1
|
Her Y, Yun J, Son HY, Heo W, Kim JI, Moon HG. Potential Perturbations of Critical Cancer-regulatory Genes in Triple-Negative Breast Cancer Cells Within the Humanized Microenvironment of Patient-derived Xenograft Models. J Breast Cancer 2024; 27:37-53. [PMID: 38233337 PMCID: PMC10912577 DOI: 10.4048/jbc.2023.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/29/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
PURPOSE In this study, we aimed to establish humanized patient-derived xenograft (PDX) models for triple-negative breast cancer (TNBC) using cord blood (CB) hematopoietic stem cells (HSCs). Additionally, we attempted to characterize the immune microenvironment of the humanized PDX model to understand the potential implications of altered tumor-immune interactions in the humanized PDX model on the behavior of TNBC cells. METHODS To establish a humanized mouse model, high-purity CD34+ HSCs from CB were transplanted into immunodeficient NOD scid γ mice. Peripheral and intratumoral immune cell compositions of humanized and non-humanized mice were compared. Additionally, RNA sequencing of the tumor tissues was performed to characterize the gene expression features associated with humanization. RESULTS After transplanting the CD34+ HSCs, CD45+ human immune cells appeared within five weeks. A humanized mouse model showed viable human immune cells in the peripheral blood, lymphoid organs, and in the tumor microenvironment. Humanized TNBC PDX models showed varying rates of tumor growth compared to that of non-humanized mice. RNA sequencing of the tumor tissue showed significant alterations in tumor tissues from the humanized models. tumor necrosis factor receptor superfamily member 11B (TNFRSF11B) is a shared downregulated gene in tumor tissues from humanized models. Silencing of TNFRSF11B in TNBC cell lines significantly reduced cell proliferation, migration, and invasion in vitro. Additionally, TNFRSF11B silenced cells showed decreased tumorigenicity and metastatic capacity in vivo. CONCLUSION Humanized PDX models successfully recreated tumor-immune interactions in TNBC. TNFRSF11B, a commonly downregulated gene in humanized PDX models, may play a key role in tumor growth and metastasis. Differential tumor growth rates and gene expression patterns highlighted the complexities of the immune response in the tumor microenvironment of humanized PDX models.
Collapse
Affiliation(s)
- Yujeong Her
- Interdisciplinary Graduate Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jihui Yun
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Youn Son
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Woohang Heo
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeong-Gon Moon
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Wang X, Ding L, Jiang H, Yuan X, Xiang L, Tang C. Synthesis and biological evaluation of novel pteridin-7(8H)-one derivatives as potent CDK2 inhibitors. Bioorg Med Chem Lett 2023; 88:129284. [PMID: 37060933 DOI: 10.1016/j.bmcl.2023.129284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Cyclin-dependent kinase 2 (CDK2) is considered as an important target in the research of antitumor drugs. Taking the CDK2/4/6 inhibitor Ebvaciclib as the positive control and an in-house library compound (23) as the lead compound, three classes of 30 target compounds with pteridin-7(8H)-one as the core structure were designed to establish structure-activity relationships (SAR). In general, SAR of pteridin-7(8H)-one CDK2 inhibitors is systematically described in this paper, resulting in the discovery of two compounds (KII-17 and KII-21) with further research value. After the above compounds were tested for CDK2/4/6 kinase selectivity, we found that compound KII-21 was about 3 and 4 times more selective to CDK2-cyclinE2 than CDK4-cyclinD1 and CDK6-cyclinD3, respectively. This work also provides a reference basis for the subsequent research on CDK2 inhibitors.
Collapse
Affiliation(s)
- Xia Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Lei Ding
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Hongyu Jiang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xin Yuan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Lianghua Xiang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Chunlei Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
3
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M, Baniahmad A, Dilmaghani NA. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 2022; 22:325. [PMID: 36266723 PMCID: PMC9583502 DOI: 10.1186/s12935-022-02747-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) class of serine/threonine kinases has crucial roles in the regulation of cell cycle transition and is mainly involved in the pathogenesis of cancers. The expression of CDKs is controlled by a complex regulatory network comprised of genetic and epigenetic mechanisms, which are dysregulated during the progression of cancer. The abnormal activation of CDKs results in uncontrolled cancer cell proliferation and the induction of cancer stem cell characteristics. The levels of CDKs can be utilized to predict the prognosis and treatment response of cancer patients, and further understanding of the function and underlying mechanisms of CDKs in human tumors would pave the way for future cancer therapies that effectively target CDKs. Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins lead to unrestrained proliferation of cells leading to formation of tumors. A number of treatment modalities have been designed to combat dysregulation of cell cycle through affecting expression or activity of CDKs. However, effective application of these methods in the clinical settings requires recognition of the role of CDKs in the progression of each type of cancer, their partners, their interactions with signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nikolaus Gassler
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Zhang Y, Lu KN, Ding JW, Peng Y, Pan G, Teng LS, Luo DC. Identification of Long Noncoding RNAs Associated With the Clinicopathological Features of Papillary Thyroid Carcinoma Complicated With Hashimoto’s Thyroiditis. Front Oncol 2022; 12:766016. [PMID: 35359359 PMCID: PMC8963332 DOI: 10.3389/fonc.2022.766016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play a significant role in cancer biology. This study aimed to determine the roles of lncRNAs in establishing the differences in clinical features between patients with papillary thyroid carcinoma (PTC) without Hashimoto’s thyroiditis (HT) and patients with PTC and HT. In the present study, we detected the differentially expressed lncRNAs between tumor tissues of patients with PTC with or without HT through lncRNA microarrays. The data were verified and analyzed through qRT-PCR, cell viability, cell cycle and bioinformatics analyses. We found that 1031 lncRNAs and 1338 mRNAs were abnormally expressed in 5 tissue samples of PTC complicated with HT [PTC/HT (+)] compared with 5 samples of PTC without HT [PTC/HT (-)]. Gene Ontology and pathway analyses of the mRNAs suggested that several biological processes and pathways, particularly immune system processes, were induced in the PTC/HT (+) tissues. Twenty lncRNAs were verified in 31 PTC/HT (+) and 64 PTC/HT (-) specimens by qRT-PCR, and the results were consistent with the microarray data. Specifically, ENST00000452578, a downregulated lncRNA in PTC/HT(+), was negatively correlated with the tumor size. Cell viability assays revealed that ENST00000452578 could inhibit cell proliferation. Our results indicate that lncRNAs and mRNAs play an important role in establishing the different clinical characteristics between patients with PTC/HT(+) and patients with PTC/HT(-), and might provide new insights from the perspective of RNA for obtaining a further understanding of the clinical features related to PTC with HT.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai-Ning Lu
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin-Wang Ding
- Department of Head and Neck Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| | - You Peng
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Pan
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Song Teng
- Cancer Center, The First Affiliated Hospital, Zhejiang University school of Medicine, Hangzhou, China
- *Correspondence: Li-Song Teng, ; Ding-Cun Luo,
| | - Ding-Cun Luo
- Department of Oncological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Li-Song Teng, ; Ding-Cun Luo,
| |
Collapse
|
5
|
Liu TT, Li R, Huo C, Li JP, Yao J, Ji XL, Qu YQ. Identification of CDK2-Related Immune Forecast Model and ceRNA in Lung Adenocarcinoma, a Pan-Cancer Analysis. Front Cell Dev Biol 2021; 9:682002. [PMID: 34409029 PMCID: PMC8366777 DOI: 10.3389/fcell.2021.682002] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Tumor microenvironment (TME) plays important roles in different cancers. Our study aimed to identify molecules with significant prognostic values and construct a relevant Nomogram, immune model, competing endogenous RNA (ceRNA) in lung adenocarcinoma (LUAD). Methods “GEO2R,” “limma” R packages were used to identify all differentially expressed mRNAs from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Genes with P-value <0.01, LogFC>2 or <-2 were included for further analyses. The function analysis of 250 overlapping mRNAs was shown by DAVID and Metascape software. By UALCAN, Oncomine and R packages, we explored the expression levels, survival analyses of CDK2 in 33 cancers. “Survival,” “survminer,” “rms” R packages were used to construct a Nomogram model of age, gender, stage, T, M, N. Univariate and multivariate Cox regression were used to establish prognosis-related immune forecast model in LUAD. CeRNA network was constructed by various online databases. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to explore correlations between CDK2 expression and IC50 of anti-tumor drugs. Results A total of 250 differentially expressed genes (DEGs) were identified to participate in many cancer-related pathways, such as activation of immune response, cell adhesion, migration, P13K-AKT signaling pathway. The target molecule CDK2 had prognostic value for the survival of patients in LUAD (P = 5.8e-15). Through Oncomine, TIMER, UALCAN, PrognoScan databases, the expression level of CDK2 in LUAD was higher than normal tissues. Pan-cancer analysis revealed that the expression, stage and survival of CDK2 in 33 cancers, which were statistically significant. Through TISIDB database, we selected 13 immunodepressants, 21 immunostimulants associated with CDK2 and explored 48 genes related to these 34 immunomodulators in cBioProtal database (P < 0.05). Gene Set Enrichment Analysis (GSEA) and Metascape indicated that 49 mRNAs were involved in PUJANA ATM PCC NETWORK (ES = 0.557, P = 0, FDR = 0), SIGNAL TRANSDUCTION (ES = –0.459, P = 0, FDR = 0), immune system process, cell proliferation. Forest map and Nomogram model showed the prognosis of patients with LUAD (Log-Rank = 1.399e-08, Concordance Index = 0.7). Cox regression showed that four mRNAs (SIT1, SNAI3, ASB2, and CDK2) were used to construct the forecast model to predict the prognosis of patients (P < 0.05). LUAD patients were divided into two different risk groups (low and high) had a statistical significance (P = 6.223e-04). By “survival ROC” R package, the total risk score of this prognostic model was AUC = 0.729 (SIT1 = 0.484, SNAI3 = 0.485, ASB2 = 0.267, CDK2 = 0.579). CytoHubba selected ceRNA mechanism medicated by potential biomarkers, 6 lncRNAs-7miRNAs-CDK2. The expression of CDK2 was associated with IC50 of 89 antitumor drugs, and we showed the top 20 drugs with P < 0.05. Conclusion In conclusion, our study identified CDK2 related immune forecast model, Nomogram model, forest map, ceRNA network, IC50 of anti-tumor drugs, to predict the prognosis and guide targeted therapy for LUAD patients.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Chen Huo
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Jian-Ping Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Jie Yao
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, China
| | - Yi-Qing Qu
- Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China.,Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|