafoor
- Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - F. Sahena
- Faculty of Science, International Islamic University Malaysia (IIUM), Kuantan Campus, Kuantan, Malaysia
| | - M. H. A. Jahurul
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - A. H. Rukshana
- Faculty of Basic Medical and Pharmaceutical Sciences, University of Science and Technology Chittagong, Chittagong, Bangladesh
| | - M. J. Juliana
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan Campus, Kuantan, Malaysia
| | - Fahad Y. Al-Juhaimi
- Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - L. Jalifah
- Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi, Malaysia
| | - K. C. A. Jalal
- Faculty of Science, International Islamic University Malaysia (IIUM), Kuantan Campus, Kuantan, Malaysia
| | - Md. Eaqub Ali
- Nanotechnology and Catalysis Research Centre (NanoCat), University of Malaya, Kuala Lumpur, Malaysia
| | - I. S. M. Zaidul
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan Campus, Kuantan, Malaysia
| |
Collapse
|
7
|
Tunna TS, Sarker MZI, Ghafoor K, Ferdosh S, Jaffri JM, Al-Juhaimi FY, Ali ME, Akanda MJH, Awal MS, Ahmed QU, Selamat J. Enrichment, in vitro, and quantification study of antidiabetic compounds from neglected weed Mimosa pudica using supercritical CO2 and CO2-Soxhlet. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1384015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tasnuva Sarwar Tunna
- Faculty of Pharmacy, International Islamic University Malaysia, Pahang D/M., Malaysia
| | | | - Kashif Ghafoor
- Faculty of Pharmacy, International Islamic University Malaysia, Pahang D/M., Malaysia
| | - Sahena Ferdosh
- Faculty of Pharmacy, International Islamic University Malaysia, Pahang D/M., Malaysia
| | - Juliana Md Jaffri
- Department of Food Science and Nutrition, King Saud University, Riyadh Saudi Arabia
| | - Fahad Y Al-Juhaimi
- Faculty of Science, International Islamic University Malaysia, Pahang, Malaysia
| | - Md. Eaqub Ali
- Nanotechnology and Catalysis Research Centre (NanoCat), University of Malaya, Kuala Lumpur, Malaysia
| | - Md. Jahurul Haque Akanda
- Faculty of Food Science and Nutrition, University Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Md Shihabul Awal
- Department of Food Science & Nutrition, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Qamar Uddin Ahmed
- Faculty of Pharmacy, International Islamic University Malaysia, Pahang D/M., Malaysia
| | - Jinap Selamat
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, Malaysia
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Muhammad G, Hussain MA, Jantan I, Bukhari SNA. Mimosa pudica L., a High-Value Medicinal Plant as a Source of Bioactives for Pharmaceuticals. Compr Rev Food Sci Food Saf 2015; 15:303-315. [PMID: 33371596 DOI: 10.1111/1541-4337.12184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/07/2015] [Accepted: 11/10/2015] [Indexed: 12/19/2022]
Abstract
Mimosa pudica Linn. (Family: Mimosaceae) is used as an ornamental plant due to its thigmonastic and nyctinastic movements. M. pudica is also used to avoid or cure several disorders like cancer, diabetes, hepatitis, obesity, and urinary infections. M. pudica is famous for its anticancer alkaloid, mimosine, along with several valuable secondary metabolites like tannins, steroids, flavonoids, triterpenes, and glycosylflavones. A wide array of pharmacological properties like antioxidant, antibacterial, antifungal, anti-inflammatory, hepatoprotective, antinociceptive, anticonvulsant, antidepressant, antidiarrheal, hypolipidemic activities, diuretic, antiparasitic, antimalarial, and hypoglycemic have been attributed to different parts of M. pudica. Glucuronoxylan polysaccharide extruded from seeds of M. pudica is used for drug release formulations due to its high swelling index. This review covers a thorough examination of functional bioactives as well as pharmacological and phytomedicinal attributes of the plant with the purpose of exploring its pharmaceutical and nutraceutical potentials.
Collapse
Affiliation(s)
- Gulzar Muhammad
- Dept. of Chemistry, Univ. of Sargodha, Sargodha, 40100, Pakistan
| | | | - Ibrahim Jantan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Univ. Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Syed Nasir Abbas Bukhari
- Drug and Herbal Research Centre, Faculty of Pharmacy, Univ. Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|