1
|
The novel immune-related genes predict the prognosis of patients with hepatocellular carcinoma. Sci Rep 2021; 11:10728. [PMID: 34021184 PMCID: PMC8139963 DOI: 10.1038/s41598-021-89747-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the main causes of cancer deaths globally. Immunotherapy is becoming increasingly important in the cure of advanced HCC. Thus it is essential to identify biomarkers for treatment response and prognosis prediction. We searched publicly available databases and retrieved 465 samples of genes from The Cancer Genome Atlas (TCGA) database and 115 tumor samples from Gene Expression Omnibus (GEO). Meanwhile, we used the ImmPort database to determine the immune-related genes as well. Weighted gene correlation network analysis, Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis were used to identify the key immune related genes (IRGs) which are closely related to prognosis. Gene set enrichment analysis (GSEA) was implemented to explore the difference of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway between Immune high- and low-risk score groups. Finally, we made a prognostic nomogram including Immune-Risk score and other clinicopathologic factors. A total of 318 genes from prognosis related modules were identified through weighted gene co-expression network analysis (WGCNA). 46 genes were strongly linked to prognosis after univariate Cox analysis. We constructed a seven genes prognostic signature which showed powerful prediction ability in both training cohort and testing cohort. 16 significant KEGG pathways were identified between high- and low- risk score groups using GSEA analysis. This study identified and verified seven immune-related prognostic biomarkers for the patients with HCC, which have potential value for immune modulatory and therapeutic targets.
Collapse
|
2
|
Natural Killer-Dendritic Cell Interactions in Liver Cancer: Implications for Immunotherapy. Cancers (Basel) 2021; 13:cancers13092184. [PMID: 34062821 PMCID: PMC8124166 DOI: 10.3390/cancers13092184] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The reciprocal crosstalk between dendritic cells (DCs) and natural killer (NK) cells plays a pivotal role in regulating immune defense against viruses and tumors. The Th-cell polarizing ability, cytokine-producing capacity, chemokine expression, and migration of DCs are regulated by activated NK cells. Conversely, the effector functions including lysis and cytokine production, proliferation, and migration of NK cells are influenced by close interactions with activated DCs. In this review, we explore the impact of DC–NK cell crosstalk and its therapeutic potential in immune control of liver malignances. Abstract Natural killer (NK) and dendritic cells (DCs) are innate immune cells that play a crucial role in anti-tumor immunity. NK cells kill tumor cells through direct cytotoxicity and cytokine secretion. DCs are needed for the activation of adaptive immune responses against tumor cells. Both NK cells and DCs are subdivided in several subsets endowed with specialized effector functions. Crosstalk between NK cells and DCs leads to the reciprocal control of their activation and polarization of immune responses. In this review, we describe the role of NK cells and DCs in liver cancer, focusing on the mechanisms involved in their reciprocal control and activation. In this context, intrahepatic NK cells and DCs present unique immunological features, due to the constant exposure to non-self-circulating antigens. These interactions might play a fundamental role in the pathology of primary liver cancer, namely hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Additionally, the implications of these immune changes are relevant from the perspective of improving the cancer immunotherapy strategies in HCC and ICC patients.
Collapse
|
3
|
Pardee AD, Butterfield LH. Immunotherapy of hepatocellular carcinoma: Unique challenges and clinical opportunities. Oncoimmunology 2021; 1:48-55. [PMID: 22720211 PMCID: PMC3376967 DOI: 10.4161/onci.1.1.18344] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current therapies for advanced hepatocellular carcinoma (HCC) are marginally effective and exacerbate underlying liver disease. The ability of immunotherapy to elicit nontoxic, systemic, long-lived anti-tumor activity makes it particularly well-suited for use in the setting of HCC. While therapeutic benefit has been achieved in early clinical trials, the efficacy of immune-based therapies is limited by several unique properties of HCC, most notably the inherently tolerogenic character of the liver in both healthy and diseased (chronically-infected or tumor-bearing) states. Therapeutic regimens that both counteract these immunosuppressive mechanisms and amplify tumor-specific immunity are expected to profoundly improve clinical outcomes for HCC patients.
Collapse
Affiliation(s)
- Angela D Pardee
- Department of Medicine; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | | |
Collapse
|
4
|
Pardee AD, Butterfield LH. Immunotherapy of hepatocellular carcinoma: Unique challenges and clinical opportunities. Oncoimmunology 2021. [PMID: 22720211 DOI: 10.4161/onc-i.1.1.18344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Current therapies for advanced hepatocellular carcinoma (HCC) are marginally effective and exacerbate underlying liver disease. The ability of immunotherapy to elicit nontoxic, systemic, long-lived anti-tumor activity makes it particularly well-suited for use in the setting of HCC. While therapeutic benefit has been achieved in early clinical trials, the efficacy of immune-based therapies is limited by several unique properties of HCC, most notably the inherently tolerogenic character of the liver in both healthy and diseased (chronically-infected or tumor-bearing) states. Therapeutic regimens that both counteract these immunosuppressive mechanisms and amplify tumor-specific immunity are expected to profoundly improve clinical outcomes for HCC patients.
Collapse
Affiliation(s)
- Angela D Pardee
- Department of Medicine; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | | |
Collapse
|
5
|
Wen FT, Thisted RA, Rowley DA, Schreiber H. A systematic analysis of experimental immunotherapies on tumors differing in size and duration of growth. Oncoimmunology 2021; 1:172-178. [PMID: 22720238 PMCID: PMC3377001 DOI: 10.4161/onci.1.2.18311] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We conducted a systematic analysis to determine the reason for the apparent disparity of success of immunotherapy between clinical and experimental cancers. To do this, we performed a search of PubMed using the keywords “immunotherapy” AND “cancer” for the years of 1980 and 2010. The midspread of experimental tumors used in all the relevant literature published in 2010 were between 0.5–121 mm3 in volume or had grown for four to eight days. Few studies reported large tumors that could be considered representative of clinical tumors, in terms of size and duration of growth. The predominant effect of cancer immunotherapies was slowed or delayed outgrowth. Regression of tumors larger than 200 mm3 was observed only after passive antibody or adoptive T cell therapy. The effectiveness of other types of immunotherapy was generally scattered. By comparison, very few publications retrieved by the 1980 search could meet our selection criteria; all of these used tumors smaller than 100 mm3, and none reported regression. In the entire year of 2010, only 13 used tumors larger than 400 mm3, and nine of these reported tumor regression. Together, these results indicate that most recent studies, using many diverse approaches, still treat small tumors only to report slowed or delayed growth. Nevertheless, a few recent studies indicate effective therapy against large tumors when using passive antibody or adoptive T cell therapy. For the future, we aspire to witness the increased use of experimental studies treating tumors that model clinical cancers in terms of size and duration of growth.
Collapse
Affiliation(s)
- Frank T Wen
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | | | | | | |
Collapse
|
6
|
Abstract
Over the last decade, there has been a considerable progress in the development of cell therapy products for the treatment of liver diseases. The quest to generate well-defined homogenous cell populations with defined mechanism(s) of action has enabled the progression from use of autologous bone marrow stem cells comprising of heterogeneous cell populations to allogeneic cell types such as monocyte-derived macrophages, regulatory T cells, mesenchymal stromal cells, macrophages, etc. There is growing evidence regarding the multiple molecular mechanisms pivotal to various therapeutic effects and hence, careful selection of cell therapy product for the desired putative effects is crucial. In this review, we have presented an overview of the cell therapies that have been developed thus far, with preclinical and clinical evidence for their use in liver disease. Limitations associated with these therapies have also been discussed. Despite the advances made, there remain multiple challenges to overcome before cell therapies can be considered as viable treatment options, and these include larger scale clinical trials, scalable production of cells according to good manufacturing practice standards, pathways for delivery of cell therapy within hospital environments, and costs associated with the production.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Reenam S Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
7
|
Neutrophil-lymphocyte ratio predicts the therapeutic benefit of neoadjuvant transarterial chemoembolization in patients with resectable hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2020; 32:1186-1191. [PMID: 31851089 DOI: 10.1097/meg.0000000000001629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS All published meta-analyses failed to demonstrate that preoperative transarterial chemoembolization improves the clinical outcomes of patients with resectable hepatocellular carcinoma. The present study aimed to investigate the utility of systemic inflammatory cells as a tumor biology marker predicting therapeutic benefit of neoadjuvant transarterial chemoembolization in patients with resectable hepatocellular carcinoma. MATERIALS AND METHODS We retrospectively investigated 441 hepatocellular carcinoma patients who underwent curative resection. Among 441 patients, 73 patients underwent preoperative transarterial chemoembolization, and 368 patients did not. We compared recurrence-free survival and overall survival between transarterial chemoembolization plus sequential resection group and resection only group. We analyzed whether pretreatment neutrophil-lymphocyte ratio demonstrates survival benefit in each groups. RESULTS No significant difference was observed in recurrence-free or overall survival between both groups. In the transarterial chemoembolization plus sequential resection group, the 5-year overall survival in patients with high neutrophil-lymphocyte ratio (≥1.6) was significantly lower than that in patients with low neutrophil-lymphocyte ratio (78.4% and 100%, P = 0.027). High neutrophil-lymphocyte ratio was associated with vascular invasion (P = 0.033). CONCLUSION Neutrophil-lymphocyte ratio can be considered as a predictive factor of long-term survival and used to identify patients with resectable hepatocellular carcinoma who benefit from neoadjuvant transarterial chemoembolization.
Collapse
|
8
|
Yang H, Xuefeng Y, Jianhua X. Systematic review of the roles of interleukins in hepatocellular carcinoma. Clin Chim Acta 2020; 506:33-43. [PMID: 32142718 DOI: 10.1016/j.cca.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with high morbidity and mortality that is often accompanied by immune system disorders and local lymphocyte infiltration. Tumor-infiltrating lymphocytes, cancer cells, stromal cells, and the numerous cytokines they produce, such as chemokines, interferons, tumor necrosis factors, and interleukins, collectively constitute the tumor microenvironment. As a main type of immune effector, interleukin plays opposing roles in regulating tumor cell progression, adhesion, and migration according to its different subtypes. Many reports have concentrated on the roles that interleukins play in HCC, but understanding them systematically remains challenging. This study reviewed the current data to comprehensively summarize the relationships between HCC progression and human interleukin gene families.
Collapse
Affiliation(s)
- Hu Yang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China; Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Yang Xuefeng
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Xiao Jianhua
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
9
|
Shangguan A, Shang N, Figini M, Pan L, Yang J, Ma Q, Hu S, Eresen A, Sun C, Wang B, Velichko Y, Yaghmai V, Zhang Z. Prophylactic dendritic cell vaccination controls pancreatic cancer growth in a mouse model. Cytotherapy 2020; 22:6-15. [PMID: 32005355 DOI: 10.1016/j.jcyt.2019.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths with high recurrence after surgery due to a paucity of effective post-surgical adjuvant treatments. DC vaccines can activate multiple anti-tumor immune responses but have not been explored for post-surgery PDAC recurrence. Intraperitoneal (IP) delivery may allow increased DC vaccine dosage and migration to lymph nodes. Here, we investigated the role of prophylactic DC vaccination controlling PDAC tumor growth with IP delivery as an administration route for DC vaccination. METHODS DC vaccines were generated using ex vivo differentiation and maturation of bone marrow-derived precursors. Twenty mice were divided into four groups (n = 5) and treated with DC vaccines, unpulsed mature DCs, Panc02 lysates or no treatment. After tumor induction, mice underwent three magnetic resonance imaging scans to track tumor growth. Apparent diffusion coefficient (ADC), a quantitative magnetic resonance imaging measurement of tumor microstructure, was calculated. Survival was tracked. Tumor tissue was collected after death and stained with hematoxylin and eosin, Masson's trichrome, terminal deoxynucleotidyl transferase dUTP nick end labeling and anti-CD8 stains for histology. RESULTS DC-vaccinated mice demonstrated stronger anti-tumor cytotoxicity compared with control groups on lactate dehydrogenase assay. DC vaccine mice also demonstrated decreased tumor volume, prolonged survival and increased ΔADC compared with control groups. On histology, the DC vaccine group had increased apoptosis, increased CD8+ T cells and decreased collagen. ΔADC negatively correlated with % collagen in tumor tissues. DISCUSSION Prophylactic DC vaccination may inhibit PDAC tumor growth during recurrence and prolong survival. ΔADC may be a potential imaging biomarker that correlates with tumor histological features.
Collapse
Affiliation(s)
- Anna Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Medical Student Training Program, Northwestern University, Chicago, Illinois, USA
| | - Na Shang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Matteo Figini
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Radiology, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Quanhong Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Su Hu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Chong Sun
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bin Wang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Yuri Velichko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Vahid Yaghmai
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
10
|
Xu W, Liu K, Chen M, Sun JY, McCaughan GW, Lu XJ, Ji J. Immunotherapy for hepatocellular carcinoma: recent advances and future perspectives. Ther Adv Med Oncol 2019; 11:1758835919862692. [PMID: 31384311 PMCID: PMC6651675 DOI: 10.1177/1758835919862692] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
The introduction of immunotherapies has been a major development in the treatment of many advanced cancers, including hepatocellular carcinoma (HCC). We are entering a new era of systemic therapy for advanced HCC associated with an explosion of clinical trial activity. Data from phase I/II studies of checkpoint inhibitors in advanced HCC have been promising, with durable objective response rates of approximately 20% seen (in both first- and second-line settings) and acceptable safety profiles (including immune-mediated hepatitis). Phase III studies evaluating anti-programmed cell death protein 1 (anti-PD-1) and anti-programmed cell death ligand 1 (anti-PD-L1) antibodies compared with sorafenib are already underway. The potential synergistic effects of anti-PD-1/anti-PD-L1 when used in combination with agents against other checkpoint molecules, systemic therapies, as well as conventional surgical and locoregional therapies are also being explored in upcoming clinical trials. Aside from this, other strategies to harness the immune system, including chimeric antigen receptor-engineered T cells, natural killer cell therapies, and peptide vaccines directed against HCC antigens have entered phase I/II studies. Current limitations of immunotherapies and areas of future research include the accurate assessment and prediction of tumor response, overcoming the immunosuppressive effects of a hypoxic microenvironment, and the management of immune-related hepatitis in patients who already have limited liver reserve.
Collapse
Affiliation(s)
- Weiqi Xu
- Department of Hepatic Surgery and Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, China
| | - Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia, Sydney Medical School, The University of Sydney, Australia; and Liver Injury and Cancer Program, The Centenary Institute, Sydney, Australia
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research and Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University; Affiliated Lishui Hospital of Zhejiang University; and The Central Hospital of Zhejiang Lishui, China
| | - Jin-Yu Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, China, and Sparkfire Scientific Research Group, Nanjing Medical University, China
| | - Geoffrey W McCaughan
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia, Sydney Medical School, The University of Sydney, Australia; and Liver Injury and Cancer Program, The Centenary Institute, Sydney, Australia
| | - Xiao-Jie Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 210029 China
| | - Jiansong Ji
- Department of Radiology and Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University; Affiliated Lishui Hospital of Zhejiang University; and The Central Hospital of Zhejiang Lishui, China
| |
Collapse
|
11
|
Ji Y, Liu X, Huang M, Jiang J, Liao YP, Liu Q, Chang CH, Liao H, Lu J, Wang X, Spencer MJ, Meng H. Development of self-assembled multi-arm polyrotaxanes nanocarriers for systemic plasmid delivery in vivo. Biomaterials 2019; 192:416-428. [PMID: 30500723 PMCID: PMC6934403 DOI: 10.1016/j.biomaterials.2018.11.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Polyrotaxane (PRX) is a promising supramolecular carrier for gene delivery. Classic PRX exhibits a linear structure in which the amine-functionalized α-cyclodextrin (CD) is threaded along the entire polyethylene glycol (PEG) backbone. While promising in vitro, the absence of free PEG moieties after CD threading compromised the in vivo implementation, due to the unfavorable pharmacokinetics (PK) and biodistribution profile. Herein, we developed a multi-arm PRX nanocarrier platform, which has been designed for protective nucleic acid encapsulation, augmented biodistribution and PK, and suitable for intravenous (IV) administration. A key design was to introduce cationic CD rings onto a multi-arm PEG backbone in a spatially selective fashion. The optimal structural design was obtained through iterative rounds of experimentation to determine the appropriate type and density of cationic charge on CD ring, the degree of PEGylation, the size and structure of polymer backbone, etc. This allowed us to effectively deliver large size reporter and therapeutic plasmids in cancer mouse models. Post IV injection, we demonstrated that our multi-arm polymer design significantly enhanced circulatory half-life and PK profile compared to the linear PRX. We continued to use the multi-arm PRX to formulate a therapeutic plasmid encoding an immunomodulatory cytokine, IL-12. When tested in a colon cancer syngeneic mouse model with same background, the IL-12 plasmid was protected by the multi-arm PRX and delivered through the tail vein to the tumor site, leading to a significant tumor inhibition effect. Moreover, our delivery system was devoid of major systemic toxicity.
Collapse
Affiliation(s)
- Ying Ji
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Max Huang
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jinhong Jiang
- California NanoSystems Institute, University of California, Los Angeles, 90095 CA, USA
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Qi Liu
- California NanoSystems Institute, University of California, Los Angeles, 90095 CA, USA
| | - Chong Hyun Chang
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Han Liao
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jianqin Lu
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- California NanoSystems Institute, University of California, Los Angeles, 90095 CA, USA
| | - Melissa J Spencer
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, 90095 CA, USA.
| |
Collapse
|
12
|
Abstract
The tumor microenvironment (TME) is defined as the structural and dynamic network of cellular and non-cellular interactions between malignant cells and the surrounding non-malignant matrix. Hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC) are two of the most challenging gastrointestinal malignancies. Despite clinical advancements in understanding tumor biology and growth of the chemotherapeutic industry, there have been no corresponding improvements in prognosis and overall survival of HCC and PDAC. Both of these cancers have a very intimate relationship with their surrounding environment; the TME is thought to actively participate in initiating and sustaining these malignancies. Individual TME constituents play a vital role in chemoresistance and recurrence after surgery and have been established as independent prognostic factors. This review article will highlight the diverse structural components, key signaling pathways, and extracellular matrices of HCC and PDAC and discuss their crosstalk with tumor cells to promote growth and metastasis. The article will also summarize the latest laboratory and clinical research based on therapeutic targets identified within the TME of both HCC and PDAC.
Collapse
Affiliation(s)
- Fathima Kamil
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Julie H Rowe
- Division of Oncology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
13
|
Hochnadel I, Kossatz-Boehlert U, Jedicke N, Lenzen H, Manns MP, Yevsa T. Cancer vaccines and immunotherapeutic approaches in hepatobiliary and pancreatic cancers. Hum Vaccin Immunother 2017; 13:2931-2952. [PMID: 29112462 PMCID: PMC5718787 DOI: 10.1080/21645515.2017.1359362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary and pancreatic cancers along with other gastrointestinal malignancies remain the leading cause of cancer-related deaths worldwide. Strategies developed in the recent years on immunotherapy and cancer vaccines in the setting of primary liver cancer as well as in pancreatic cancer are the scope of this review. Significance of orthotopic and autochthonous animal models which mimic and/or closely reflect human malignancies allowing for a prompt and trustworthy analysis of new therapeutics is underlined. Combinational approaches that on one hand, specifically target a defined cancer-driving pathway, and on the other hand, restore the functions of immune cells, which effector functions are often suppressed by a tumor milieu, are shown to have the strongest perspectives and future directions. Among combinational immunotherapeutic approaches a personalized- and individual cancer case-based therapy is of special importance.
Collapse
Affiliation(s)
- Inga Hochnadel
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Uta Kossatz-Boehlert
- b Institute for Neuroanatomy, Eberhard-Karls University Tuebingen , Tuebingen , Germany
| | - Nils Jedicke
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Henrike Lenzen
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Michael P Manns
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Tetyana Yevsa
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| |
Collapse
|
14
|
Nakamoto Y. Promising new strategies for hepatocellular carcinoma. Hepatol Res 2017; 47:251-265. [PMID: 27558453 DOI: 10.1111/hepr.12795] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. It usually arises based on a background of chronic liver diseases, defined as the hypercarcinogenic state. The current treatment options for HCC ranging from locoregional treatments to chemotherapies, including sorafenib, effectively regulate the limited sizes and numbers of the nodules. However, these treatments remain unsatisfactory because they have insufficient antitumor effects on the large and numerous nodules associated with HCC and because of a high recurrence rate in the surrounding inflamed liver. To develop novel and promising therapies with higher antitumor effects, recent progress in identifying molecular targets and developing immunological procedures for HCC are reviewed. The molecular targets discussed include the intracellular signaling pathways of protein kinase B/mammalian target of rapamycin and RAS/RAF/mitogen-activated protein kinase, Wnt/β-catenin and glutamine synthetase, insulin-like growth factor, signal transducer and activator of transcription 3, nuclear factor-κB and telomerase reverse transcriptase, and c-MET. Immunological studies have focused mainly on target identification, T cells, natural killer cells, dendritic cells, natural killer T cells, and vaccine development.
Collapse
Affiliation(s)
- Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
15
|
Construction, expression, and function of 6B11ScFv–mIL-12, a fusion protein that attacks human ovarian carcinoma. Med Oncol 2015; 32:130. [DOI: 10.1007/s12032-015-0586-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/14/2015] [Indexed: 12/18/2022]
|
16
|
Cuestas ML, Oubiña JR, Mathet VL. Hepatocellular carcinoma and multidrug resistance: Past, present and new challenges for therapy improvement. World J Pharmacol 2015; 4:96-116. [DOI: 10.5497/wjp.v4.i1.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/02/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent form of liver cancer and the third most common cause of cancer-related death in the world. The main risk factor worldwide for this type of malignancy is chronic hepatitis caused by hepatitis B virus and hepatitis C virus infections. Advances in early detection and treatment have improved life expectancy of patients with HCC. However, this disorder remains as a disease with poor prognosis. In fact, epidemiological studies have revealed that there is an 8-mo median survival rate in patients, approximately 20% of whom survive one year while only 5% remain alive after three years. Additionally, HCC is particularly difficult to treat because of its high recurrence rate, and its resistance to conventional chemotherapy is due, among other mechanisms, to several members of the ATP-Binding Cassette protein family involved in drug transport being overexpressed. Fortunately, there is evidence that these patients may benefit from alternative molecular-targeted therapies. This manuscript intends to provide further insight into the etiology and molecular mechanisms related to HCC development and the latest therapeutic approaches to treat this malignancy. The development of effective delivery systems of antitumor drugs able to target the liver parenchyma is also assessed. Finally, the prospects in the development of more efficient drug therapies to overcome multidrug resistance are also examined.
Collapse
|
17
|
Monocyte-derived dendritic cells from cirrhotic patients retain similar capacity for maturation/activation and antigen presentation as those from healthy subjects. Cell Immunol 2015; 295:36-45. [PMID: 25734547 DOI: 10.1016/j.cellimm.2015.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 01/27/2023]
Abstract
UNLABELLED Few studies have investigated the impact of liver cirrhosis on dendritic cell function. The purpose of this study was to compare the activation and antigen-presentation capacity of monocyte-derived dendritic cells (MoDC) from cirrhotic patients (CIR) relative to healthy donors (HD). MoDC from CIR and HD were matured, phenotyped, irradiated and pulsed with 15mer peptides for two hepatocellular carcinoma-related antigens, alphafetoprotein and glypican-3, then co-cultured with autologous T-cells. Expanded T-cells were evaluated by interferon-gamma ELISPOT and intracellular staining. 15 CIR and 7 HD were studied. While CD14+ monocytes from CIR displayed enhanced M2 polarization, under MoDC-polarizing conditions, we identified no significant difference between HD and CIR in maturation-induced upregulation of co-stimulation markers. Furthermore, no significant differences were observed between CIR and HD in subsequent expansion of tumor antigen-specific IFNγ+ T-cells. CONCLUSION MoDCs isolated from cirrhotic individuals retain similar capacity for in vitro activation, maturation and antigen-presentation as those from healthy donors.
Collapse
|
18
|
Bertino G, Demma S, Ardiri A, Proiti M, Malaguarnera G, Bertino N, Malaguarnera M, Malaguarnera M. Hepatocellular carcinoma: novel molecular targets in carcinogenesis for future therapies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:203693. [PMID: 25089265 PMCID: PMC4096380 DOI: 10.1155/2014/203693] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma is one of the most common and lethal malignant tumors worldwide. Over the past 15 years, the incidence of HCC has more than doubled. Due to late diagnosis and/or advanced underlying liver cirrhosis, only limited treatment options with marginal clinical benefit are available in up to 70% of patients. During the last decades, no effective conventional cytotoxic systemic therapy was available contributing to the dismal prognosis in patients with HCC. A better knowledge of molecular hepatocarcinogenesis provides today the opportunity for targeted therapy. MATERIALS AND METHODS A search of the literature was made using cancer literature, the PubMed, Scopus, and Web of Science (WOS) database for the following keywords: "hepatocellular carcinoma," "molecular hepatocarcinogenesis," "targeted therapy," and "immunotherapy." DISCUSSION AND CONCLUSION Treatment decisions are complex and dependent upon tumor staging, presence of portal hypertension, and the underlying degree of liver dysfunction. The knowledge of molecular hepatocarcinogenesis broadened the horizon for patients with advanced HCC. During the last years, several molecular targeted agents have been evaluated in clinical trials in advanced HCC. In the future, new therapeutic options will be represented by a blend of immunotherapy-like vaccines and T-cell modulators, supplemented by molecularly targeted inhibitors of tumor signaling pathways.
Collapse
Affiliation(s)
- Gaetano Bertino
- Hepatology Unit, Department of Medical and Pediatric Sciences, University of Catania, Policlinic, Via Santa Sofia No. 78, 95123 Catania, Italy
| | - Shirin Demma
- Hepatology Unit, Department of Medical and Pediatric Sciences, University of Catania, Policlinic, Via Santa Sofia No. 78, 95123 Catania, Italy
| | - Annalisa Ardiri
- Hepatology Unit, Department of Medical and Pediatric Sciences, University of Catania, Policlinic, Via Santa Sofia No. 78, 95123 Catania, Italy
| | - Maria Proiti
- Hepatology Unit, Department of Medical and Pediatric Sciences, University of Catania, Policlinic, Via Santa Sofia No. 78, 95123 Catania, Italy
| | - Giulia Malaguarnera
- Research Centre “The Great Senescence”, University of Catania, Via Messina No. 829, 95126 Catania, Italy
| | - Nicoletta Bertino
- Faculty of Pharmacy, University of Catania, Viale Andrea Doria No. 6, 95123 Catania, Italy
| | - Michele Malaguarnera
- Research Centre “The Great Senescence”, University of Catania, Via Messina No. 829, 95126 Catania, Italy
| | - Mariano Malaguarnera
- Research Centre “The Great Senescence”, University of Catania, Via Messina No. 829, 95126 Catania, Italy
| |
Collapse
|
19
|
Bertino G, Di Carlo I, Ardiri A, Calvagno GS, Demma S, Malaguarnera G, Bertino N, Malaguarnera M, Toro A, Malaguarnera M. Systemic therapies in hepatocellular carcinoma: present and future. Future Oncol 2014; 9:1533-48. [PMID: 24106903 DOI: 10.2217/fon.13.171] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is now the third leading cause of cancer deathsworldwide and is generally presented at an advanced stage, limiting patients' quality of life. The conventional cytotoxic systemic therapy has proved to be ineffective in HCC, since its induction several decades ago. Today it is possible to use our knowledge of molecular hepatocarcinogenesis to provide a targeted therapy. Sorafenib has demonstrated large improvements in overall survival in HCC. This review describes the molecular mechanisms and potential therapeutic targets, focusing on sorafenib, sunitinib, tivantinib, antiangiogenic agents, and current and future immunotherapies. Thus, it will be necessary in the future to classify HCCs into subgroups according to their genomic and proteomic profiling. The identification of key molecules/receptors/signaling pathways and the assessment of their relevance as potential targets will be the main future challenge potentially influencing response to therapy. Defining molecular targeted agents that are effective for a specific HCC subgroup will hopefully lead to personalized therapy.
Collapse
Affiliation(s)
- Gaetano Bertino
- Hepatology Unit - Department of Medical & Pediatric Science, University of Catania Policlinic, Via S Sofia 78, 95123, Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim JE, Jang MJ, Jin DH, Chung YH, Choi BS, Park GB, Kim YS, Kim S, Hur DY, Hung CF, Kim D. Paclitaxel-exposed ovarian cancer cells induce cancer‑specific CD4+ T cells after doxorubicin exposure through regulation of MyD88 expression. Int J Oncol 2014; 44:1716-26. [PMID: 24573741 DOI: 10.3892/ijo.2014.2308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/04/2014] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecological malignancies due to high chemoresistance to the combination of platinum with taxane. Immunotherapy against ovarian cancer is a promising strategy to develop from animal-based cancer research. We investigated changes in the immunogenicity of paclitaxel-exposed ovarian cancer cells following exposure to other chemotherapeutic drugs. Murine ovarian surface epithelial cells (MOSECs) showed some resistance to paclitaxel, a first-line therapy for ovarian cancer. However, MOSECs pre-exposed to paclitaxel died through apoptosis after incubation with doxorubicin or cisplatin for 2 h. Injected into mice, the paclitaxel-exposed MOSECs post-treated with doxorubicin induced more MOSEC-specific CD4(+) T cells and extended survival for a greater time than MOSECs treated with paclitaxel alone; and bone marrow-derived dendritic cells (BMDCs) expressed higher levels of co-stimulatory molecules and produced IL-12 after co-culture with paclitaxel-exposed MOSECs treated with doxorubicin. We also observed that in paclitaxel-exposed MOSECs treated with doxorubicin, but not cisplatin, the expression of MyD88 and related target proteins decreased compared to paclitaxel-exposed MOSECs only, while in BMDCs co-cultured with these MOSECs the expression of myeloid differentiation primary response gene 88 (MyD88) increased. These findings suggest that paclitaxel pre-exposed cancer cells treated with doxorubicin can induce significant apoptosis and a therapeutic antitumor immune response in advanced ovarian cancer.
Collapse
Affiliation(s)
- Jee-Eun Kim
- Department of Anatomy, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Min Ja Jang
- Department of Anatomy, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Dong-Hoon Jin
- Institute for Innovate Cancer Research, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Byung-Sun Choi
- Department of Preventive Medicine, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Ga Bin Park
- Department of Anatomy, Inje University, College of Medicine, Busan, Republic of Korea
| | - Yeong Seok Kim
- Department of Anatomy, Inje University, College of Medicine, Busan, Republic of Korea
| | - Seonghan Kim
- Department of Anatomy, Inje University, College of Medicine, Busan, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy, Inje University, College of Medicine, Busan, Republic of Korea
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Daejin Kim
- Department of Anatomy, Inje University, College of Medicine, Busan, Republic of Korea
| |
Collapse
|
21
|
Reck M. What future opportunities may immuno-oncology provide for improving the treatment of patients with lung cancer? Ann Oncol 2012; 23 Suppl 8:viii28-34. [DOI: 10.1093/annonc/mds260] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
22
|
Therapeutic effect of intratumoral administration of DCs with conditional expression of combination of different cytokines. Cancer Immunol Immunother 2012; 61:573-9. [PMID: 22223258 DOI: 10.1007/s00262-011-1198-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/23/2011] [Indexed: 12/14/2022]
Abstract
In this study, we tested the effect of intratumoral administration of dendritic cells (DCs) with inducible expression of different cytokines, using the novel Rheoswitch Therapeutic System on the experimental models of renal cell cancer (RENCA) and MethA sarcoma. Intratumoral injection of DCs, engineered to express IL-12, IL-21, or IFN-α, showed potent therapeutic effect against established tumor. This effect was associated with the induction of potent tumor antigen-specific CD8+ T-cell responses, as well as the infiltration of tumors with CD4+ and CD8+ T cells but not with the cytotoxic activity of DCs. Combination of i.t. administration of DCs, producing different cytokines, did not enhance the antitumor effect of therapy with single cytokine. These results indicate that RTS can be a potent tool for conditional topical cytokine delivery, in combination with DC administration. However, combination of different cytokines may not necessarily improve the outcome of treatment.
Collapse
|
23
|
Shirabe K, Motomura T, Muto J, Toshima T, Matono R, Mano Y, Takeishi K, Ijichi H, Harada N, Uchiyama H, Yoshizumi T, Taketomi A, Maehara Y. Tumor-infiltrating lymphocytes and hepatocellular carcinoma: pathology and clinical management. Int J Clin Oncol 2010. [PMID: 20963618 DOI: 10.1007/s10147-010-0131-0.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
The presence of tumor-infiltrating lymphocytes (TILs) in hepatocellular carcinoma (HCC) is relatively rare. The prognosis of patients with HCC and marked TILs is better than that of patients with HCC without TILs. TILs in HCC tissues are mainly T cells, and previous reports suggested that TILs might be important antitumor effector cells. TILs have been extensively analyzed, and subpopulations of CD3(+), CD4(+), and CD8(+) T cells are often present in HCC. Some studies have reported that the percentage of CD8(+) T cells, which might have cytotoxic activity, is decreased in tumors with TILs, as compared with noncancerous tissues. Although the antitumor effects of TILs seem to be impaired in HCCs, the underlying mechanism has remained unclear until quite recently. Pathological and in vitro studies have now shown that regulatory T cells play important roles in the deterioration of the antitumor effects of TILs. The aim of this review is to introduce recent pathological findings for TILs in HCC and to evaluate new therapeutic strategies in this field.
Collapse
Affiliation(s)
- Ken Shirabe
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tumor-infiltrating lymphocytes and hepatocellular carcinoma: pathology and clinical management. Int J Clin Oncol 2010; 15:552-8. [DOI: 10.1007/s10147-010-0131-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Indexed: 02/08/2023]
|