1
|
Hassanie H, Penteado AB, de Almeida LC, Calil RL, da Silva Emery F, Costa-Lotufo LV, Trossini GHG. SETDB1 as a cancer target: challenges and perspectives in drug design. RSC Med Chem 2024; 15:1424-1451. [PMID: 38799223 PMCID: PMC11113007 DOI: 10.1039/d3md00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Abstract
Genome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice. Therefore, improving therapeutic outcomes for patients by focusing on epigenetic targets dysregulated in malignancies should help prevent cancer cells from developing resistance to anticancer treatments. For this reason, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) has gained a lot of attention recently as a cancer target. SETDB1 is a histone lysine methyltransferase that plays an important role in marking euchromatic and heterochromatic regions. Hence, it promotes the silencing of tumor suppressor genes and contributes to carcinogenesis. Some studies revealed that SETDB1 was overexpressed in various human cancer types, which enhanced tumor growth and metastasis. Thus, SETDB1 appears to be an attractive epigenetic target for new cancer treatments. In this review, we have discussed the effects of its overexpression on the progression of tumors and the development of inhibitor drugs that specifically target this enzyme.
Collapse
Affiliation(s)
- Haifa Hassanie
- School of Pharmaceutical Sciences, University of São Paulo Brazil
| | | | | | | | - Flávio da Silva Emery
- School of Pharmaceutical Sciences of the Ribeirão Preto, University of São Paulo Brazil
| | | | | |
Collapse
|
2
|
Baghy K, Ladányi A, Reszegi A, Kovalszky I. Insights into the Tumor Microenvironment-Components, Functions and Therapeutics. Int J Mol Sci 2023; 24:17536. [PMID: 38139365 PMCID: PMC10743805 DOI: 10.3390/ijms242417536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Similarly to our healthy organs, the tumor tissue also constitutes an ecosystem. This implies that stromal cells acquire an altered phenotype in tandem with tumor cells, thereby promoting tumor survival. Cancer cells are fueled by abnormal blood vessels, allowing them to develop and proliferate. Tumor-associated fibroblasts adapt their cytokine and chemokine production to the needs of tumor cells and alter the peritumoral stroma by generating more collagen, thereby stiffening the matrix; these processes promote epithelial-mesenchymal transition and tumor cell invasion. Chronic inflammation and the mobilization of pro-tumorigenic inflammatory cells further facilitate tumor expansion. All of these events can impede the effective administration of tumor treatment; so, the successful inhibition of tumorous matrix remodeling could further enhance the success of antitumor therapy. Over the last decade, significant progress has been made with the introduction of novel immunotherapy that targets the inhibitory mechanisms of T cell activation. However, extensive research is also being conducted on the stromal components and other cell types of the tumor microenvironment (TME) that may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Andrea Reszegi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
3
|
Liu W, Zou Y, Li K, Zhong H, Yu L, Ge S, Lai Y, Dong X, Xu Q, Guo W. Apo-Form Selective Inhibition of IDO for Tumor Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:180-191. [PMID: 35725271 DOI: 10.4049/jimmunol.2100938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/25/2022] [Indexed: 12/30/2022]
Abstract
The pharmacological inhibition of IDO1 is considered an effective therapeutic approach for cancer treatment. However, the inadequate response of existing holo-IDO1 inhibitors and unclear biomarkers available in clinical practice limit the possibility of developing efficacious IDO1 inhibitors. In the current study, we aimed to elucidate the activity and mechanism of a potent 1H-pyrrole-2-carboxylic acid derivative (B37) targeting apo-IDO1 and to determine its role in tumor therapy. By competing with heme for binding to apo-IDO1, B37 potently inhibited IDO1 activity, with an IC50 of 22 pM assessed using a HeLa cell-based assay. The x-ray cocrystal structure of the inhibitor-enzyme complex showed that the B37-human IDO1 complex has strong hydrophobic interactions, which enhances its binding affinity, determined using isothermal titration calorimetry. Stronger noncovalent interactions, including π stacking and hydrogen bonds formed between B37 and apo-human IDO1, underlay the enthalpy-driven force for B37 for binding to the enzyme. These binding properties endowed B37 with potent antitumor efficacy, which was confirmed in a mouse colon cancer CT26 syngeneic model in BALB/c mice and in an azoxymethane/dextran sulfate sodium-induced colon carcinogenesis model in C57BL/6 mice by activating the host immune system. Moreover, the combination of B37 and anti-PD1 Ab synergistically inhibited tumor growth. These results suggested that B37 may serve as a unique candidate for apo-IDO1 inhibition-mediated tumor immunotherapy.
Collapse
Affiliation(s)
- Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Engineering Research Center of Protein and Peptide Medicine, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China; and
| | - Yi Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Kaiming Li
- State Key Laboratory of Pharmaceutical Biotechnology, Engineering Research Center of Protein and Peptide Medicine, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China; and
| | - Haiqing Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, Engineering Research Center of Protein and Peptide Medicine, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China; and
| | - Longbo Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Engineering Research Center of Protein and Peptide Medicine, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China; and
| | - Shushan Ge
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xianchi Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Engineering Research Center of Protein and Peptide Medicine, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China; and
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Engineering Research Center of Protein and Peptide Medicine, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China; and
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Engineering Research Center of Protein and Peptide Medicine, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China; and
| |
Collapse
|
4
|
Castillo AMM, Vu TT, Liva SG, Chen M, Xie Z, Thomas J, Remaily B, Guo Y, Subrayan UL, Costa T, Helms TH, Irby DJ, Kim K, Owen DH, Kulp SK, Mace TA, Phelps MA, Coss CC. Murine cancer cachexia models replicate elevated catabolic pembrolizumab clearance in humans. JCSM RAPID COMMUNICATIONS 2021; 4:232-244. [PMID: 34514376 PMCID: PMC8420755 DOI: 10.1002/rco2.32] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/25/2020] [Accepted: 01/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Monoclonal antibody (mAb) immune checkpoint inhibitor (ICI) therapies have dramatically impacted oncology this past decade. However, only about one-third of patients respond to treatment, and biomarkers to predict responders are lacking. Recent ICI clinical pharmacology data demonstrate high baseline drug clearance (CL0) significantly associates with shorter overall survival, independent of ICI exposure, in patients receiving ICI mAb therapies. This suggests CL0 may predict outcomes from ICI therapy, and cachectic signalling may link elevated CL0 and poor response. Our aim was to determine if mouse models of cancer cachexia will be useful for studying these phenomena and their underlying mechanisms. METHODS We evaluated pembrolizumab CL in the C26 and Lewis lung carcinoma mouse models of cancer cachexia. A single treatment of vehicle or pembrolizumab, at a dose of 2 or 10 mg/kg, was administered intravenously by tail vein injection. Pembrolizumab was quantified by an ELISA in serial plasma samples, and FcRn gene (Fcgrt) expression was assessed in liver using real-time quantitative reverse transcription PCR. Non-compartmental and mixed-effects pharmacokinetics analyses were performed. RESULTS We observed higher pembrolizumab CL0 and decreased Fcgrt expression in whole liver tissue from tumour-bearing vs. tumour-free mice. In multivariate analysis, presence of tumour, total murine IgG, muscle weight and Fcgrt expression were significant covariates on CL, and total murine IgG was a significant covariate on V1 and Q. CONCLUSIONS These data demonstrate increases in catabolic clearance of monoclonal antibodies observed in humans can be replicated in cachectic mice, in which Fcgrt expression is also reduced. Notably, FcRn activity is essential for proper antigen presentation and antitumour immunity, which may permit the study of cachexia's impact on FcRn-mediated clearance and efficacy of ICI therapies.
Collapse
Affiliation(s)
- Alyssa Marie M. Castillo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Trang T. Vu
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Sophia G. Liva
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Min Chen
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Zhiliang Xie
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Justin Thomas
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Bryan Remaily
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Yizhen Guo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Uma L. Subrayan
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Travis Costa
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Timothy H. Helms
- Department of Veterinary Biosciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOHUSA
| | - Donald J. Irby
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Kyeongmin Kim
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Dwight H. Owen
- Division of Medical OncologyThe Ohio State University James Comprehensive Cancer CenterColumbusOHUSA
| | - Samuel K. Kulp
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Thomas A. Mace
- Division of Gastroenterology, Hepatology & Nutrition, Department of MedicineThe Ohio State UniversityColumbusOHUSA
- The Comprehensive Cancer CenterThe Ohio State UniversityColumbusOH43210USA
| | - Mitch A. Phelps
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
- The Comprehensive Cancer CenterThe Ohio State UniversityColumbusOH43210USA
| | - Christopher C. Coss
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOHUSA
- The Comprehensive Cancer CenterThe Ohio State UniversityColumbusOH43210USA
| |
Collapse
|
5
|
Volovat SR, Negru S, Stolniceanu CR, Volovat C, Lungulescu C, Scripcariu D, Cobzeanu BM, Stefanescu C, Grigorescu C, Augustin I, Lupascu Ursulescu C, Volovat CC. Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review). Exp Ther Med 2021; 21:535. [PMID: 33815608 PMCID: PMC8014970 DOI: 10.3892/etm.2021.9967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy has shifted the paradigm in cancer treatment in recent years. Immune checkpoint blockage (ICB), the active cancer vaccination and chimeric antigen receptor (CAR) for T-cell-based adoptive cell transfer represent the main developments, achieving a surprising increased survival in patients included in clinical trials. In spite of these results, the current state-of-the-art immunotherapy has its limitations in efficacy. The existence of an interdisciplinary interface involving current knowledge in biology, immunology, bioengineering and materials science represents important progress in increasing the effectiveness of immunotherapy in cancer. Cutaneous melanoma remains a difficult cancer to treat, in which immunotherapy is a major therapeutic option. In fact, enhancing immunotherapy is possible using sophisticated biomedical nanotechnology platforms of organic or inorganic materials or engineering various immune cells to enhance the immune system. In addition, biological devices have developed, changing the approach to and treatment results in melanoma. In this review, we present different modalities to modulate the immune system, as well as opportunities and challenges in melanoma treatment.
Collapse
Affiliation(s)
- Simona Ruxandra Volovat
- Department of Medicine III-Medical Oncology-Radiotherapy, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Serban Negru
- Department of Medical Oncology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medicine III-Medical Oncology-Radiotherapy, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania.,Department of Medical Oncology, 'Euroclinic' Center of Oncology, 70010 Iasi, Romania
| | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Dragos Scripcariu
- Department of Surgery, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Bogdan Mihail Cobzeanu
- Department of Surgery, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristina Grigorescu
- Department of Surgery, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, 'Euroclinic' Center of Oncology, 70010 Iasi, Romania
| | - Corina Lupascu Ursulescu
- Department of Radiology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Constantin Volovat
- Department of Radiology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania.,Department of Radiology, 'Sf. Spiridon' Emergency Clinic Hospital, 700111 Iasi, Romania
| |
Collapse
|
6
|
Mikelez-Alonso I, Aires A, Cortajarena AL. Cancer Nano-Immunotherapy from the Injection to the Target: The Role of Protein Corona. Int J Mol Sci 2020; 21:E519. [PMID: 31947622 PMCID: PMC7014289 DOI: 10.3390/ijms21020519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy has become a promising cancer therapy, improving the prognosis of patients with many different types of cancer and offering the possibility for long-term cancer remission. Nevertheless, some patients do not respond to these treatments and immunotherapy has shown some limitations, such as immune system resistance or limited bioavailability of the drug. Therefore, new strategies that include the use of nanoparticles (NPs) are emerging to enhance the efficacy of immunotherapies. NPs present very different pharmacokinetic and pharmacodynamic properties compared with free drugs and enable the use of lower doses of immune-stimulating molecules, minimizing their side effects. However, NPs face issues concerning stability in physiological conditions, protein corona (PC) formation, and accumulation in the target tissue. PC formation changes the physicochemical and biological properties of the NPs and in consequence their therapeutic effect. This review summarizes the recent advances in the study of the effects of PC formation in NP-based immunotherapy. PC formation has complex effects on immunotherapy since it can diminish ("immune blinding") or enhance the immune response in an uncontrolled manner ("immune reactivity"). Here, future perspectives of the field including the latest advances towards the use of personalized protein corona in cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Idoia Mikelez-Alonso
- CIC biomaGUNE, Parque Científico y Tecnológico de Gipuzkoa. Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain; (I.M.-A.); (A.A.)
- Immunopathology, BiocrucesBizkaia, Cruces Plaza, 48903 Barakaldo, Spain
| | - Antonio Aires
- CIC biomaGUNE, Parque Científico y Tecnológico de Gipuzkoa. Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain; (I.M.-A.); (A.A.)
| | - Aitziber L. Cortajarena
- CIC biomaGUNE, Parque Científico y Tecnológico de Gipuzkoa. Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain; (I.M.-A.); (A.A.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|