1
|
Lee J, Kwon J, Jo YJ, Yoon SB, Hyeon JH, Park BJ, You HJ, Youn C, Kim Y, Choi HW, Kim JS. Particulate matter 10 induces oxidative stress and apoptosis in rhesus macaques skin fibroblast. PeerJ 2023; 11:e16589. [PMID: 38130933 PMCID: PMC10734408 DOI: 10.7717/peerj.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Background Particulate matter (PM) is a major air pollutant that affects human health worldwide. PM can pass through the skin barrier, thus causing skin diseases such as heat rash, allergic reaction, infection, or inflammation. However, only a few studies have been conducted on the cytotoxic effects of PM exposure on large-scale animals. Therefore, herein, we investigated whether and how PM affects rhesus macaque skin fibroblasts. Methods Rhesus macaque skin fibroblasts were treated with various concentrations of PM10 (1, 5, 10, 50, and 100 μg/mL) and incubated for 24, 48, and 72 h. Then, cell viability assay, TUNEL assay, and qRT-PCR were performed on the treated cells. Further, the reactive oxygen species, glutathione, and cathepsin B levels were determined. The MTT assay revealed that PM10 (>50 μg/mL) proportionately reduced the cell proliferation rate. Results PM10 treatment increased TUNEL-positive cell numbers, following the pro-apoptosis-associated genes (CASP3 and BAX) and tumor suppressor gene TP53 were significantly upregulated. PM10 treatment induced reactive oxidative stress. Cathepsin B intensity was increased, whereas GSH intensity was decreased. The mRNA expression levels of antioxidant enzyme-related genes (CAT, GPX1 and GPX3) were significantly upregulated. Furthermore, PM10 reduced the mitochondrial membrane potential. The mRNA expression of mitochondrial complex genes, such as NDUFA1, NDUFA2, NDUFAC2, NDUFS4, and ATP5H were also significantly upregulated. In conclusion, these results showed that PM10 triggers apoptosis and mitochondrial damage, thus inducing ROS accumulation. These findings provide potential information on the cytotoxic effects of PM10 treatment and help to understand the mechanism of air pollution-induced skin diseases.
Collapse
Affiliation(s)
- Jiin Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
- Department of Animal Science, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jeongwoo Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Jae-Hwan Hyeon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Beom-Jin Park
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Hyeong-Ju You
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Changsic Youn
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Yejin Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| |
Collapse
|
2
|
Wu T, Liu B, Wei Y, Li Z. TGF-β Regulates m 6A RNA Methylation after PM 2.5 Exposure. TOXICS 2023; 11:1026. [PMID: 38133427 PMCID: PMC10747615 DOI: 10.3390/toxics11121026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
PM2.5 exposure leads to a variety of respiratory diseases, including pulmonary fibrosis, metastatic lung cancer, etc. Exposure to PM2.5 results in the alteration of epigenetic modification. M6A RNA methylation is an essential epigenetic modification that regulates gene expression at the post-transcriptional level. Our previous study found that PM2.5 exposure up-regulated m6A RNA methylation and TGF-β expression level in the lung, but the mechanisms and pathways of PM2.5 regulation of m6A RNA methylation are still unclear. Moreover, a previous study reported that the TGF-β signal pathway could regulate m6A RNA methylation. Based on this evidence, we investigate the role of the TGF-β signaling pathway in PM2.5-induced m6A RNA methylation with the A549 cell line. Our results showed that PM2.5 could induce upregulation of m6A RNA methylation, accompanied by increased expression of TGF-β, Smad3, methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14). Furthermore, these alterations induced by PM2.5 exposure could be reversed by treatment with TGF-β inhibitor. Therefore, we speculated that the TGF-β signal pathway plays an indispensable role in regulating m6A RNA methylation after PM2.5 exposure. Our study demonstrates that PM2.5 exposure influences m6A RNA methylation by inducing the alteration of the TGF-β signal pathway, which could be an essential mechanism for lung-related diseases induced by PM2.5 exposure.
Collapse
Affiliation(s)
| | | | | | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.W.); (B.L.); (Y.W.)
| |
Collapse
|
3
|
Nishita‐Hara C, Kobayashi H, Hara K, Hayashi M. Dithiothreitol-Measured Oxidative Potential of Reference Materials of Mineral Dust: Implications for the Toxicity of Mineral Dust Aerosols in the Atmosphere. GEOHEALTH 2023; 7:e2022GH000736. [PMID: 37426691 PMCID: PMC10326488 DOI: 10.1029/2022gh000736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 07/11/2023]
Abstract
Oxidative stress is a mechanism that might raise the toxicity of mineral dust aerosols. We evaluated the oxidative potential (OP) of four reference materials (RMs) of mineral dusts using dithiothreitol assay. The OP of the water-soluble fraction of the dust RMs accounts for 40%-70% of the OP of the total fraction. The values of total and water-soluble OP normalized by the surface area of insoluble particles showed agreement among the different dust RMs. The surface area of insoluble dust particles was therefore inferred as an important factor affecting the OP of mineral dust. Using the relation between total OP and the surface area of insoluble particles of the dust RMs, we estimated the total OPs of fine and coarse atmospheric mineral dust aerosols assuming a typical particle size distribution of Asian dust aerosols observed in Japan. Mass-normalized total OPs were estimated at 44 and 23 pmol min-1 μg-1 for fine and coarse atmospheric mineral dust particles. They closely approximate the values observed for urban aerosols in Japan, which suggests that mineral dust plume advection can lead to a marked increase in human exposure to redox-active aerosols, even far downwind from mineral dust source regions.
Collapse
Affiliation(s)
- Chiharu Nishita‐Hara
- Fukuoka Institute for Atmospheric Environment and HealthFukuoka UniversityFukuokaJapan
| | - Hiroshi Kobayashi
- Division of Life and Environmental SciencesUniversity of YamanashiKofuJapan
| | - Keiichiro Hara
- Fukuoka Institute for Atmospheric Environment and HealthFukuoka UniversityFukuokaJapan
- Department of Earth System ScienceFaculty of ScienceFukuoka UniversityFukuokaJapan
| | - Masahiko Hayashi
- Fukuoka Institute for Atmospheric Environment and HealthFukuoka UniversityFukuokaJapan
- Department of Earth System ScienceFaculty of ScienceFukuoka UniversityFukuokaJapan
| |
Collapse
|
4
|
Morales-Bárcenas R, Sánchez-Pérez Y, Santibáñez-Andrade M, Chirino YI, Soto-Reyes E, García-Cuellar CM. Airborne particulate matter (PM 10) induces cell invasion through Aryl Hydrocarbon Receptor and Activator Protein 1 (AP-1) pathway deregulation in A549 lung epithelial cells. Mol Biol Rep 2023; 50:107-119. [PMID: 36309615 DOI: 10.1007/s11033-022-07986-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Particulate matter with an aerodynamic size ≤ 10 μm (PM10) is a risk factor for lung cancer development, mainly because some components are highly toxic. Polycyclic aromatic hydrocarbons (PAHs) are present in PM10, such as benzo[a]pyrene (BaP), which is a well-known genotoxic and carcinogenic compound to humans, capable of activating AP-1 transcription factor family genes through the Aryl Hydrocarbon Receptor (AhR). Because effects of BaP include metalloprotease 9 (MMP-9) activation, cell invasion, and other pathways related to carcinogenesis, we aimed to demonstrate that PM10 (10 µg/cm2) exposure induces the activation of AP-1 family members as well as cell invasion in lung epithelial cells, through AhR pathway. METHODS AND RESULTS The role of the AhR gene in cells exposed to PM10 (10 µg/cm2) and BaP (1µM) for 48 h was evaluated using AhR-targeted interference siRNA. Then, the AP-1 family members (c-Jun, Jun B, Jun D, Fos B, C-Fos, and Fra-1), the levels/activity of MMP-9, and cell invasion were analyzed. We found that PM10 increased AhR levels and promoted its nuclear localization in A549 treated cells. Also, PM10 and BaP deregulated the activity of AP-1 family members. Moreover, PM10 upregulated the secretion and activity of MMP-9 through AhR, while BaP had no effect. Finally, we found that cell invasion in A549 cells exposed to PM10 and BaP is modulated by AhR. CONCLUSION Our results demonstrated that PM10 exposure induces upregulation of the c-Jun, Jun B, and Fra-1 activity, the expression/activity of MMP-9, and the cell invasion in lung epithelial cells, effects mediated through the AhR. Also, the Fos B and C-Fos activity were downregulated. In addition, the effects induced by PM10 exposure were like those induced by BaP, which highlights the potentially toxic effects of the PM10 mixture in lung epithelial cells.
Collapse
Affiliation(s)
- Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México
| | - Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, CP 54090, Tlalnepantla de Baz, Estado de México, México
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Ciudad de México, México
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México.
| |
Collapse
|
5
|
Hwang L, Ko IG, Jin JJ, Kim SH, Kim CJ, Hwang JJ, Choi CW, Chang BS. Attenuation effect of polydeoxyribonucleotide on inflammatory cytokines and apoptotic factors induced by particulate matter (PM10) damage in human bronchial cells. J Biochem Mol Toxicol 2020; 35:e22635. [PMID: 32985769 DOI: 10.1002/jbt.22635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/25/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
Abstract
Particulate matter (PM) of 10-μm-sized fine dust in the air penetrates the respiratory tract and contributes to the increasing incidence of various lung diseases, but its definite mechanism is not known. Recently, polydeoxyribonucleotide (PDRN) has been shown to have anti-inflammatory and regenerative effects in various tissues. However, the bronchial-related mechanism is not well-understood. Hence, this experiment is intended to demonstrate the beneficial effect of PDRN administration on PM10-induced injury in human bronchial-derived NCI-H358 cells. To confirm the protective effect of PDRN, PM10 was applied after PDRN pretreatment to confirm changes in NCI-H358 cells. Experiments were conducted to measure cell survival, cytotoxicity, inflammation, and apoptotic factor changes. WST-8 assay was used to confirm cell viability, and lactate dehydrogenase assay was used to obtain cytotoxicity. In addition, changes in inflammatory cytokines and apoptotic factors were confirmed by enzyme-linked immunosorbent assay and Western blot. Decreased cell viability and increased cytotoxicity, inflammatory cytokines, and apoptotic factors were observed after exposure to PM10. However, pretreatment with PDRN enhanced cell viability and reduced cytotoxicity. In addition, the expression of inflammatory cytokines such as tumor necrosis factor-α, interleukin-6 (IL-6), and IL-1β, and cell death factors such as Apaf-1, cyt c, caspase-3, caspase-9, Bid, and Bax/Bcl-2 ratio were decreased by PDRN administration in PM10-exposed NCI-H358 cells. PDRN, an A2AR agonist, affects cAMP activation and regulation of phosphorylation of PKA and CREB. In addition, treatment with A2AR antagonist 3,7-dimethyl-1-propargylxanthine significantly blocked PDRN's effect. These anti-cytotoxicity, anti-inflammation, and anti-apoptosis effects of PDRN can be attributed to the adenosine A2AR enhancing effect on PM10-exposed bronchial cells.
Collapse
Affiliation(s)
- Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jun-Jang Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Hoon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Joon Hwang
- Department of Pulmonary and Critical Care Medicine, Gangdong Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Cheon Woong Choi
- Department of Pulmonary and Critical Care Medicine, Gangdong Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Bok Soon Chang
- Department of Pulmonary and Critical Care Medicine, Gangdong Kyung Hee University Hospital, Seoul, Republic of Korea
| |
Collapse
|
6
|
Yang HW, Park JH, Shin JM, Lee HM, Park IH. Asian Sand Dust Upregulates IL-6 and IL-8 via ROS, JNK, ERK, and CREB Signaling in Human Nasal Fibroblasts. Am J Rhinol Allergy 2019; 34:249-261. [PMID: 31771336 DOI: 10.1177/1945892419890267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Asian sand dust (ASD) profoundly affects respiratory health by inducing inflammation and causing upper airway inflammatory diseases. Interleukin (IL)-6 and IL-8 are pro-inflammatory mediators that are involved in upper airway inflammatory diseases. However, the effect of ASD on the production of IL-6 and IL-8 in nasal fibroblasts has not been adequately studied. We investigated the effect of ASD on the induction of pro-inflammatory mediators and its underlying mechanisms in nasal fibroblasts. Methods Real-time cytotoxicity assays were used to determine the effect of ASD on the viability of fibroblasts. Enzyme-linked immunosorbent assays and real-time polymerase chain reactions were performed to determine whether ASD induced the expression of IL-6 and IL-8. Reactive oxygen species (ROS) were quantified using 2, 7-dichlorofluorescein-diacetate and MitoSOX Red. Induction of IL-6 and IL-8 signal transduction pathways by ASD was confirmed by Western blotting. Ex vivo culture of the inferior turbinate tissue was performed to confirm the effects of ASD. Results ASD upregulated ROS levels, and this in turn promoted IL-6 and IL-8 expression through the MAPK (JNK and ERK) and CREB signaling pathways in nasal fibroblasts. However, ASD did not induce phosphorylation of p38. Specific inhibitors of each pathway (ROS, JNK, ERK, and CREB inhibitors) suppressed ASD-induced IL-6 and IL-8 upregulation. Conclusions ASD induces pro-inflammatory mediators, and the increased levels of IL-6 and IL-8 might be associated with the pathogenesis of chronic rhinosinusitis.
Collapse
Affiliation(s)
- Hyun-Woo Yang
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea
| | - Joo-Hoo Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea.,IVD Support Center, Korea University, Guro Hospital, Seoul, South Korea
| | - Jae-Min Shin
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea.,IVD Support Center, Korea University, Guro Hospital, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Heung-Man Lee
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea.,IVD Support Center, Korea University, Guro Hospital, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Il-Ho Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea.,IVD Support Center, Korea University, Guro Hospital, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Nishita‐Hara C, Hirabayashi M, Hara K, Yamazaki A, Hayashi M. Dithiothreitol-Measured Oxidative Potential of Size-Segregated Particulate Matter in Fukuoka, Japan: Effects of Asian Dust Events. GEOHEALTH 2019; 3:160-173. [PMID: 32159038 PMCID: PMC7007159 DOI: 10.1029/2019gh000189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/13/2019] [Indexed: 05/03/2023]
Abstract
Oxidative potential is an important property of particulate matter (PM) that has been regarded as a more health-relevant metric than PM mass. We investigated the oxidative potential of size-segregated PM and effects of Asian dust events in Fukuoka, western Japan. Aerosol particles with diameters smaller and larger than 2.5 μm (fine and coarse particles, respectively) were collected continually from 16 March through 26 May 2016. The oxidative potential was analyzed using dithiothreitol (DTT) assay; chemical components of PM were also found. Air-volume normalized oxidative potential quantified by DTT assay (DTTv) was significantly higher during Asian dust events than during nondust-event days. The mean DTTv of fine and coarse particles during Asian dust events were, respectively, 1.5 and 2.7 times higher than that during nonevent days. DTTv of fine particles was highly correlated with elements dominated by anthropogenic combustion sources and with the elements emitted from multiple sources including mineral dust and combustion sources. DTTv of coarse particles strongly correlated with the mineral dust derived elements, suggesting concentration of mineral dust particles as an important controlling factor especially for the oxidative potential of the coarse particles. We estimated the contributions of water-soluble transition metals to the oxidative potential of PM. Water-soluble transition metals (mainly Cu and Mn) can explain only approximately 37% and 60% of the measured oxidative potential of fine and coarse particles, respectively, suggesting substantial contributions of aerosol components other than water-soluble transition metals such as quinones and insoluble minerals.
Collapse
Affiliation(s)
- Chiharu Nishita‐Hara
- Fukuoka Institute for Atmospheric Environment and HealthFukuoka UniversityFukuokaJapan
| | | | - Keiichiro Hara
- Fukuoka Institute for Atmospheric Environment and HealthFukuoka UniversityFukuokaJapan
- Faculty of ScienceFukuoka UniversityFukuokaJapan
| | | | - Masahiko Hayashi
- Fukuoka Institute for Atmospheric Environment and HealthFukuoka UniversityFukuokaJapan
- Faculty of ScienceFukuoka UniversityFukuokaJapan
| |
Collapse
|
8
|
Radan M, Dianat M, Badavi M, Mard SA, Bayati V, Goudarzi G. In vivo and in vitro evidence for the involvement of Nrf2-antioxidant response element signaling pathway in the inflammation and oxidative stress induced by particulate matter (PM10): the effective role of gallic acid. Free Radic Res 2019; 53:210-225. [PMID: 30585515 DOI: 10.1080/10715762.2018.1563689] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Environmental pollution is one of the risk factors for respiratory diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is the major mechanisms contributing to cellular defense against oxidative damage. Gallic acid (GA) is regarded as potent anti-inflammatory and antioxidant agents. The aim was to evaluate the role of Nrf2 pathway in particulate matter (PM10) exposure on lung and epithelial cells with an emphasis on the role of GA. In in vivo part, the rats were divided as control, GA (30 mg/kg), particulate matter (PM) (0.5, 2.5, and 5 mg/kg), and PM + GA. In in vitro study, the cells were divided as control, PM10 (100, 250, and 500 µg/ml), GA (50 µmol/L) and PM10+GA. Inflammation, oxidative stress and Nrf2-pathway factors were assessed. PM10 groups showed a considerable increase in the epithelial permeability and inflammatory parameters. We also found a significant decrease in the expression of Nrf2 and its up-stream regulators genes. Accordingly, the biosynthesis of glutathione (GSH) and other antioxidant activities significantly decreased. Gallic acid was identified to restore the antioxidant status to the normal levels. Our findings approved that Nrf2 is involved in PM10-induced oxidative damages and showed that Nrf2 activation by natural agents could ameliorate respiratory injuries induced by PM10.
Collapse
Affiliation(s)
- Maryam Radan
- a Faculty of Medicine, Department of Physiology , Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Mahin Dianat
- a Faculty of Medicine, Department of Physiology , Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Mohammad Badavi
- a Faculty of Medicine, Department of Physiology , Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Seyyed Ali Mard
- a Faculty of Medicine, Department of Physiology , Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Vahid Bayati
- b Faculty of Medicine , Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Gholamreza Goudarzi
- c Health Faculty, Department of Environmental Health Engineering , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
9
|
Zhang M, Xia H, Yu M, Zhu L, Ju L, Chen J, Zhao J, Xiao Y, Chen K. N-acetylcysteine prevents cytotoxic effects induced by man-made mineral fibers in a human bronchial epithelial cell line. Toxicol In Vitro 2018; 53:200-207. [PMID: 30145358 DOI: 10.1016/j.tiv.2018.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022]
Abstract
Man-made mineral fibres (MMMFs) such as glass wool (GW), rock wool (RW) and refractory ceramic fibres (RCFs) are widely used as substitutes of asbestos. The present study aimed to investigate the cytotoxic effects on human bronchial epithelial cells (BEAS-2B) exposed to GW1, RW1 and RCF2, considering their properties similar to that of asbestos. We assessed cell viability; cell morphological changes; apoptotic rate; DNA damage; reactive oxygen species (ROS) generation; activities of caspase-3, caspase-8 and caspase-9; and expression levels of FasL, phosphorylated p38, and total p38 MAPK proteins. N-acetyl-l-cysteine (NAC) was used as an ROS scavenger. We observed that MMMFs, especially RCF2, evidently changed cellular morphology, promoted DNA damage, and induced apoptosis. In addition, the cytotoxicities of MMMFs were dependent on ROS generation, and NAC could decrease their toxicity. Furthermore, our results showed that apoptosis induced by MMMFs was mediated by the mitochondrial apoptotic pathway and Fas death receptor pathway. Moreover, the p38 MAPK signalling pathway was also involved in the cytotoxicities of MMMFs. NAC exerts a protective effect against apoptosis and DNA damage induced by GW1, RW1 and RCF2. This study provides important implications for understanding the potential toxic effects of GW1, RW1 and RCF2 exposure; it also indicates that NAC may prevent respiratory diseases induced by exposure to MMMFs.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310007, China; Institute of Occupational Health, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - HaiLing Xia
- Institute of Occupational Health, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Min Yu
- Institute of Occupational Health, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - LiJin Zhu
- Institute of Occupational Health, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Li Ju
- Institute of Occupational Health, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - JunQiang Chen
- Institute of Occupational Health, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - JiaJun Zhao
- Hangzhou Hospital for the Prevention and Treatment of Occupational Diseases, Hangzhou 310005, China
| | - Yun Xiao
- Institute of Occupational Health, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| | - Kun Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310007, China.
| |
Collapse
|
10
|
Lee DU, Ji MJ, Kang JY, Kyung SY, Hong JH. Dust particles-induced intracellular Ca 2+ signaling and reactive oxygen species in lung fibroblast cell line MRC5. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:327-334. [PMID: 28461775 PMCID: PMC5409120 DOI: 10.4196/kjpp.2017.21.3.327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Epidemiologic interest in particulate matter (PM) is growing particularly because of its impact of respiratory health. It has been elucidated that PM evoked inflammatory signal in pulmonary epithelia. However, it has not been established Ca2+ signaling mechanisms involved in acute PM-derived signaling in pulmonary fibroblasts. In the present study, we explored dust particles PM modulated intracellular Ca2+ signaling and sought to provide a therapeutic strategy by antagonizing PM-induced intracellular Ca2+ signaling in human lung fibroblasts MRC5 cells. We demonstrated that PM10, less than 10 µm, induced intracellular Ca2+ signaling, which was mediated by extracellular Ca2+. The PM10-mediated intracellular Ca2+ signaling was attenuated by antioxidants, phospholipase blockers, polyADPR polymerase 1 inhibitor, and transient receptor potential melastatin 2 (TRPM2) inhibitors. In addition, PM-mediated increases in reactive oxygen species were attenuated by TRPM2 blockers, clotrimazole (CLZ) and N-(p-amylcinnamoyl) anthranilic acid (ACA). Our results showed that PM10 enhanced reactive oxygen species signal by measuring DCF fluorescence and the DCF signal attenuated by both TRPM2 blockers CLZ and ACA. Here, we suggest functional inhibition of TRPM2 channels as a potential therapeutic strategy for modulation of dust particle-mediated signaling and oxidative stress accompanying lung diseases.
Collapse
Affiliation(s)
- Dong Un Lee
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Korea
| | - Min Jeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Korea
| | - Jung Yun Kang
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Sun Young Kyung
- Division of Pulmonary, Allergy and Critical Care Medicine, Gachon University, Gil Medical Center, Incheon 21565, Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Korea
| |
Collapse
|
11
|
A Systematic Review of Global Desert Dust and Associated Human Health Effects. ATMOSPHERE 2016. [DOI: 10.3390/atmos7120158] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
The Effect of Therapeutic Blockades of Dust Particles-Induced Ca²⁺ Signaling and Proinflammatory Cytokine IL-8 in Human Bronchial Epithelial Cells. Mediators Inflamm 2015; 2015:843024. [PMID: 26640326 PMCID: PMC4657146 DOI: 10.1155/2015/843024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 11/17/2022] Open
Abstract
Bronchial epithelial cells are the first barrier of defense against respiratory pathogens. Dust particles as extracellular stimuli are associated with inflammatory reactions after inhalation. It has been reported that dust particles induce intracellular Ca(2+) signal, which subsequently increases cytokines production such as interleukin- (IL-) 8. However, the study of therapeutic blockades of Ca(2+) signaling induced by dust particles in human bronchial epithelial cells is poorly understood. We investigated how to modulate dust particles-induced Ca(2+) signaling and proinflammatory cytokine IL-8 expression. Bronchial epithelial BEAS-2B cells were exposed to PM10 dust particles and subsequent mediated intracellular Ca(2+) signaling and reactive oxygen species signal. Our results show that exposure to several inhibitors of Ca(2+) pathway attenuated the PM10-induced Ca(2+) response and subsequent IL-8 mRNA expression. PM10-mediated Ca(2+) signal and IL-8 expression were attenuated by several pharmacological blockades such as antioxidants, IP3-PLC blockers, and TRPM2 inhibitors. Our results show that blockades of PLC or TRPM2 reduced both of PM10-mediated Ca(2+) signal and IL-8 expression, suggesting that treatment with these blockades should be considered for potential therapeutic trials in pulmonary epithelium for inflammation caused by environmental events such as seasonal dust storm.
Collapse
|
13
|
Ghio AJ, Kummarapurugu ST, Tong H, Soukup JM, Dailey LA, Boykin E, Ian Gilmour M, Ingram P, Roggli VL, Goldstein HL, Reynolds RL. Biological effects of desert dust in respiratory epithelial cells and a murine model. Inhal Toxicol 2014; 26:299-309. [DOI: 10.3109/08958378.2014.888109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|