1
|
Saad-Naguib MH, Kenfack Y, Sherman LS, Chafitz OB, Morelli SS. Impaired receptivity of thin endometrium: therapeutic potential of mesenchymal stem cells. Front Endocrinol (Lausanne) 2024; 14:1268990. [PMID: 38344687 PMCID: PMC10854221 DOI: 10.3389/fendo.2023.1268990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
The endometrium is a resilient and highly dynamic tissue, undergoing cyclic renewal in preparation for embryo implantation. Cyclic endometrial regeneration depends on the intact function of several cell types, including parenchymal, endothelial, and immune cells, as well as adult stem cells that can arise from endometrial or extrauterine sources. The ability of the endometrium to undergo rapid, repeated regeneration without scarring is unique to this tissue. However, if this tissue renewal process is disrupted or dysfunctional, women may present clinically with infertility due to endometrial scarring or persistent atrophic/thin endometrium. Such disorders are rate-limiting in the treatment of female infertility and in the success of in vitro fertilization because of a dearth of treatment options specifically targeting the endometrium. A growing number of studies have explored the potential of adult stem cells, including mesenchymal stem cells (MSCs), to treat women with disorders of endometrial regeneration. MSCs are multipotent adult stem cells with capacity to differentiate into cells such as adipocytes, chondrocytes, and osteoblasts. In addition to their differentiation capacity, MSCs migrate toward injured sites where they secrete bioactive factors (e.g. cytokines, chemokines, growth factors, proteins and extracellular vesicles) to aid in tissue repair. These factors modulate biological processes critical for tissue regeneration, such as angiogenesis, cell migration and immunomodulation. The MSC secretome has therefore attracted significant attention for its therapeutic potential. In the uterus, studies utilizing rodent models and limited human trials have shown a potential benefit of MSCs and the MSC secretome in treatment of endometrial infertility. This review will explore the potential of MSCs to treat women with impaired endometrial receptivity due to a thin endometrium or endometrial scarring. We will provide context supporting leveraging MSCs for this purpose by including a review of mechanisms by which the MSC secretome promotes regeneration and repair of nonreproductive tissues.
Collapse
Affiliation(s)
- Michael H. Saad-Naguib
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yannick Kenfack
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Lauren S. Sherman
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Olivia B. Chafitz
- Department of Obstetrics & Gynecology, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Sara S. Morelli
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
2
|
Yang GD, Ma DS, Ma CY, Bai Y. Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction. Curr Stem Cell Res Ther 2024; 19:942-958. [PMID: 37612870 DOI: 10.2174/1574888x18666230823091017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.
Collapse
Affiliation(s)
- Guo-Dong Yang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Da-Shi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Ye Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yang Bai
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
3
|
Oh MS, Lee SG, Lee GH, Kim CY, Song JH, Yu BY, Chung HM. Verification of Therapeutic Effect through Accelerator Mass Spectrometry-Based Single Cell Level Quantification of hESC-Endothelial Cells Distributed into an Ischemic Model. Adv Healthc Mater 2023; 12:e2300476. [PMID: 37068221 DOI: 10.1002/adhm.202300476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/01/2023] [Indexed: 04/19/2023]
Abstract
As the potential of pluripotent stem cell-derived differentiated cells has been demonstrated in regenerative medicine, differentiated vascular endothelial cells (ECs) are emerging as a therapeutic agent for the cardiovascular system. To verify the therapeutic efficacy of differentiated ECs in an ischemic model, human embryonic stem cells (hESCs) are induced as EC lineage and produce high-purity ECs through fluorescence-activated cell sorting (FACS). When hESC-ECs are transplanted into a hindlimb ischemic model, it is confirmed that blood flow and muscle regeneration are further improved by creating new blood vessels together with autologous ECs than the primary cell as cord blood endothelial progenitor cells (CB-EPCs). In addition, previously reported studies show the detection of transplanted cells engrafted in blood vessels through various tracking methods, but fail to provide accurate quantitative values over time. In this study, it is demonstrated that hESC-ECs are engrafted approximately sevenfold more than CB-EPCs by using an accelerator mass spectrometry (AMS)-based cell tracking technology that can perform quantification at the single cell level. An accurate quantification index is suggested. It has never been reported in in vivo kinetics of hESC-ECs that can act as therapeutic agents.
Collapse
Affiliation(s)
- Min-Seok Oh
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Gwan-Ho Lee
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jong Han Song
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Byung-Yong Yu
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea
- Mirae Cell Bio Co. Ltd, Seoul, 04795, Republic of Korea
| |
Collapse
|
4
|
Armstrong BBS, Pedroso JCM, Conceição Carvalho JD, Ferreira LM. Mesenchymal stem cells in lung diseases and their potential use in COVID-19 ARDS: A systematized review. Clinics (Sao Paulo) 2023; 78:100237. [PMID: 37454534 PMCID: PMC10368758 DOI: 10.1016/j.clinsp.2023.100237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/23/2023] [Accepted: 04/24/2023] [Indexed: 07/18/2023] Open
Abstract
COVID-19 can converge with the pro-inflammatory immunoregulatory mechanisms of chronic lung diseases. Given the disorders inherent to lung transplantation and the inexistence of other definitive therapeutic alternatives, Adipose tissue-derived Stem Cells (ASCs) presented themselves as a therapeutic hope. The purpose of this review is to assess the basis for the potential use of ASCs in lung diseases unresponsive to conventional therapy, relating to their possible use in COVID-19 ARDS. 35 studies comprised this review, 14 being narrative reviews, 19 preclinical trials and two proofs of concept. COVID-19 can converge with the pro-inflammatory immunoregulatory mechanisms of chronic lung diseases. In view of the disorders inherent to lung transplantation and the inexistence of definitive therapeutic alternatives, Adipose tissue-derived Stem Cells (ASCs) presented themselves as a therapeutic hope. Its detailed reading indicated the absence of serious adverse effects and toxicity to the administration of ASCs and suggested possible effectiveness in reducing lung damage, in addition to promoting the recovery of leukocytes and lymphocytes with its immunomodulatory and anti-apoptotic effects. The revised clinical data suggests optimism in the applicability of ASCs in other immunoinflammatory diseases and in severe COVID-19 ARDS. However, further studies are needed to develop a consensus on the methods of collection of ASCs, the ideal dosage schedule, the most effective time and route of administration, as well as on the definition of indications for the administration of ASCs in cases of COVID-19 for conducting clinical trials in near future.
Collapse
Affiliation(s)
| | | | | | - Lydia Masako Ferreira
- Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Calzetta L, Aiello M, Frizzelli A, Camardelli F, Cazzola M, Rogliani P, Chetta A. Stem Cell-Based Regenerative Therapy and Derived Products in COPD: A Systematic Review and Meta-Analysis. Cells 2022; 11:cells11111797. [PMID: 35681492 PMCID: PMC9180461 DOI: 10.3390/cells11111797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
COPD is an incurable disorder, characterized by a progressive alveolar tissue destruction and defective mechanisms of repair and defense leading to emphysema. Currently, treatment for COPD is exclusively symptomatic; therefore, stem cell-based therapies represent a promising therapeutic approach to regenerate damaged structures of the respiratory system and restore lung function. The aim of this study was to provide a quantitative synthesis of the efficacy profile of stem cell-based regenerative therapies and derived products in COPD patients. A systematic review and meta-analysis was performed according to PRISMA-P. Data from 371 COPD patients were extracted from 11 studies. Active treatments elicited a strong tendency towards significance in FEV1 improvement (+71 mL 95% CI -2−145; p = 0.056) and significantly increased 6MWT (52 m 95% CI 18−87; p < 0.05) vs. baseline or control. Active treatments did not reduce the risk of hospitalization due to acute exacerbations (RR 0.77 95% CI 0.40−1.49; p > 0.05). This study suggests that stem cell-based regenerative therapies and derived products may be effective to treat COPD patients, but the current evidence comes from small clinical trials. Large and well-designed randomized controlled trials are needed to really quantify the beneficial impact of stem cell-based regenerative therapy and derived products in COPD.
Collapse
Affiliation(s)
- Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.A.); (A.F.); (A.C.)
- Correspondence:
| | - Marina Aiello
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.A.); (A.F.); (A.C.)
| | - Annalisa Frizzelli
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.A.); (A.F.); (A.C.)
| | - Francesca Camardelli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (M.C.); (P.R.)
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (M.C.); (P.R.)
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (M.C.); (P.R.)
| | - Alfredo Chetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.A.); (A.F.); (A.C.)
| |
Collapse
|
6
|
Kamiyama Y, Naritomi Y, Moriya Y, Yamamoto S, Kitahashi T, Maekawa T, Yahata M, Hanada T, Uchiyama A, Noumaru A, Koga Y, Higuchi T, Ito M, Komatsu H, Miyoshi S, Kimura S, Umeda N, Fujita E, Tanaka N, Sugita T, Takayama S, Kurogi A, Yasuda S, Sato Y. Biodistribution studies for cell therapy products: Current status and issues. Regen Ther 2021; 18:202-216. [PMID: 34307798 PMCID: PMC8282960 DOI: 10.1016/j.reth.2021.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Information on the biodistribution (BD) of cell therapy products (CTPs) is essential for prediction and assessment of their efficacy and toxicity profiles in non-clinical and clinical studies. To conduct BD studies, it is necessary to understand regulatory requirements, implementation status, and analytical methods. This review aimed at surveying international and Japanese trends concerning the BD study for CTPs and the following subjects were investigated, which were considered particularly important: 1) comparison of guidelines to understand the regulatory status of BD studies in a global setting; 2) case studies of the BD study using databases to understand its current status in cell therapy; 3) case studies on quantitative polymerase chain reaction (qPCR) used primarily in non-clinical BD studies for CTPs; and 4) survey of imaging methods used for non-clinical and clinical BD studies. The results in this review will be a useful resource for implementing BD studies.
Collapse
Affiliation(s)
- Yoshiteru Kamiyama
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Yoichi Naritomi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Yuu Moriya
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Syunsuke Yamamoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Tsukasa Kitahashi
- Bioscience & Engineering Laboratory, FUJIFILM Corp., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa, Japan
| | - Toshihiko Maekawa
- Bioscience & Engineering Laboratory, FUJIFILM Corp., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa, Japan
| | - Masahiro Yahata
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, Japan
| | - Takeshi Hanada
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo.Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Asako Uchiyama
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Kagoshima, Japan
| | - Akari Noumaru
- Kumamoto Laboratories, LSIM Safety Institute Corporation, 1285 Kurisaki-machi, Uto, Kumamoto, Japan
| | - Yoshiyuki Koga
- Kumamoto Laboratories, LSIM Safety Institute Corporation, 1285 Kurisaki-machi, Uto, Kumamoto, Japan
| | - Tomoaki Higuchi
- Non-clinical Development, Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Masahiko Ito
- Tsukuba Research Institute, BoZo Research Center Inc., 8 Okubo, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Komatsu
- Science BD Department, CMIC Pharma Science Co., Ltd., 1-1-1 Shibaura, Minato-ku, Tokyo, Japan
| | - Sosuke Miyoshi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Sadaaki Kimura
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Umeda
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Eriko Fujita
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Naoko Tanaka
- Evaluation Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa, Japan
| | - Taku Sugita
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Satoru Takayama
- Cell Therapy Technology, Healthcare R&D Center, Asahi Kasei Corporation, 2-1 Samejima, Fuji-Shi, Shizuoka, Japan
| | - Akihiko Kurogi
- Regenerative Medicine Research & Planning Division, ROHTO Pharmaceutical Co., Ltd., Osaka, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| |
Collapse
|
7
|
Park JS, Cho R, Kang EY, Oh YM. Effect of Slit/Robo signaling on regeneration in lung emphysema. Exp Mol Med 2021; 53:986-992. [PMID: 34035465 PMCID: PMC8178402 DOI: 10.1038/s12276-021-00633-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/01/2022] Open
Abstract
Emphysema, a pathological component of chronic obstructive pulmonary disease, causes irreversible damage to the lung. Previous studies have shown that Slit plays essential roles in cell proliferation, angiogenesis, and organ development. In this study, we evaluated the effect of Slit2 on the proliferation and migration of mouse lung epithelial cells and its role in regeneration in an emphysema lung mouse model. Here, we have shown that Slit2/Robo signaling contributes to the regeneration of lungs damaged by emphysema. Mouse epithelial lung cells treated with Slit2 exhibited increased proliferation and migration in vitro. Our results also showed that Slit2 administration improved alveolar regeneration in the emphysema mouse model in vivo. Furthermore, Slit2/Robo signaling increased the phosphorylation of ERK and Akt, which was mediated by Ras activity. These Slit2-mediated cellular signaling processes may be involved in the proliferation and migration of mouse lung epithelial cells and are also associated with the potential mechanism of lung regeneration. Our findings suggest that Slit2 administration may be beneficial for alveolar regeneration in lungs damaged by emphysema. A protein called Slit2 may help in treating emphysema by promoting regeneration of cells that line the tiny air sacs called alveoli in the lungs. In the alveoli, oxygen is transferred from the lungs to the blood. In emphysema, the alveoli become damaged, reducing patients’ ability to exhale ‘old’ air and limiting capacity to breathe in fresh, oxygen-rich air. No treatments are available. Yeon-Mok Oh at the University of Ulan College of Medicine, Seoul, South Korea and co-workers investigated whether Slit2, known to be involved in nervous system development, cell proliferation, and migration, could aid in regenerating lung cells. Testing in mouse lung cells produced increased proliferation and migration. Further testing in a mouse model of emphysema showed that the alveoli could regenerate. These results hold promise for developing new treatments for emphysema.
Collapse
Affiliation(s)
| | | | | | - Yeon-Mok Oh
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea. .,Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
8
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Oh MS, Lee SG, Lee GH, Kim CY, Kim EY, Song JH, Yu BY, Chung HM. In vivo tracking of 14C thymidine labeled mesenchymal stem cells using ultra-sensitive accelerator mass spectrometry. Sci Rep 2021; 11:1360. [PMID: 33446731 PMCID: PMC7809063 DOI: 10.1038/s41598-020-80416-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Despite the tremendous advancements made in cell tracking, in vivo imaging and volumetric analysis, it remains difficult to accurately quantify the number of infused cells following stem cell therapy, especially at the single cell level, mainly due to the sensitivity of cells. In this study, we demonstrate the utility of both liquid scintillator counter (LSC) and accelerator mass spectrometry (AMS) in investigating the distribution and quantification of radioisotope labeled adipocyte derived mesenchymal stem cells (AD-MSCs) at the single cell level after intravenous (IV) transplantation. We first show the incorporation of 14C-thymidine (5 nCi/ml, 24.2 ng/ml) into AD-MSCs without affecting key biological characteristics. These cells were then utilized to track and quantify the distribution of AD-MSCs delivered through the tail vein by AMS, revealing the number of AD-MSCs existing within different organs per mg and per organ at different time points. Notably, the results show that this highly sensitive approach can quantify one cell per mg which effectively means that AD-MSCs can be detected in various tissues at the single cell level. While the significance of these cells is yet to be elucidated, we show that it is possible to accurately depict the pattern of distribution and quantify AD-MSCs in living tissue. This approach can serve to incrementally build profiles of biodistribution for stem cells such as MSCs which is essential for both research and therapeutic purposes.
Collapse
Affiliation(s)
- Min-Seok Oh
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea
| | - Gwan-Ho Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea
| | - Eun-Young Kim
- Mirae Cell Bio Co. Ltd, Seoul, 04795, Republic of Korea
| | - Jong Han Song
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Byung-Yong Yu
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea. .,Mirae Cell Bio Co. Ltd, Seoul, 04795, Republic of Korea.
| |
Collapse
|
10
|
Khatri R, Mazurek S, Petry SF, Linn T. Mesenchymal stem cells promote pancreatic β-cell regeneration through downregulation of FoxO1 pathway. Stem Cell Res Ther 2020; 11:497. [PMID: 33239104 PMCID: PMC7687794 DOI: 10.1186/s13287-020-02007-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background Mesenchymal stem cells (MSC) are non-haematopoietic, fibroblast-like multipotent stromal cells. In the injured pancreas, these cells are assumed to secrete growth factors and immunomodulatory molecules, which facilitate the regeneration of pre-existing β-cells. However, when MSC are delivered intravenously, their majority is entrapped in the lungs and does not reach the pancreas. Therefore, the aim of this investigation was to compare the regenerative support of hTERT-MSC (human telomerase reverse transcriptase mesenchymal stem cells) via intrapancreatic (IPR) and intravenous route (IVR). Methods hTERT-MSC were administered by IPR and IVR to 50% pancreatectomized NMRI nude mice. After eight days, blood glucose level, body weight, and residual pancreatic weight were measured. Proliferating pancreatic β-cells were labelled and identified with bromodeoxyuridine (BrdU) in vivo. The number of residual islets and the frequency of proliferating β-cells were compared in different groups with sequential pancreatic sections. The pancreatic insulin content was evaluated by enzyme-linked immunosorbent assay (ELISA) and the presence of hTERT-MSC with human Alu sequence. Murine gene expression of growth factors, β-cell specific molecules and proinflammatory cytokines were inspected by real-time polymerase chain reaction (RT-PCR) and Western blot. Results This study evaluated the regenerative potential of the murine pancreas post-hTERT-MSC administration through the intrapancreatic (IPR) and intravenous route (IVR). Both routes of hTERT-MSC transplantation (IVR and IPR) increased the incorporation of BrdU by pancreatic β-cells compared to control. MSC induced epidermal growth factor (EGF) expression and inhibited proinflammatory cytokines (IFN-γ and TNF-α). FOXA2 and PDX-1 characteristics for pancreatic progenitor cells were activated via AKT/ PDX-1/ FoxO1 signalling pathway. Conclusion The infusion of hTERT-MSC after partial pancreatectomy (Px) through the IVR and IPR facilitated the proliferation of autochthonous pancreatic β-cells and provided evidence for a regenerative influence of MSC on the endocrine pancreas. Moderate benefit of IPR over IVR was observed which could be a new treatment option for preventing diabetes mellitus after pancreas surgery. Supplementary information The online version contains supplementary material available at at 10.1186/s13287-020-02007-9.
Collapse
Affiliation(s)
- Rahul Khatri
- Third Medical Department, Clinical Research Lab, Justus Liebig University Giessen, Giessen, Germany
| | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | | | - Thomas Linn
- Third Medical Department, Clinical Research Lab, Justus Liebig University Giessen, Giessen, Germany. .,Clinical Research Unit, Centre of Internal Medicine, Friedrichstrasse. 20/ Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
11
|
A Small-Sized Population of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Shows High Stemness Properties and Therapeutic Benefit. Stem Cells Int 2020; 2020:5924983. [PMID: 32399043 PMCID: PMC7204153 DOI: 10.1155/2020/5924983] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a promising means to promote tissue regeneration. However, the heterogeneity of MSCs impedes their use for regenerative medicine. Further investigation of this phenotype is required to develop cell therapies with improved clinical efficacy. Here, a small-sized population of human umbilical cord blood-derived MSCs (UCB-MSCs) was isolated using a filter and centrifuge system to analyze its stem cell characteristics. Consequently, this population showed higher cell growth and lower senescence. Additionally, it exhibited diverse stem cell properties including differentiation, stemness, and adhesion, as compared to those of the population before isolation. Using cell surface protein array or sorting analysis, both EGFR and CD49f were identified as markers associated with the small-sized population. Accordingly, suppression of these surface proteins abolished the superior characteristics of this population. Moreover, compared to that with large or nonisolated populations, the small-sized population showed greater therapeutic efficacy by promoting the engraftment potential of infused cells and reducing lung damage in an emphysema mouse model. Therefore, the isolation of this small-sized population of UCB-MSCs could be a simple and effective way to enhance the efficacy of cell therapy.
Collapse
|
12
|
Abstract
Introduction: Mesenchymal stem/stromal cells (MSCs) have been shown to improve lung function and survival in chronic inflammatory lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension (PAH), and silicosis.Areas covered: This review covers rationale for the use of MSC therapy, along with preclinical studies and clinical trials with MSC therapy in chronic lung diseases.Expert opinion: MSC therapy holds promise for the treatment of chronic lung diseases, mainly when administered at early stages. In clinical trials, MSC administration was safe, but associated with limited effects on clinical outcomes. Further studies are required to elucidate unresolved issues, including optimal MSC source and dose, route of administration, and frequency (single vs. multiple-dose regimens). A better understanding of the mechanisms of MSC action, local microenvironment of each disease, and development of strategies to potentiate the beneficial effects of MSCs may improve outcomes.
Collapse
|
13
|
Adipose Tissue-Derived Stem Cells Have the Ability to Differentiate into Alveolar Epithelial Cells and Ameliorate Lung Injury Caused by Elastase-Induced Emphysema in Mice. Stem Cells Int 2019; 2019:5179172. [PMID: 31281377 PMCID: PMC6590553 DOI: 10.1155/2019/5179172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/20/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease is a leading cause of mortality globally, with no effective therapy yet established. Adipose tissue-derived stem cells (ADSCs) are useful for ameliorating lung injury in animal models. However, whether ADSCs differentiate into functional cells remains uncertain, and no study has reported on the mechanism by which ADSCs improve lung functionality. Thus, in this study, we examined whether ADSCs differentiate into lung alveolar cells and are able to ameliorate lung injury caused by elastase-induced emphysema in model mice. Here, we induced ADSCs to differentiate into type 2 alveolar epithelial cells in vitro. We demonstrated that ADSCs can differentiate into type 2 alveolar epithelial cells in an elastase-induced emphysematous lung and that ADSCs improve pulmonary function of emphysema model mice, as determined with spirometry and 129Xe MRI. These data revealed a novel function for ADSCs in promoting repair of the damaged lung by direct differentiation into alveolar epithelial cells.
Collapse
|
14
|
Skolasinski SD, Panoskaltsis-Mortari A. Lung tissue bioengineering for chronic obstructive pulmonary disease: overcoming the need for lung transplantation from human donors. Expert Rev Respir Med 2019; 13:665-678. [PMID: 31164014 DOI: 10.1080/17476348.2019.1624163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Chronic obstructive pulmonary disease (COPD) affects more than 380 million people, causing more than 3 million deaths annually worldwide. Despite this enormous burden, currently available therapies are largely limited to symptom control. Lung transplant is considered for end-stage disease but is severely limited by the availability of human organs. Furthermore, the pre-transplant course is a complex orchestration of locating and harvesting suitable lungs, and the post-transplant course is complicated by rejection and infection. Lung tissue bioengineering has the potential to relieve the organ shortage and improve the post-transplant course by generating patient-specific lungs for transplant. Additionally, emerging progenitor cell therapies may facilitate in vivo regeneration of pulmonary tissue, obviating the need for transplant. Areas Covered: We review several lung tissue bioengineering approaches including the recellularization of decellularized scaffolds, 3D bioprinting, genetically-engineered xenotransplantation, blastocyst complementation, and direct therapy with progenitor cells. Articles were identified by searching relevant terms (see Key Words) in the PubMed database and selected for inclusion based on novelty and uniqueness of their approach. Expert Opinion: Lung tissue bioengineering research is in the early stages. Of the methods reviewed, only direct cell therapy has been investigated in humans. We anticipate a minimum of 5-10 years before human therapy will be feasible.
Collapse
Affiliation(s)
- Steven D Skolasinski
- a Division of Pulmonary, Allergy, Critical Care and Sleep Medicine , University of Minnesota , Minneapolis , MN , USA
| | | |
Collapse
|
15
|
Sherman LS, Romagano MP, Williams SF, Rameshwar P. Mesenchymal stem cell therapies in brain disease. Semin Cell Dev Biol 2019; 95:111-119. [PMID: 30922957 DOI: 10.1016/j.semcdb.2019.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Abstract
As treatments for diseases throughout the body progress, treatment for many brain diseases has been at a standstill due to difficulties in drug delivery. While new drugs are being discovered in vitro, these therapies are often hindered by inefficient tissue distribution and, more commonly, an inability to cross the blood brain barrier. Mesenchymal stem cells are thus being investigated as a delivery tool to directly target therapies to the brain to treat wide array of brain diseases. This review discusses the use of mesenchymal stem cells in hypoxic disease (hypoxic ischemic encephalopathy), an inflammatory neurodegenerative disease (multiple sclerosis), and a malignant condition (glioma).
Collapse
Affiliation(s)
- Lauren S Sherman
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA; School of Graduate Studies, Biomedical Sciences Programs - Newark, Rutgers University, Newark, NJ, USA
| | - Matthew P Romagano
- Department of Obstetrics, Gynecology and Women's Health, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Shauna F Williams
- Department of Obstetrics, Gynecology and Women's Health, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Pranela Rameshwar
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| |
Collapse
|
16
|
Mesenchymal stem cells for inflammatory airway disorders: promises and challenges. Biosci Rep 2019; 39:BSR20182160. [PMID: 30610158 PMCID: PMC6356012 DOI: 10.1042/bsr20182160] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023] Open
Abstract
The regenerative and immunomodulatory characteristics of mesenchymal stem cells (MSCs) make them attractive in the treatment of many diseases. Although they have shown promising preclinical studies of immunomodulation and paracrine effects in inflammatory airway disorders and other lung diseases, there are still challenges that have to be overcome before MSCs can be safely, effectively, and routinely applied in the clinical setting. A good understanding of the roles and mechanisms of the MSC immunomodulatory effects will benefit the application of MSC-based clinical therapy. In this review, we summarize the promises and challenges of the preclinical and clinical trials of MSC therapies, aiming to better understand the role that MSCs play in attempt to treat inflammatory airway disorders.
Collapse
|
17
|
Onoshima D, Yukawa H, Baba Y. Nanobiodevices for Cancer Diagnostics and Stem Cell Therapeutics. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Clinical Application of Stem/Stromal Cells in COPD. STEM CELL-BASED THERAPY FOR LUNG DISEASE 2019. [PMCID: PMC7121219 DOI: 10.1007/978-3-030-29403-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive life-threatening disease that is significantly increasing in prevalence and is predicted to become the third leading cause of death worldwide by 2030. At present, there are no true curative treatments that can stop the progression of the disease, and new therapeutic strategies are desperately needed. Advances in cell-based therapies provide a platform for the development of new therapeutic approaches in severe lung diseases such as COPD. At present, a lot of focus is on mesenchymal stem (stromal) cell (MSC)-based therapies, mainly due to their immunomodulatory properties. Despite increasing number of preclinical studies demonstrating that systemic MSC administration can prevent or treat experimental COPD and emphysema, clinical studies have not been able to reproduce the preclinical results and to date no efficacy or significantly improved lung function or quality of life has been observed in COPD patients. Importantly, the completed appropriately conducted clinical trials uniformly demonstrate that MSC treatment in COPD patients is well tolerated and no toxicities have been observed. All clinical trials performed so far, have been phase I/II studies, underpowered for the detection of potential efficacy. There are several challenges ahead for this field such as standardized isolation and culture procedures to obtain a cell product with high quality and reproducibility, administration strategies, improvement of methods to measure outcomes, and development of potency assays. Moreover, COPD is a complex pathology with a diverse spectrum of clinical phenotypes, and therefore it is essential to develop methods to select the subpopulation of patients that is most likely to potentially respond to MSC administration. In this chapter, we will discuss the current state of the art of MSC-based cell therapy for COPD and the hurdles that need to be overcome.
Collapse
|
19
|
Coppolino I, Ruggeri P, Nucera F, Cannavò MF, Adcock I, Girbino G, Caramori G. Role of Stem Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Pulmonary Emphysema. COPD 2018; 15:536-556. [DOI: 10.1080/15412555.2018.1536116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Irene Coppolino
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Paolo Ruggeri
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Francesco Nucera
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Mario Francesco Cannavò
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Ian Adcock
- Airways Disease Section, National Heart and Lung Institute, Royal Brompton Hospital Biomedical Research Unit, Imperial College, London, UK
| | - Giuseppe Girbino
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Gaetano Caramori
- Dipartimento di Scienze Biomediche, Unità Operativa Complessa di Pneumologia, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| |
Collapse
|
20
|
Park JS, Kim HK, Kang EY, Cho R, Oh YM. Potential Therapeutic Strategy in Chronic Obstructive Pulmonary Disease Using Pioglitazone-Augmented Wharton's Jelly-Derived Mesenchymal Stem Cells. Tuberc Respir Dis (Seoul) 2018; 82:158-165. [PMID: 30302955 PMCID: PMC6435932 DOI: 10.4046/trd.2018.0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Background A recent study reported that mesenchymal stem cells possess potential cellular therapeutic properties for treating patients with chronic obstructive pulmonary disease, which is characterized by emphysema. We examined the potential therapeutic effect of Wharton's Jelly-derived mesenchymal stem cells (WJMSCs), following pretreatment with pioglitazone, in lung regeneration mouse emphysema models. Methods We used two mouse emphysema models, an elastase-induced model and a cigarette smoke-induced model. We intravenously injected WJMSCs (1×104/mouse) to mice, pretreated or not, with pioglitazone for 7 days. We measured the emphysema severity by mean linear intercepts (MLI) analysis using lung histology. Results Pioglitazone pretreated WJMSCs (pioWJMSCs) were associated with greater lung regeneration than non-augmented WJMSCs in the two mouse emphysema models. In the elastase-induced emphysema model, the MLIs were 59.02±2.42 µm (n=6), 72.80±2.87 µm (n=6), for pioWJMSCs injected mice, and non-augmented WJMSCs injected mice, respectively (p<0.01). Both pioWJMSCs and non-augmented WJMSCs showed regenerative effects in the cigarette smoke emphysema model (MLIs were 41.25±0.98 [n=6] for WJMSCs and38.97±0.61 µm [n=6] for pioWJMSCs) compared to smoking control mice (51.65±1.36 µm, n=6). The mean improvement of MLI appeared numerically better in pioWJMSCs than in non-augmented WJMSCs injected mice, but the difference did not reach the level of statistical significance (p=0.071). Conclusion PioWJMSCs may produce greater lung regeneration, compared to non-augmented WJMSCs, in a mouse emphysema model.
Collapse
Affiliation(s)
| | - Hyun Kuk Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | | | | | - Yeon Mok Oh
- Asan Institute for Life Sciences, Seoul, Korea.,Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul, Korea.,Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
21
|
Schubert R, Sann J, Frueh JT, Ullrich E, Geiger H, Baer PC. Tracking of Adipose-Derived Mesenchymal Stromal/Stem Cells in a Model of Cisplatin-Induced Acute Kidney Injury: Comparison of Bioluminescence Imaging versus qRT-PCR. Int J Mol Sci 2018; 19:ijms19092564. [PMID: 30158455 PMCID: PMC6165020 DOI: 10.3390/ijms19092564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 02/08/2023] Open
Abstract
Determining the cell fate and the distribution of mesenchymal stromal/stem cells (MSCs) after transplantation are essential parts of characterizing the mechanisms of action and biosafety profile of stem cell therapy. Many recent studies have shown that MSCs migrate into injured tissues, but are only detectable at extremely low frequencies. We investigated the cell fate of MSCs after transplantation in an acute kidney injury (AKI) mouse model using in vivo bioluminescence imaging (BLI) and subsequent verification of cell migration using quantitative real-time polymerase chain reaction (qRT-PCR). The AKI was induced by a single injection of cisplatin (8 or 12 mg/kg). One day later, adipose-derived mesenchymal stromal/stem cells isolated from luciferase transgenic mice (Luc+-mASCs, 5 × 105) were intravenously transplanted. Migration kinetics of the cells was monitored using BLI on day 1, 3, and 6, and finally via quantitative real-time PCR at the endpoint on day 6. Using BLI, infused Luc+-mASCs could only be detected in the lungs, but not in the kidneys. In contrast, PCR endpoint analysis revealed that Luc-specific mRNA could be detected in injured renal tissue; compared to the control group, the induction was 2.2-fold higher for the 8 mg/kg cisplatin group (p < 0.05), respectively 6.1-fold for the 12 mg/kg cisplatin group (p < 0.001). In conclusion, our study demonstrated that Luc-based real-time PCR rather than BLI is likely to be a better tool for cell tracking after transplantation in models such as cisplatin-induced AKI.
Collapse
Affiliation(s)
- Ralf Schubert
- Division of Allergology, Pneumology and Cystic Fibrosis, Department for Children and Adolescents Medicine, Hospital of the Goethe-University, 60596 Frankfurt, Germany.
| | - Julia Sann
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, 60596 Frankfurt, Germany.
| | - Jochen T Frueh
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, 60590 Frankfurt, Germany.
- LOEWE Center for Cell and Gene Therapy, Goethe University, 60590 Frankfurt, Germany.
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, 60590 Frankfurt, Germany.
- LOEWE Center for Cell and Gene Therapy, Goethe University, 60590 Frankfurt, Germany.
| | - Helmut Geiger
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, 60596 Frankfurt, Germany.
| | - Patrick C Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, 60596 Frankfurt, Germany.
| |
Collapse
|
22
|
Kruk DMLW, Heijink IH, Slebos DJ, Timens W, Ten Hacken NH. Mesenchymal Stromal Cells to Regenerate Emphysema: On the Horizon? Respiration 2018; 96:148-158. [PMID: 29719298 DOI: 10.1159/000488149] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/02/2018] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are multipotent cells that play a pivotal role in various phases of lung development and lung homeostasis, and potentially also lung regeneration. MSCs do not only self-renew and differentiate into renew tissues, but also have anti-inflammatory and paracrine properties to reduce damage and to support tissue regeneration, constituting a promising cell-based treatment strategy for the repair of damaged alveolar tissue in emphysema. This review discusses the current state of the art regarding the potential of MSCs for the treatment of emphysema. The optimism regarding this treatment strategy is supported by promising results from animal models. Still, there are considerable challenges before effective stem cell treatment can be realized in emphysema patients. It is difficult to draw definitive conclusions from the available animal studies, as different models, dosage protocols, administration routes, and sources of MSCs have been used with different measures of effectiveness. Moreover, the regrowth potential of differentiated tissues and organs differs between species. Essential questions about MSC engraftment, retention, and survival have not been sufficiently addressed in a systematic manner. Few human studies have investigated MSC treatment for chronic obstructive pulmonary disease, demonstrating short-term safety but no convincing benefits on clinical outcomes. Possible explanations for the lack of beneficial effects on clinical outcomes could be the source (bone marrow), route, dosage, frequency of administration, and delivery (lack of a bioactive scaffold). This review will provide a comprehensive overview of the (pre)clinical studies on MSC effects in emphysema and discuss the current challenges regarding the optimal use of MSCs for cell-based therapies.
Collapse
Affiliation(s)
- Dennis M L W Kruk
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Irene H Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dirk-Jan Slebos
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nick H Ten Hacken
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
23
|
Machado MN, Mazzoli-Rocha F, Casquilho NV, Maron-Gutierrez T, Ortenzi VH, Morales MM, Fortunato RS, Zin WA. Bone Marrow-Derived Mononuclear Cell Therapy in Papain-Induced Experimental Pulmonary Emphysema. Front Physiol 2018. [PMID: 29515461 PMCID: PMC5826278 DOI: 10.3389/fphys.2018.00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Murine papain-induced emphysema is a model that reproduces many of the features found in patients. Bone marrow-derived mononuclear cells (BMMC) have already been used to repair the alveolar epithelium in respiratory diseases, but not in the papain model. Thus, we hypothesized that BMMC could prevent the pathophysiological processes in papain-induced experimental emphysema. Female BALB/c mice received intratracheal instillation of 50 μL of saline (S groups) or papain (P groups, 10 IU/50 μl of saline) on days 1 and 7 of the experimental protocol. On the 14th day, 2 × 106 BMMC of male BALB/c mice (SC21 and PC21) or saline (SS21 and PS21) were injected by the jugular vein. Analyses were done on days 14 (S14 and P14) and 21 (SS21, PS21, SC21, and PC21) of the protocol. qPCR evaluated the presence of the Y chromosome in the lungs of BMMC recipient animals. Functional residual capacity (FRC), alveolar diameter, cellularity, elastic fiber content, concentrations of TNF-α, IL-1β, IL-6, MIP-2, KC, IFN-γ, apoptosis, mRNA expression of the dual oxidase (DUOX1 and DUOX2), production of H2O2 and DUOX activity were evaluated in lung tissue. We did not detect the Y chromosome in recipients' lungs. FRC, alveolar diameter, polymorphonuclear cells (PMN) and levels of KC, MIP-2, and IFN-γ increased in P14 and PS21 groups; the changes in the latter were reverted by BMMC. TNF-α, IL-1β e IL-6 were similar in all groups. The amount of elastic fibers was smaller in P14 and PS21 than in other groups, and BMMC did not increase it in PC21 mice. PS21 animals showed increased DUOX activity and mRNA expression for DUOX1 and 2. Cell therapy reverted the activity of DUOX and mRNA expression of DUOX1. BMMC reduced mRNA expression of DUOX2. Apoptosis index was elevated in PS21 mice, which was reduced by cell therapy in PC21. Static compliance, viscoelastic component of elastance and pressure to overcome viscoelasticity were increased in P14 and PS21 groups. These changes and the high resistive pressure found on day 21 were reverted by BMMC. In conclusion, BMMC showed potent anti-inflammatory, antiapoptotic, antioxidant, and restorative roles in papain-triggered pulmonary emphysema.
Collapse
Affiliation(s)
- Mariana N Machado
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Mazzoli-Rocha
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália V Casquilho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Victor H Ortenzi
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter A Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Sun Z, Li F, Zhou X, Chung KF, Wang W, Wang J. Stem cell therapies for chronic obstructive pulmonary disease: current status of pre-clinical studies and clinical trials. J Thorac Dis 2018; 10:1084-1098. [PMID: 29607186 DOI: 10.21037/jtd.2018.01.46] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a respiratory disease that has a major impact worldwide. The currently-available drugs mainly focus on relieving the symptoms of COPD patients. Novel regenerative therapeutic approaches have been investigated with the aim of repairing or replacing the injured functional structures of the respiratory system. We summarized the progress made by regenerative therapies for COPD by analyzing results from both pre-clinical studies and completed clinical trials. These approaches include the application of exogenous stem cells or small molecules to stimulate the regeneration by endogenous lung stem/progenitor cells. Exogenous mesenchymal stem cells (MSCs) have been reported to repair the structure and improve the function of the injured respiratory system in COPD models. However, the studies that used MSCs in patients with moderate-to-severe COPD patients did not lead to clear respiratory functional improvements. Exogenous human lung stem cells applied to cryo-injured (CI) lungs of mice have been shown to organize into human-like pulmonary structures, indicating a new property of stem cells that is potentially capable of curing COPD patients. Small molecules like retinoic acid has been shown to lead to regeneration and repair of the damaged lung structures in COPD mouse models probably by activation of endogenous lung stem/progenitor cells. However, retinoic acid or agonists of retinoic acid receptor administered to moderate or severe COPD patients did not improve the density and function of the damaged lung. These novel regenerative approaches have failed in preliminary clinical trials, possibly due to the advanced severity of the disease. Further work should be done to develop the current regenerative approaches for curing patients at different stages of COPD. We suggest that some modifications of the approach in the clinical studies may lead to more successful outcomes of regenerative therapy for COPD.
Collapse
Affiliation(s)
- Zhongwei Sun
- Cellular Biomedicine Group, Shanghai 200233, China.,Cellular Biomedicine Group, Cupertino, CA, USA
| | - Feng Li
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Xin Zhou
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Wen Wang
- Cellular Biomedicine Group, Shanghai 200233, China.,Cellular Biomedicine Group, Cupertino, CA, USA
| | - Jialun Wang
- Cellular Biomedicine Group, Shanghai 200233, China.,Cellular Biomedicine Group, Cupertino, CA, USA
| |
Collapse
|
25
|
Antunes MA, Lapa E Silva JR, Rocco PR. Mesenchymal stromal cell therapy in COPD: from bench to bedside. Int J Chron Obstruct Pulmon Dis 2017; 12:3017-3027. [PMID: 29081655 PMCID: PMC5652911 DOI: 10.2147/copd.s146671] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
COPD is the most frequent chronic respiratory disease and a leading cause of morbidity and mortality. The major risk factor for COPD development is cigarette smoke, and the most efficient treatment for COPD is smoking cessation. However, even after smoking cessation, inflammation, apoptosis, and oxidative stress may persist and continue contributing to disease progression. Although current therapies for COPD (primarily based on anti-inflammatory agents) contribute to the reduction of airway obstruction and minimize COPD exacerbations, none can avoid disease progression or reduce mortality. Within this context, recent advances in mesenchymal stromal cell (MSC) therapy have made this approach a strong candidate for clinical use in the treatment of several pulmonary diseases. MSCs can be readily harvested from diverse tissues and expanded with high efficiency, and have strong immunosuppressive properties. Preclinical studies have demonstrated encouraging outcomes of MSCs therapy for lung disorders, including emphysema. These findings instigated research groups to assess the impact of MSCs in human COPD/emphysema, but clinical results have fallen short of expectations. However, MSCs have demonstrated a good adjuvant role in the clinical scenario. Trials that used MSCs combined with another, primary treatment (eg, endobronchial valves) found that patients derived greater benefit in pulmonary function tests and/or quality of life reports, as well as reductions in systemic markers of inflammation. The present review summarizes and describes the more recent preclinical studies that have been published about MSC therapy for COPD/emphysema and discusses what has already been applied about MSCs treatment in COPD patients in the clinical setting.
Collapse
Affiliation(s)
- Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro (UFRJ), RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - José Roberto Lapa E Silva
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro (UFRJ), RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Eltoukhy HS, Sinha G, Moore CA, Sandiford OA, Rameshwar P. Immune modulation by a cellular network of mesenchymal stem cells and breast cancer cell subsets: Implication for cancer therapy. Cell Immunol 2017; 326:33-41. [PMID: 28779846 DOI: 10.1016/j.cellimm.2017.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023]
Abstract
The immune modulatory properties of mesenchymal stem cells (MSCs) are mostly controlled by the particular microenvironment. Cancer stem cells (CSCs), which can initiate a clinical tumor, have been the subject of intense research. This review article discusses investigative studies of the roles of MSCs on cancer biology including on CSCs, and the potential as drug delivery to tumors. An understanding of how MSCs behave in the tumor microenvironment to facilitate the survival of tumor cells would be crucial to identify drug targets. More importantly, since CSCs survive for decades in dormancy for later resurgence, studies are presented to show how MSCs could be involved in maintaining dormancy. Although the mechanism by which CSCs survive is complex, this article focus on the cellular involvement of MSCs with regard to immune responses. We discuss the immunomodulatory mechanisms of MSC-CSC interaction in the context of therapeutic outcomes in oncology. We also discuss immunotherapy as a potential to circumventing this immune modulation.
Collapse
Affiliation(s)
- Hussam S Eltoukhy
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA
| | - Garima Sinha
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA
| | - Caitlyn A Moore
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA
| | - Oleta A Sandiford
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA.
| |
Collapse
|
27
|
Oh SH, Lee SC, Kim DY, Kim HN, Shin JY, Ye BS, Lee PH. Mesenchymal Stem Cells Stabilize Axonal Transports for Autophagic Clearance of α-Synuclein in Parkinsonian Models. Stem Cells 2017; 35:1934-1947. [PMID: 28580639 DOI: 10.1002/stem.2650] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 05/04/2017] [Accepted: 05/14/2017] [Indexed: 12/25/2022]
Abstract
Genome-wide association studies have identified two loci, SNCA and the microtubule (MT)-associated protein tau, as common risk factors for Parkinson's disease (PD). Specifically, α-synuclein directly destabilizes MT via tau phosphorylation and induces axonal transport deficits that are the primary events leading to an abnormal accumulation of α-synuclein that causes nigral dopaminergic cell loss. In this study, we demonstrated that mesenchymal stem cells (MSCs) could modulate cytoskeletal networks and trafficking to exert neuroprotective properties in wild-type or A53T α-synuclein overexpressing cells and mice. Moreover, we found that eukaryotic elongation factor 1A-2, a soluble factor derived from MSCs, stabilized MT assembly by decreasing calcium/calmodulin-dependent tau phosphorylation and induced autophagolysosome fusion, which was accompanied by an increase in the axonal motor proteins and increased neuronal survival. Our data suggest that MSCs have beneficial effects on axonal transports via MT stability by controlling α-synuclein-induced tau phosphorylation, indicating that MSCs may exert a protective role in the early stages of axonal transport defects in α-synucleinopathies. Stem Cells 2017;35:1934-1947.
Collapse
Affiliation(s)
- Se Hee Oh
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Cheol Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University, Seoul, South Korea
| | - Dong Yeol Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ha Na Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University, Seoul, South Korea
| |
Collapse
|
28
|
Cho RJ, Kim YS, Kim JY, Oh YM. Human adipose-derived mesenchymal stem cell spheroids improve recovery in a mouse model of elastase-induced emphysema. BMB Rep 2017; 50:79-84. [PMID: 27756443 PMCID: PMC5342870 DOI: 10.5483/bmbrep.2017.50.2.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 01/24/2023] Open
Abstract
Emphysema, a pathologic component of the chronic obstructive pulmonary disease, causes irreversible destruction of lung. Many researchers have reported that mesenchymal stem cells can regenerate lung tissue after emphysema. We evaluated if spheroid human adipose-derived mesenchymal stem cells (ASCs) showed greater regenerative effects than dissociated ASCs in mice with elastase-induced emphysema. ASCs were administered via an intrapleural route. Mice injected with spheroid ASCs showed improved regeneration of lung tissues, increased expression of growth factors such as fibroblast growth factor-2 (FGF2) and hepatocyte growth factor (HGF), and a reduction in proteases with an induction of protease inhibitors when compared with mice injected with dissociated ASCs. Our findings indicate that spheroid ASCs show better regeneration of lung tissues than dissociated ACSs in mice with elastase-induced emphysema.
Collapse
Affiliation(s)
- Ryeon Jin Cho
- University of Ulsan College of Medicine, Seoul 05505, Korea
| | - You-Sun Kim
- University of Ulsan College of Medicine, Seoul 05505; Asan Institute for Life Science, Seoul 05505, Korea
| | - Ji-Young Kim
- Asan Institute for Life Science, Seoul 05505, Korea
| | - Yeon-Mok Oh
- University of Ulsan College of Medicine, Seoul 05505; Asan Institute for Life Science, Seoul 05505; Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Disease, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
29
|
Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Exp Mol Med 2017; 49:e284. [PMID: 28082743 PMCID: PMC5291836 DOI: 10.1038/emm.2016.127] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 12/23/2022] Open
Abstract
Cell therapy using stem cells has produced therapeutic benefits in animal models of COPD. Secretory mediators are proposed as one mechanism for stem cell effects because very few stem cells engraft after injection into recipient animals. Recently, nanovesicles that overcome the disadvantages of natural exosomes have been generated artificially from cells. We generated artificial nanovesicles from adipose-derived stem cells (ASCs) using sequential penetration through polycarbonate membranes. ASC-derived artificial nanovesicles displayed a 100 nm-sized spherical shape similar to ASC-derived natural exosomes and expressed both exosomal and stem cell markers. The proliferation rate of lung epithelial cells was increased in cells treated with ASC-derived artificial nanovesicles compared with cells treated with ASC-derived natural exosomes. The lower dose of ASC-derived artificial nanovesicles had similar regenerative capacity compared with a higher dose of ASCs and ASC-derived natural exosomes. In addition, FGF2 levels in the lungs of mice treated with ASC-derived artificial nanovesicles were increased. The uptake of ASC-derived artificial nanovesicles was inhibited by heparin, which is a competitive inhibitor of heparan sulfate proteoglycan that is associated with FGF2 signaling. Taken together, the data indicate that lower doses of ASC-derived artificial nanovesicles may have beneficial effects similar to higher doses of ASCs or ASC-derived natural exosomes in an animal model with emphysema, suggesting that artificial nanovesicles may have economic advantages that warrant future clinical studies.
Collapse
|
30
|
Oh DK, Kim YS, Oh YM. Lung Regeneration Therapy for Chronic Obstructive Pulmonary Disease. Tuberc Respir Dis (Seoul) 2016; 80:1-10. [PMID: 28119741 PMCID: PMC5256352 DOI: 10.4046/trd.2017.80.1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 01/13/2016] [Accepted: 07/05/2016] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a critical condition with high morbidity and mortality. Although several medications are available, there are no definite treatments. However, recent advances in the understanding of stem and progenitor cells in the lung, and molecular changes during re-alveolization after pneumonectomy, have made it possible to envisage the regeneration of damaged lungs. With this background, numerous studies of stem cells and various stimulatory molecules have been undertaken, to try and regenerate destroyed lungs in animal models of COPD. Both the cell and drug therapies show promising results. However, in contrast to the successes in laboratories, no clinical trials have exhibited satisfactory efficacy, although they were generally safe and tolerable. In this article, we review the previous experimental and clinical trials, and summarize the recent advances in lung regeneration therapy for COPD. Furthermore, we discuss the current limitations and future perspectives of this emerging field.
Collapse
Affiliation(s)
- Dong Kyu Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Korea
| | - You-Sun Kim
- Asan Institute for Life Sciences, Seoul, Korea.; University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Korea.; Asan Institute for Life Sciences, Seoul, Korea.; University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD. Sci Rep 2016; 6:38207. [PMID: 27922052 PMCID: PMC5138599 DOI: 10.1038/srep38207] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Bone-marrow derived mesenchymal stromal cells (MSCs) have potent immunomodulatory and tissue reparative properties, which may be beneficial in the treatment of inflammatory diseases such as COPD. This study examined the mechanisms by which human MSCs protect against elastase induced emphysema. Using a novel human relevant pre-clinical model of emphysema the efficacy of human MSC therapy and optimal cell dose were investigated. Protective effects were examined in the lung through histological examination. Further in vivo experiments examined the reparative abilities of MSCs after tissue damage was established and the role played by soluble factors secreted by MSCs. The mechanism of MSC action was determined in using shRNA gene knockdown. Human MSC therapy and MSC conditioned media exerted significant cytoprotective effects when administered early at the onset of the disease. These protective effects were due to significant anti-inflammatory, anti-fibrotic and anti-apoptotic mechanisms, mediated in part through MSC production of hepatocyte growth factor (HGF). When MSC administration was delayed, significant protection of the lung architecture was observed but this was less extensive. MSC cell therapy was more effective than MSC conditioned medium in this emphysema model.
Collapse
|
32
|
Hong Y, Kim YS, Hong SH, Oh YM. Therapeutic effects of adipose-derived stem cells pretreated with pioglitazone in an emphysema mouse model. Exp Mol Med 2016; 48:e266. [PMID: 27765950 PMCID: PMC5099424 DOI: 10.1038/emm.2016.93] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/16/2022] Open
Abstract
There is no therapy currently available that influences the natural history of disease progression in patients with chronic obstructive pulmonary disease (COPD). Although stem cell therapy is considered a potential therapeutic option in COPD, there are no clinical trials proving definitive therapeutic effects in patients with COPD. Recently, it was reported that pioglitazone might potentiate the therapeutic effects of stem cells in patients with heart or liver disease. To test the capacity of pioglitazone pretreatment of stem cells for emphysema repair, we evaluated the therapeutic effects of pioglitazone-pretreated human adipose-derived mesenchymal stem cells (ASCs) on elastase-induced or cigarette smoke-induced emphysema in mice. We also investigated the mechanisms of action of pioglitazone-pretreated ASCs. Pioglitazone-pretreated ASCs had a more potent therapeutic effect than non-pretreated ASCs in the repair of both elastase-induced and smoke-induced emphysema models (mean linear intercept, 78.1±2.5 μm vs 83.2±2.6 μm in elastase models and 75.6±1.4 μm vs 80.5±3.2 μm in smoke models, P<0.05). Furthermore, we showed that pioglitazone-pretreated ASCs increased vascular endothelial growth factor (VEGF) production both in vitro and in mouse lungs in the smoke-induced emphysema model. Pioglitazone-pretreated ASCs may have more potent therapeutic effects than non-pretreated ASCs in emphysema mouse models.
Collapse
Affiliation(s)
- Yoonki Hong
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - You-Sun Kim
- Asan Institute for Life Sciences, Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
33
|
Sherman LS, Shaker M, Mariotti V, Rameshwar P. Mesenchymal stromal/stem cells in drug therapy: New perspective. Cytotherapy 2016; 19:19-27. [PMID: 27765601 DOI: 10.1016/j.jcyt.2016.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
Mesenchymal stromal/stem cells (MSC) have emerged as a class of cells suitable for cellular delivery of nanoparticles, drugs and micro-RNA cargo for targeted treatments such as tumor and other protective mechanisms. The special properties of MSC underscore the current use for various clinical applications. Examples of applications include but are not limited to regenerative medicine, immune disorders and anti-cancer therapies. In recent years, there has been intense research in modifying MSC to achieve targeted and efficient clinical outcomes. This review discusses effects of MSC in an inflammatory microenvironment and then explains how these properties could be important to the overall application of MSC in cell therapy. The article also advises caution in the application of these cells because of their role in tumorigenesis. The review stresses the use of MSC as vehicles for drug delivery and discusses the accompanying challenges, based on the influence of the microenvironment on MSC.
Collapse
Affiliation(s)
- Lauren S Sherman
- Graduate School of Biomedical Sciences, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA; Department of Medicine, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Maran Shaker
- Graduate School of Biomedical Sciences, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Veronica Mariotti
- Department of Medicine, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Pranela Rameshwar
- Graduate School of Biomedical Sciences, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA; Department of Medicine, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
34
|
Kim YS, Kokturk N, Kim JY, Lee SW, Lim J, Choi SJ, Oh W, Oh YM. Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells. Mol Cells 2016; 39:728-733. [PMID: 27802588 PMCID: PMC5104880 DOI: 10.14348/molcells.2016.0095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.
Collapse
Affiliation(s)
- You-Sun Kim
- University of Ulsan College of Medicine, Seoul 05505,
Korea
- Asan Institute for Life Sciences, Seoul 05505,
Korea
| | - Nurdan Kokturk
- Department of Pulmonology, Gazi University, Ankara,
Turkey
| | - Ji-Young Kim
- Asan Institute for Life Sciences, Seoul 05505,
Korea
| | - Sei Won Lee
- University of Ulsan College of Medicine, Seoul 05505,
Korea
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul 05505,
Korea
| | - Jaeyun Lim
- University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul,
Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul,
Korea
| | - Yeon-Mok Oh
- University of Ulsan College of Medicine, Seoul 05505,
Korea
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul 05505,
Korea
| |
Collapse
|
35
|
Schmuck EG, Koch JM, Centanni JM, Hacker TA, Braun RK, Eldridge M, Hei DJ, Hematti P, Raval AN. Biodistribution and Clearance of Human Mesenchymal Stem Cells by Quantitative Three-Dimensional Cryo-Imaging After Intravenous Infusion in a Rat Lung Injury Model. Stem Cells Transl Med 2016; 5:1668-1675. [PMID: 27460855 PMCID: PMC5189648 DOI: 10.5966/sctm.2015-0379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/13/2016] [Indexed: 12/30/2022] Open
Abstract
To study three-dimensional (3D) cryo-imaging to measure cell biodistribution and clearance after intravenous infusion, the authors established a lung injury model in rats. Human mesenchymal stem cells (hMSCs) labeled with QTracker were infused via jugular vein. Organs were cryopreserved, followed by 3D cryo-imaging. At 60 minutes, 82 ± 9.7% of cells were detected, and at day 2, 0.06% of cells were detected. hMSCs were retained primarily in the liver, with fewer detected in lungs and spleen. Cell tracking is a critical component of the safety and efficacy evaluation of therapeutic cell products. To date, cell-tracking modalities have been hampered by poor resolution, low sensitivity, and inability to track cells beyond the shortterm. Three-dimensional (3D) cryo-imaging coregisters fluorescent and bright-field microcopy images and allows for single-cell quantification within a 3D organ volume. We hypothesized that 3D cryo-imaging could be used to measure cell biodistribution and clearance after intravenous infusion in a rat lung injury model compared with normal rats. A bleomycin lung injury model was established in Sprague-Dawley rats (n = 12). Human mesenchymal stem cells (hMSCs) labeled with QTracker655 were infused via jugular vein. After 2, 4, or 8 days, a second dose of hMSCs labeled with QTracker605 was infused, and animals were euthanized after 60, 120, or 240 minutes. Lungs, liver, spleen, heart, kidney, testis, and intestine were cryopreserved, followed by 3D cryo-imaging of each organ. At 60 minutes, 82% ± 9.7% of cells were detected; detection decreased to 60% ± 17% and 66% ± 22% at 120 and 240 minutes, respectively. At day 2, 0.06% of cells were detected, and this level remained constant at days 4 and 8 postinfusion. At 60, 120, and 240 minutes, 99.7% of detected cells were found in the liver, lungs, and spleen, with cells primarily retained in the liver. This is the first study using 3D cryo-imaging to track hMSCs in a rat lung injury model. hMSCs were retained primarily in the liver, with fewer detected in lungs and spleen. Significance Effective bench-to-bedside clinical translation of cellular therapies requires careful understanding of cell fate through tracking. Tracking cells is important to measure cell retention so that delivery methods and cell dose can be optimized and so that biodistribution and clearance can be defined to better understand potential off-target toxicity and redosing strategies. This article demonstrates, for the first time, the use of three-dimensional cryo-imaging for single-cell quantitative tracking of intravenous infused clinical-grade mesenchymal stem cells in a clinically relevant model of lung injury. The important information learned in this study will help guide future clinical and translational stem cell therapies for lung injuries.
Collapse
Affiliation(s)
- Eric G Schmuck
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jill M Koch
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - John M Centanni
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Rudolf K Braun
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Marlowe Eldridge
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Derek J Hei
- Waisman Biomanufacturing, Madison, Wisconsin, USA
| | - Peiman Hematti
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Amish N Raval
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
36
|
Onoshima D, Yukawa H, Baba Y. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev 2015; 95:2-14. [PMID: 26344675 DOI: 10.1016/j.addr.2015.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/31/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022]
Abstract
A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine.
Collapse
|