1
|
Fuhrmann B, Jiang J, Mcleod P, Huang X, Balaji S, Arp J, Diao H, Ma S, Peng T, Haig A, Gunaratnam L, Zhang ZX, Jevnikar AM. Inhibition of NK cell cytotoxicity by tubular epithelial cell expression of Clr-b and Clr-f. CURRENT RESEARCH IN IMMUNOLOGY 2024; 5:100081. [PMID: 39113760 PMCID: PMC11303997 DOI: 10.1016/j.crimmu.2024.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
NK cells participate in ischemia reperfusion injury (IRI) and transplant rejection. Endogenous regulatory systems may exist to attenuate NK cell activation and cytotoxicity in IRI associated with kidney transplantation. A greater understanding of NK regulation will provide insights in transplant outcomes and could direct new therapeutic strategies. Kidney tubular epithelial cells (TECs) may negatively regulate NK cell activation by their surface expression of a complex family of C-type lectin-related proteins (Clrs). We have found that Clr-b and Clr-f were expressed by TECs. Clr-b was upregulated by inflammatory cytokines TNFα and IFNγ in vitro. Silencing of both Clr-b and Clr-f expression using siRNA resulted in increased NK cell killing of TECs compared to silencing of either Clr-b or Clr-f alone (p < 0.01) and when compared to control TECs (p < 0.001). NK cells treated in vitro with soluble Clr-b and Clr-f proteins reduced their capacity to kill TECs (p < 0.05). Hence, NK cell cytotoxicity can be inhibited by Clr proteins on the surface of TECs. Our study suggests a synergistic effect of Clr molecules in regulating NK cell function in renal cells and this may represent an important endogenous regulatory system to limit NK cell-mediated organ injury during inflammation.
Collapse
Affiliation(s)
- Benjamin Fuhrmann
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Patrick Mcleod
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Xuyan Huang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Shilpa Balaji
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jaqueline Arp
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Hong Diao
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Shengwu Ma
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Tianqing Peng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Aaron Haig
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Multi-Organ Transplantation Program, London Health Sciences Centre, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | - Zhu-Xu Zhang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Multi-Organ Transplantation Program, London Health Sciences Centre, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | - Anthony M. Jevnikar
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Multi-Organ Transplantation Program, London Health Sciences Centre, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Wang Y, Su H, Zhong J, Zhan Z, Zhao Q, Liu Y, Li S, Wang H, Yang C, Yu L, Tan B, Yin Y. Osteopontin enhances the effect of treadmill training and promotes functional recovery after spinal cord injury. MOLECULAR BIOMEDICINE 2023; 4:44. [PMID: 38015348 PMCID: PMC10684450 DOI: 10.1186/s43556-023-00154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
In this study, we examined the combined impact of osteopontin (OPN) and treadmill training on mice with spinal cord injury (SCI). OPN was overexpressed by injecting AAV9-SPP1-GFP into the sensorimotor cortex, followed by a left incomplete C5 crush injury two weeks later. Mice (Ex or Ex + OPN group) were trained at 50% maximum running speed for 8 weeks. To analyze the effects, we used biotinylated dextran amine (BDA) for tracing the corticospinal tract (CST) and performed Western blotting and immunohistochemical methods to assess the activation of the mammalian target of rapamycin (mTOR). We also examined axonal regeneration and conducted behavioral tests to measure functional recovery. The results demonstrated that treadmill training promoted the expression of neurotrophic factors such as brain-derived neurotrophic factor (BNDF) and insulin-like growth factor I (IGF-1) and activated mTOR signaling. OPN amplified the effect of treadmill training on activating mTOR signaling indicated by upregulated phosphorylation of ribosomal protein S6 kinase (S6). The combination of OPN and exercise further promoted functional recovery and facilitated limited CST axonal regeneration which did not occur with treadmill training and OPN treatment alone. These findings indicate that OPN enhances the effects of treadmill training in the treatment of SCI and offer new therapeutic insights for spinal cord injury.
Collapse
Affiliation(s)
- Yunhang Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Rehabilitation, Zhejiang University School of Medicine Second Affiliated Hospital, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Hong Su
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Juan Zhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zuxiong Zhan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qin Zhao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
3
|
Ma K, Zheng ZR, Meng Y. Natural Killer Cells, as the Rising Point in Tissues, Are Forgotten in the Kidney. Biomolecules 2023; 13:biom13050748. [PMID: 37238618 DOI: 10.3390/biom13050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Natural killer (NK) cells are members of a rapidly expanding family of innate lymphoid cells (ILCs). NK cells play roles in the spleen, periphery, and in many tissues, such as the liver, uterine, lung, adipose, and so on. While the immunological functions of NK cells are well established in these organs, comparatively little is known about NK cells in the kidney. Our understanding of NK cells is rapidly rising, with more and more studies highlighting the functional significance of NK cells in different types of kidney diseases. Recent progress has been made in translating these findings to clinical diseases that occur in the kidney, with indications of subset-specific roles of NK cells in the kidney. For the development of targeted therapeutics to delay kidney disease progression, a better understanding of the NK cell with respect to the mechanisms of kidney diseases is necessary. In order to promote the targeted treatment ability of NK cells in clinical diseases, in this paper we demonstrate the roles that NK cells play in different organs, especially the functions of NK cells in the kidney.
Collapse
Affiliation(s)
- Ke Ma
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Zi-Run Zheng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Yu Meng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
- Department of Nephrology, The Fifth Affiliated Hospital of Jinan University, Heyuan 570000, China
| |
Collapse
|
4
|
Anti-osteopontin therapy leads to improved edema and infarct size in a murine model of ischemic stroke. Sci Rep 2022; 12:20925. [PMID: 36463381 PMCID: PMC9719559 DOI: 10.1038/s41598-022-25245-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
Ischemic stroke is a serious neurological disorder that is associated with dysregulation of the neurovascular unit (NVU) and impairment of the blood-brain barrier (BBB). Paradoxically, reperfusion therapies can aggravate NVU and BBB dysfunction, leading to deleterious consequences in addition to the obvious benefits. Using the recently established EPAM-ia method, we identified osteopontin as a target dysregulated in multiple NVU cell types and demonstrated that osteopontin targeting in the early acute phase post-transient middle cerebral artery occlusion (tMCAO) evolves protective effects. Here, we assessed the time course of osteopontin and CD44 receptor expression in NVU cells and examined cerebroprotective effects of osteopontin targeting in early and late acute phases of ischemic stroke. Expression analysis of osteopontin and CD44 receptor post-tMCAO indicated increased levels of both, from early to late acute phases, which was supported by their co-localization in NVU cells. Combined osteopontin targeting in early and late acute phases with anti-osteopontin antibody resulted in further improvement in BBB recovery and edema reduction compared to targeting only in the early acute phase comprising the reperfusion window. Combined targeting led to reduced infarct volumes, which was not observed for the single early acute phase targeting. The effects of the therapeutic antibody were confirmed both in vitro and in vivo in reducing osteopontin and CD44 expression. Osteopontin targeting at the NVU in early and late acute phases of ischemic stroke improves edema and infarct size in mice, suggesting anti-osteopontin therapy as promising adjunctive treatment to reperfusion therapy.
Collapse
|
5
|
Imaoka Y, Sato K, Ohira M, Imaoka K, Yano T, Nakano R, Tanaka Y, Ohdan H. Acute portal hypertension using portal vein ligation abrogates TRAIL expression of liver-resident NK cells. Hepatol Commun 2022; 6:2551-2564. [PMID: 35726345 PMCID: PMC9426399 DOI: 10.1002/hep4.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
The effects of acute portal hypertension (PHT), which is reported as poor prognostic factors in patients with hepatocellular carcinoma, are not well known on the liver immune system, including natural killer (NK) cells. The aim of this study, therefore, was to investigate how acute PHT influences the functions and characteristics of liver-resident NK (lr-NK) cells using an acute PHT mouse model. Acute PHT decreased the number of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL+ ) lr-NK cells by about 20% and attenuated cytotoxic activity against the Hepa1-6 cell line by about 40%. Among various cytokine, only interleukin-33 (IL-33), which inhibits NK activity, significantly increased after portal vein ligation (PVL). Because lr-NK cells highly expressed ST2/IL-33R, IL-33 co-culture significantly suppressed TRAIL expression on lr-NK cells by about 50%, and IL-33 administration markedly decreased TRAIL expression and cytotoxic activity of lr-NK cells. Furthermore, the TRAIL+ NK cells population was maintained by anti-IL33 antibody or following portosystemic shunt procedure even after PVL. Finally, we demonstrated that IL-33 decreased TRAIL expression in lr-NK cells via AKT-forkhead box O (FoxO) and mitogen-activated protein kinase (MAPK) signaling. Conclusion: This work demonstrates that PHT suppresses the TRAIL+ lr-NK cell population and antitumor activities in the liver. Additionally, Akt-FoxO and MAPK signaling pathways attenuate the TRAIL expression in lt-NK cells via IL-33 receptor in mice.
Collapse
Affiliation(s)
- Yuki Imaoka
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health SciencesHiroshima University 1‐2‐3HiroshimaJapan
| | - Koki Sato
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health SciencesHiroshima University 1‐2‐3HiroshimaJapan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health SciencesHiroshima University 1‐2‐3HiroshimaJapan
- Medical Center for Translational and Clinical Research Hiroshima University HospitalHiroshimaJapan
| | - Kouki Imaoka
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health SciencesHiroshima University 1‐2‐3HiroshimaJapan
| | - Takuya Yano
- Department of SurgeryHiroshima City Hiroshima Citizens HospitalHiroshimaJapan
| | - Ryosuke Nakano
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health SciencesHiroshima University 1‐2‐3HiroshimaJapan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health SciencesHiroshima University 1‐2‐3HiroshimaJapan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health SciencesHiroshima University 1‐2‐3HiroshimaJapan
| |
Collapse
|
6
|
Krupa A, Krupa MM, Pawlak K. Indoleamine 2,3 Dioxygenase 1-The Potential Link between the Innate Immunity and the Ischemia-Reperfusion-Induced Acute Kidney Injury? Int J Mol Sci 2022; 23:6176. [PMID: 35682852 PMCID: PMC9181334 DOI: 10.3390/ijms23116176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is of the most common causes of acute kidney injury (AKI); nevertheless, the mechanisms responsible for both early kidney injury and the reparative phase are not fully recognised. The inflammatory response following ischemia is characterised by the crosstalk between cells belonging to the innate immune system-dendritic cells (DCs), macrophages, neutrophils, natural killer (NK) cells, and renal tubular epithelial cells (RTECs). A tough inflammatory response can damage the renal tissue; it may also have a protective effect leading to the repair after IRI. Indoleamine 2,3 dioxygenase 1 (IDO1), the principal enzyme of the kynurenine pathway (KP), has a broad spectrum of immunological activity from stimulation to immunosuppressive activity in inflamed areas. IDO1 expression occurs in cells of the innate immunity and RTECs during IRI, resulting in local tryptophan (TRP) depletion and generation of kynurenines, and both of these mechanisms contribute to the immunosuppressive effect. Nonetheless, it is unknown if the above mechanism can play a harmful or preventive role in IRI-induced AKI. Despite the scarcity of literature in this field, the current review attempts to present a possible role of IDO1 activation in the regulation of the innate immune system in IRI-induced AKI.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Mikolaj M. Krupa
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| |
Collapse
|
7
|
Osteopontin accumulates in basal deposits of human eyes with age-related macular degeneration and may serve as a biomarker of aging. Mod Pathol 2022; 35:165-176. [PMID: 34389792 PMCID: PMC8786662 DOI: 10.1038/s41379-021-00887-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022]
Abstract
A common clinical phenotype of several neurodegenerative and systemic disorders including Alzheimer's disease and atherosclerosis is the abnormal accumulation of extracellular material, which interferes with routine cellular functions. Similarly, patients with age-related macular degeneration (AMD), the leading cause of vision loss among the aged population, present with extracellular lipid- and protein-filled basal deposits in the back of the eye. While the exact mechanism of growth and formation of these deposits is poorly understood, much has been learned from investigating their composition, providing critical insights into AMD pathogenesis, prevention, and therapeutics. We identified human osteopontin (OPN), a phosphoprotein expressed in a variety of tissues in the body, as a newly discovered component of basal deposits in AMD patients, with a distinctive punctate staining pattern. OPN expression within these lesions, which are associated with AMD disease progression, were found to co-localize with abnormal calcium deposition. Additionally, OPN puncta colocalized with an AMD risk-associated complement pathway protein, but not with apolipoprotein E or vitronectin, two other well-established basal deposit components. Mechanistically, we found that retinal pigment epithelial cells, cells vulnerable in AMD, will secrete OPN into the extracellular space, under oxidative stress conditions, supporting OPN biosynthesis locally within the outer retina. Finally, we report that OPN levels in plasma of aged (non-AMD) human donors were significantly higher than levels in young (non-AMD) donors, but were not significantly different from donors with the different clinical subtypes of AMD. Collectively, our study defines the expression pattern of OPN in the posterior pole as a function of disease, and its local expression as a potential histopathologic biomarker of AMD.
Collapse
|
8
|
Charmetant X, Bachelet T, Déchanet-Merville J, Walzer T, Thaunat O. Innate (and Innate-like) Lymphoid Cells: Emerging Immune Subsets With Multiple Roles Along Transplant Life. Transplantation 2021; 105:e322-e336. [PMID: 33859152 DOI: 10.1097/tp.0000000000003782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transplant immunology is currently largely focused on conventional adaptive immunity, particularly T and B lymphocytes, which have long been considered as the only cells capable of allorecognition. In this vision, except for the initial phase of ischemia/reperfusion, during which the role of innate immune effectors is well established, the latter are largely considered as "passive" players, recruited secondarily to amplify graft destruction processes during rejection. Challenging this prevalent dogma, the recent progresses in basic immunology have unraveled the complexity of the innate immune system and identified different subsets of innate (and innate-like) lymphoid cells. As most of these cells are tissue-resident, they are overrepresented among passenger leukocytes. Beyond their role in ischemia/reperfusion, some of these subsets have been shown to be capable of allorecognition and/or of regulating alloreactive adaptive responses, suggesting that these emerging immune players are actively involved in most of the life phases of the grafts and their recipients. Drawing upon the inventory of the literature, this review synthesizes the current state of knowledge of the role of the different innate (and innate-like) lymphoid cell subsets during ischemia/reperfusion, allorecognition, and graft rejection. How these subsets also contribute to graft tolerance and the protection of chronically immunosuppressed patients against infectious and cancerous complications is also examined.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Thomas Bachelet
- Clinique Saint-Augustin-CTMR, ELSAN, Bordeaux, France
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Thierry Walzer
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
9
|
Osteopontin in Cardiovascular Diseases. Biomolecules 2021; 11:biom11071047. [PMID: 34356671 PMCID: PMC8301767 DOI: 10.3390/biom11071047] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Unprecedented advances in secondary prevention have greatly improved the prognosis of cardiovascular diseases (CVDs); however, CVDs remain a leading cause of death globally. These findings suggest the need to reconsider cardiovascular risk and optimal medical therapy. Numerous studies have shown that inflammation, pro-thrombotic factors, and gene mutations are focused not only on cardiovascular residual risk but also as the next therapeutic target for CVDs. Furthermore, recent clinical trials, such as the Canakinumab Anti-inflammatory Thrombosis Outcomes Study trial, showed the possibility of anti-inflammatory therapy for patients with CVDs. Osteopontin (OPN) is a matricellular protein that mediates diverse biological functions and is involved in a number of pathological states in CVDs. OPN has a two-faced phenotype that is dependent on the pathological state. Acute increases in OPN have protective roles, including wound healing, neovascularization, and amelioration of vascular calcification. By contrast, chronic increases in OPN predict poor prognosis of a major adverse cardiovascular event independent of conventional cardiovascular risk factors. Thus, OPN can be a therapeutic target for CVDs but is not clinically available. In this review, we discuss the role of OPN in the development of CVDs and its potential as a therapeutic target.
Collapse
|
10
|
Lourenço BN, Schmiedt CW, Alabady MS, Stanton JB, Coleman AE, Brown CA, Rissi DR, Brown SA, Tarigo JL. Analysis of genes associated with proinflammatory and profibrotic pathways upregulated in ischemia-induced chronic kidney disease in cats. Am J Vet Res 2021; 82:589-597. [PMID: 34166083 DOI: 10.2460/ajvr.82.7.589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To use RNA sequencing (RNAseq) to characterize renal transcriptional activities of genes associated with proinflammatory and profibrotic pathways in ischemia-induced chronic kidney disease (CKD) in cats. SAMPLES Banked renal tissues from 6 cats with experimentally induced CKD (renal ischemia [RI] group) and 9 healthy cats (control group). PROCEDURES Transcriptome analysis with RNAseq, followed by gene ontology and cluster analyses, were performed on banked tissue samples of the right kidneys (control kidneys) from cats in the control group and of both kidneys from cats in the RI group, in which unilateral (right) RI had been induced 6 months before the cats were euthanized and the ischemic kidneys (IKs) and contralateral nonischemic kidneys (CNIKs) were harvested. Results for the IKs, CNIKs, and control kidneys were compared to identify potential differentially expressed genes and overrepresented proinflammatory and profibrotic pathways. RESULTS Genes from the gene ontology pathways of collagen binding (eg, transforming growth factor-β1), metalloendopeptidase activity (eg, metalloproteinase [MMP]-7, MMP-9, MMP-11, MMP-13, MMP-16, MMP-23B, and MMP-28), chemokine activity, and T-cell migration were overrepresented as upregulated in tissue samples of the IKs versus control kidneys. Genes associated with the extracellular matrix (eg, TIMP-1, fibulin-1, secreted phosphoprotein-1, matrix Gla protein, and connective tissue growth factor) were upregulated in tissue samples from both the IKs and CNIKs, compared with tissues from the control kidneys. CONCLUSIONS AND CLINICAL RELEVANCE Unilateral ischemic injury differentially altered gene expression in both kidneys, compared with control kidneys. Fibulin-1, secreted phosphoprotein-1, and matrix Gla protein may be candidate biomarkers of active kidney injury in cats.
Collapse
Affiliation(s)
- Bianca N Lourenço
- From the Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Chad W Schmiedt
- From the Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Magdy S Alabady
- From the Department of Plant Biology, Franklin College of Arts and Sciences, and Georgia Genomics and Bioinformatics Core, University of Georgia, Athens, GA 30602
| | - James B Stanton
- From the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Amanda E Coleman
- From the Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Cathy A Brown
- From the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Daniel R Rissi
- From the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Scott A Brown
- From the Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- From the Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Jaime L Tarigo
- From the Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| |
Collapse
|
11
|
Xu CX, Zhang YL, Huang XY, Han F, Jin ZK, Tian PX, Dou M. Prediction of acute renal allograft rejection by combined HLA-G 14-bp insertion/deletion genotype analysis and detection of kidney injury molecule-1 and osteopontin in the peripheral blood. Transpl Immunol 2021; 65:101371. [PMID: 33545333 DOI: 10.1016/j.trim.2021.101371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Acute renal rejection usually fails to be diagnosed before the increase in the serum creatinine levels, and the resultant damage to the renal tissues occur in varying degrees. We hypothesized that the combined detection of human leucocyte antigen-G (HLA-G) 14-bp insertion/deletion genotypes and kidney injury molecule-1 (KIM-1) and osteopontin (OPN) levels in serum might facilitate the prediction of acute renal allograft rejections in kidney transplant recipients. METHODS HLA-G 14-bp insertion/deletion genotypes and the serum KIM-1 and OPN levels of 77 kidney transplant recipients were determined and compared before operation and on days 1, 4, and 7 after the operation (32 in acute rejection [AR] group and 45 in stable allograft function [STA] group). These 3 indicators were combined to establish a model for the early prediction of AR. RESULTS The KIM-1 levels in the serum of patients were significantly higher in the AR group than in the STA group. The area under the receiver operator characteristics (ROC) curve (AUC) of KIM-1 for the prediction of rejection was maximized on the1st day after operation, with a sensitivity of 84.4% and a specificity of 86.7%. The OPN levels in the serum of patients were significantly higher in the AR group than in the STA group only before operation and on the 7th day after operation. The AUC of OPN for the prediction of rejection was maximized on 7th day after operation, with a sensitivity of 68.8% and a specificity of 88.9%. The HLA-G + 14-bp allele frequency was also significantly higher in the AR group than in the STA group. The results of these three indicators were converted into a qualitative method. If any two of the three indicators show as positive, it was diagnosed as acute rejection, and it has the highest ability to predict acute rejection with a sensitivity and specificity of 84.38% and 91.11%, respectively. CONCLUSIONS The HLA-G 14-bp insertion/deletion genotype and KIM-1 and OPN levels in the patients' serum were significantly different between the AR and STA groups. The power of predicting acute renal allograft rejection could be improved by combined these three biomarkers.
Collapse
Affiliation(s)
- Cui-Xiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital (Third Affiliated Hospital of Xi'an Jiaotong University), Xi'an, People's Republic of China; Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yu-Lian Zhang
- Department of Geriatric Diseases, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Xiao-Yan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital (Third Affiliated Hospital of Xi'an Jiaotong University), Xi'an, People's Republic of China
| | - Feng Han
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China; Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Zhan-Kui Jin
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital (Third Affiliated Hospital of Xi'an Jiaotong University), Xi'an, People's Republic of China; Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China; Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China.
| | - Pu-Xun Tian
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Meng Dou
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
12
|
Nguyen NZN, Tran VG, Lee S, Kim M, Kang SW, Kim J, Kim HJ, Lee JS, Cho HR, Kwon B. CCR5-mediated Recruitment of NK Cells to the Kidney Is a Critical Step for Host Defense to Systemic Candida albicans Infection. Immune Netw 2020; 20:e49. [PMID: 33425434 PMCID: PMC7779867 DOI: 10.4110/in.2020.20.e49] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
C-C chemokine receptor type 5 (CCR5) regulates the trafficking of various immune cells to sites of infection. In this study, we showed that expression of CCR5 and its ligands was rapidly increased in the kidney after systemic Candida albicans infection, and infected CCR5−/− mice exhibited increased mortality and morbidity, indicating that CCR5 contributes to an effective defense mechanism against systemic C. albicans infection. The susceptibility of CCR5−/− mice to C. albicans infection was due to impaired fungal clearance, which in turn resulted in exacerbated renal inflammation and damage. CCR5-mediated recruitment of NK cells to the kidney in response to C. albicans infection was necessary for the anti-microbial activity of neutrophils, the main fungicidal effector cells. Mechanistically, C. albicans induced expression of IL-23 by CD11c+ dendritic cells (DCs). IL-23 in turn augmented the fungicidal activity of neutrophils through GM-CSF production by NK cells. As GM-CSF potentiated production of IL-23 in response to C. albicans, a positive feedback loop formed between NK cells and DCs seemed to function as an amplification point for host defense. Taken together, our results suggest that CCR5-mediated recruitment of NK cells to the site of fungal infection is an important step that underlies innate resistance to systemic C. albicans infection.
Collapse
Affiliation(s)
- Nu Z N Nguyen
- BK21 Integrated Immunometabolism Education and Research Team, School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Vuvi G Tran
- BK21 Integrated Immunometabolism Education and Research Team, School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Saerom Lee
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Minji Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Sang W Kang
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Juyang Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Hye J Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Jong S Lee
- Division of Nephrology, Department of Internal Medicine, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Hong R Cho
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea.,Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Byungsuk Kwon
- BK21 Integrated Immunometabolism Education and Research Team, School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea.,Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| |
Collapse
|
13
|
Mapping and functional characterization of murine kidney injury molecule-1 proteolytic cleavage site. Mol Cell Biochem 2020; 476:1093-1108. [PMID: 33211259 DOI: 10.1007/s11010-020-03975-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022]
Abstract
Kidney injury molecule-1 (KIM-1), also known as T cell immunoglobulin and mucin domain 1 (TIM-1), is a transmembrane glycoprotein expressed on proximal tubule epithelia during acute kidney injury (AKI). Extracellular domain of KIM-1 undergoes spontaneous and activated ectodomain shedding into urine and blood via metalloproteases. Soluble KIM-1 (blood and urinary) is a reliable clinical biomarker of proximal tubular injury, but the biological significance of shedding remains unknown. The aim of this study was to identify the specific shedding enzyme and the proteolytic cleavage site of murine KIM-1, followed by the characterization of its functional relevance. In this regard, isoleucine (I) I202 was identified as the potential cleavage site. Mutation of isoleucine I202 to glutamine (I202Q) or alanine (I202A) significantly reduced both constitutive and induced KIM-1 shedding and ultimately efferocytosis. It was also uncovered that ADAM10 is the major sheddase that mediates the proteolytic cleavage of murine KIM-1. In addition, ADAM10-induced KIM-1 shedding was required for efficient phagocytic clearance of apoptotic cells. Importantly, the findings that the addition of exogenous shed KIM-1 rescued the phagocytic impairment suggest that shed KIM-1 is capable of modulating efferocytosis of apoptotic bodies and could represent a potential functional role of the soluble ectodomain KIM-1 during AKI.
Collapse
|
14
|
Shirakawa K, Sano M. Sodium-Glucose Co-Transporter 2 Inhibitors Correct Metabolic Maladaptation of Proximal Tubular Epithelial Cells in High-Glucose Conditions. Int J Mol Sci 2020; 21:ijms21207676. [PMID: 33081406 PMCID: PMC7589591 DOI: 10.3390/ijms21207676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023] Open
Abstract
Glucose filtered in the glomerulus is actively reabsorbed by sodium-glucose co-transporter 2 (SGLT2) in proximal tubular epithelial cells (PTEC) and passively returned to the blood via glucose transporter 2 (GLUT2). Healthy PTEC rely primarily on fatty acid beta-oxidation (FAO) for energy. In phase III trials, SGLT2 inhibitors improved outcomes in diabetic kidney disease (DKD). Tubulointerstitial renal fibrosis due to altered metabolic reprogramming of PTEC might be at the root of the pathogenesis of DKD. Here, we investigated the molecular mechanism of SGLT2 inhibitors’ renoprotective effect by examining transcriptional activity of Spp1, which encodes osteopontin, a key mediator of tubulointerstitial renal fibrosis. With primary cultured PTEC from Spp1-enhanced green fluorescent protein knock-in mice, we proved that in high-glucose conditions, increased SGLT2- and GLUT-mediated glucose uptake is causatively involved in aberrant activation of the glycolytic pathway in PTEC, thereby increasing mitochondrial reactive oxygen species (ROS) formation and transcriptional activation of Spp1. FAO activation did not play a direct role in these processes, but elevated expression of a tubular-specific enzyme, myo-inositol oxygenase, was at least partly involved. Notably, canagliflozin blocked overexpression of myo-inositol oxygenase. In conclusion, SGLT2 inhibitors exerted renoprotective effects by inhibiting aberrant glycolytic metabolism and mitochondrial ROS formation in PTEC in high-glucose conditions.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8431, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
15
|
Cantoni C, Granata S, Bruschi M, Spaggiari GM, Candiano G, Zaza G. Recent Advances in the Role of Natural Killer Cells in Acute Kidney Injury. Front Immunol 2020; 11:1484. [PMID: 32903887 PMCID: PMC7438947 DOI: 10.3389/fimmu.2020.01484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023] Open
Abstract
Growing evidence is revealing a central role for natural killer (NK) cells, cytotoxic cells belonging to the broad family of innate lymphoid cells (ILCs), in acute and chronic forms of renal disease. NK cell effector functions include both the recognition and elimination of virus-infected and tumor cells and the capability of sensing pathogens through Toll-like receptor (TLR) engagement. Notably, they also display immune regulatory properties, exerted thanks to their ability to secrete cytokines/chemokines and to establish interactions with different innate and adaptive immune cells. Therefore, because of their multiple functions, NK cells may have a major pathogenic role in acute kidney injury (AKI), and a better understanding of the molecular mechanisms driving NK cell activation in AKI and their downstream interactions with intrinsic renal cells and infiltrating immune cells could help to identify new potential biomarkers and to select clinically valuable novel therapeutic targets. In this review, we discuss the current literature regarding the potential involvement of NK cells in AKI.
Collapse
Affiliation(s)
- Claudia Cantoni
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Grazia Maria Spaggiari
- Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| |
Collapse
|
16
|
Cui N, Luo H, Zhao Y. Protective effect of GYY4137, a water‑soluble hydrogen sulfide‑releasing molecule, on intestinal ischemia‑reperfusion. Mol Med Rep 2020; 21:1633-1639. [PMID: 32016475 DOI: 10.3892/mmr.2020.10961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/16/2019] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to clarify the protective effects of p‑methoxyphenyl morpholino‑phosphinodithioic acid (GYY4137), a water‑soluble hydrogen sulfide‑releasing molecule, on a rat model of intestinal ischemia‑reperfusion (IIR). A total of 40 healthy male Sprague Dawley (SD) rats were randomly divided into four groups (n=10/group): Group A, a sham‑surgery group; Group B, the IIR group; group C, rats with IIR that were administered an abdominal injection of low‑dose GYY4137 (40 mg/kg); and group D, rats with IIR that were administered high‑dose GYY4137 (80 mg/kg). Intestinal histomorphology was observed using hematoxylin and eosin staining, and the concentrations of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. Apoptotic index (AI) was determined by terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling. Reverse transcription‑quantitative PCR analysis was performed to assess the expression levels of intestinal caspase‑3, Bax and Bcl‑2. Notably, disordered arrangement of intestinal villi and mucosal necrosis were detected in group B, which was substantially improved by GYY4137 treatment (groups C and D). MDA content (nmol/mg) was 2.83±0.36, 9.23±0.78, 4.97±0.45 and 3.51±1.05 nmol/mg in groups A, B, C and D, respectively. In addition, SOD concentration (U/mg) was 135.37±3.34, 76.45±1.39, 95.13±1.64 and 115.13±2.54 in groups A, B, C and D, respectively. Furthermore, AI in group B (21.73±1.17%) was markedly higher than that in group A (4.53±0.28%) and in the GYY4137 intervention groups (9.53±0.96 and 6.53±0.76% in groups C and D, respectively). Compared with in group A, the mRNA expression levels of Bax and caspase‑3 were markedly higher in group B (P<0.05), whereas the expression of Bcl‑2 was significantly lower (P<0.05). Furthermore, compared with in group B, Bcl‑2 expression was higher, and Bax and caspase‑3 expression was lower in groups C and D (P<0.05). In conclusion, GYY4137 may alleviate IIR‑induced damage in SD rats.
Collapse
Affiliation(s)
- Ning Cui
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yu Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
17
|
Zhao H, Chen Q, Huang H, Suen KC, Alam A, Cui J, Ciechanowicz S, Ning J, Lu K, Takata M, Gu J, Ma D. Osteopontin mediates necroptosis in lung injury after transplantation of ischaemic renal allografts in rats. Br J Anaesth 2019; 123:519-530. [DOI: 10.1016/j.bja.2019.05.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 11/15/2022] Open
|
18
|
Kasetty G, Bhongir RKV, Papareddy P, Tufvesson E, Stenberg H, Bjermer L, Hultgårdh‐Nilsson A, Herwald H, Egesten A. Osteopontin protects against pneumococcal infection in a murine model of allergic airway inflammation. Allergy 2019; 74:663-674. [PMID: 30362569 DOI: 10.1111/all.13646] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/17/2018] [Accepted: 09/07/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND In atopic asthma, chronic Th2-biased inflammation is associated with an increased risk of pneumococcal infection. The anionic phosphoglycoprotein osteopontin (OPN) is highly expressed in asthma and has been ascribed several roles during inflammation. This study aimed to investigate whether OPN affects inflammation and vulnerability to pneumococcal infection in atopic asthma. METHODS House dust mite (HDM) extract was used to induce allergic airway inflammation in both wild-type (Spp1+/+ ) and OPN knockout (Spp1-/- ) C57BL/6J mice, and the airway was then infected with Streptococcus pneumoniae. Parameters reflecting inflammation, tissue injury, and bacterial burden were measured. In addition, samples from humans with allergic asthma were analyzed. RESULTS Both allergen challenge in individuals with allergic asthma and the intranasal instillation of HDM in mice resulted in increased OPN levels in bronchoalveolar lavage fluid (BALF). More immune cells (including alveolar macrophages, neutrophils, eosinophils, and lymphocytes) and higher levels of proinflammatory cytokines were found in Spp1-/- mice than in Spp1+/+ mice. Moreover, OPN-deficient mice exhibited increased levels of markers reflecting tissue injury. Upon infection with S. pneumoniae, Spp1+/+ mice with allergic airway inflammation had a significantly lower bacterial burden in both BALF and lung tissue than did Spp1-/- mice. Furthermore, Spp1-/- mice had higher levels of cytokines and immune cells in BALF than did Spp1+/+ mice. CONCLUSION OPN reduces inflammation, decreases tissue injury, and reduces bacterial loads during concurrent pneumococcal infection and allergic airway inflammation in a murine model. These findings suggest that OPN significantly affects vulnerability to pneumococcal infection in atopic asthma.
Collapse
Affiliation(s)
- Gopinath Kasetty
- Department of Clinical Sciences Lund Respiratory Medicine & Allergology Skåne University Hospital Lund University Lund Sweden
| | - Ravi K. V. Bhongir
- Department of Clinical Sciences Lund Respiratory Medicine & Allergology Skåne University Hospital Lund University Lund Sweden
| | - Praveen Papareddy
- Infection Medicine Department of Clinical Sciences Lund Lund University Skåne University Hospital Lund Sweden
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund Respiratory Medicine & Allergology Skåne University Hospital Lund University Lund Sweden
| | - Henning Stenberg
- Department of Clinical Sciences Lund Respiratory Medicine & Allergology Skåne University Hospital Lund University Lund Sweden
| | - Leif Bjermer
- Department of Clinical Sciences Lund Respiratory Medicine & Allergology Skåne University Hospital Lund University Lund Sweden
| | | | - Heiko Herwald
- Infection Medicine Department of Clinical Sciences Lund Lund University Skåne University Hospital Lund Sweden
| | - Arne Egesten
- Department of Clinical Sciences Lund Respiratory Medicine & Allergology Skåne University Hospital Lund University Lund Sweden
| |
Collapse
|
19
|
Turner JE, Rickassel C, Healy H, Kassianos AJ. Natural Killer Cells in Kidney Health and Disease. Front Immunol 2019; 10:587. [PMID: 30972076 PMCID: PMC6443628 DOI: 10.3389/fimmu.2019.00587] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/05/2019] [Indexed: 02/02/2023] Open
Abstract
Natural killer (NK) cells are a specialized population of innate lymphocytes that have a major effector function in local immune responses. While their immunological functions in many inflammatory diseases are well established, comparatively little is still known about their roles in kidney homeostasis and disease. Our understanding of kidney NK cells is rapidly evolving, with murine studies highlighting the functional significance of NK cells in acute and chronic forms of renal disease. Recent progress has been made in translating these murine findings to human kidneys, with indications of NK cell subset-specific roles in disease progression in both native and allograft kidneys. Clearly, a better understanding of the molecular mechanisms driving NK cell activation and importantly, their downstream interactions with intrinsic renal cells and infiltrating immune cells is necessary for the development of targeted therapeutics to halt disease progression. In this review, we discuss the properties and potential functions of kidney NK cells.
Collapse
Affiliation(s)
- Jan-Eric Turner
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constantin Rickassel
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helen Healy
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Osteopontin protects against lung injury caused by extracellular histones. Mucosal Immunol 2019; 12:39-50. [PMID: 30115999 DOI: 10.1038/s41385-018-0079-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/04/2023]
Abstract
Extracellular histones are present in the airways because of cell death occurring during inflammation. They promote inflammation and cause tissue damage due to their cationic nature. The anionic phosphoglycoprotein osteopontin (OPN) is expressed at high levels during airway inflammation and has been ascribed both pro- and anti-inflammatory roles. In this study, it was hypothesized that OPN may neutralize the harmful activities of extracellular histones at the airway mucosal surface. In a model of histone-induced acute lung injury, OPN-/- mice showed increased inflammation and tissue injury, and succumbed within 24 h, whereas wild-type mice showed lower degrees of inflammation and no mortality. In lipopolysaccharide-induced acute lung injury, wild-type mice showed less inflammation and tissue injury than OPN-/- mice. In bronchoalveolar lavage fluid from ARDS patients, high levels of OPN and also histone-OPN complexes were detected. In addition, OPN bound to histones with high affinity in vitro, resulting in less cytotoxicity and reduced formation of tissue-damaging neutrophil extracellular traps (NETs). The interaction between OPN and histones was dependent on posttranslational modification of OPN, i.e., phosphorylation. The findings demonstrate a novel role for OPN, modulating the pro-inflammatory and cytotoxic properties of free histones.
Collapse
|
21
|
Irion CI, Parrish K, John-Williams K, Gultekin SH, Shehadeh LA. Osteopontin Expression in Cardiomyocytes Is Increased in Pediatric Patients With Sepsis or Pneumonia. Front Physiol 2018; 9:1779. [PMID: 30618794 PMCID: PMC6295581 DOI: 10.3389/fphys.2018.01779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/23/2018] [Indexed: 11/15/2022] Open
Abstract
Sepsis and pneumonia are major causes of death in the United States, and their pathophysiology includes infection with inflammation and immune dysfunction. Both sepsis and pneumonia cause cardiovascular dysfunction. The expression of Osteopontin (OPN) in cardiomyocytes of patients with sepsis or pneumonia, and its role the induced cardiac dysfunction have not been thoroughly investigated. OPN is a matricellular protein synthesized by multiple diseased tissues and cells including cardiomyocytes. Here, we studied the expression of OPN protein using immunofluorescence in human myocardial autopsy tissues from pediatric and mid age or elderly patients with sepsis and/or pneumonia. Fourteen human myocardial tissues from six pediatric patients and eight mid-age or elderly patients were studied. Immunofluorescence was used to investigate the expression of OPN in paraffin-embedded heart sections co-stained with the myocyte markers Actin Alpha 1 (ACTA1) and Myosin Light Chain 2 (MLC2). A quantitative analysis was performed to determine the number of ACTA1 and MLC2 positive cardiomyocytes that express OPN. The results showed that OPN expression was significantly increased in cardiomyocytes in the hearts from pediatric patients with sepsis and/or pneumonia (N = 3) relative to pediatric patients without sepsis/pneumonia (N = 3), or adult to elderly patients with sepsis/pneumonia (N = 5). Among the older septic hearts, higher levels of cardiomyocyte OPN expression was seen only in conjunction with severe coronary arterial occlusion. This is the first study to document increased OPN expression in cardiomyocytes of pediatric subjects with sepsis or pneumonia. Our findings highlight a potentially important role for OPN in sepsis- or pneumonia-mediated cardiac dysfunction in pediatric patients.
Collapse
Affiliation(s)
- Camila Iansen Irion
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Kiera Parrish
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Krista John-Williams
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Sakir H Gultekin
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
22
|
In the absence of natural killer cell activation donor-specific antibody mediates chronic, but not acute, kidney allograft rejection. Kidney Int 2018; 95:350-362. [PMID: 30503624 DOI: 10.1016/j.kint.2018.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/02/2018] [Accepted: 08/23/2018] [Indexed: 11/20/2022]
Abstract
Antibody mediated rejection (ABMR) is a major barrier to long-term kidney graft survival. Dysregulated donor-specific antibody (DSA) responses are induced in CCR5-deficient mice transplanted with complete major histocompatibility complex (MHC)-mismatched kidney allografts, and natural killer (NK) cells play a critical role in graft injury and rejection. We investigated the consequence of high DSA titers on kidney graft outcomes in the presence or absence of NK cell activation within the graft. Equivalent serum DSA titers were induced in CCR5-deficient B6 recipients of complete MHC mismatched A/J allografts and semi-allogeneic (A/J x B6) F1 kidney grafts, peaking by day 14 post-transplant. A/J allografts were rejected between days 16-28, whereas B6 isografts and semi-allogeneic grafts survived past day 65. On day 7 post-transplant, NK cell infiltration into A/J allografts was composed of distinct populations expressing high and low levels of the surface antigen NK1.1, with NK1.1low cells reflecting the highest level of activation. These NK cell populations increased with time post-transplant. In contrast, NK cell infiltration into semi-allogeneic grafts on day 7 was composed entirely of NK1.1high cells that decreased thereafter. On day 65 post-transplant the semi-allogeneic grafts had severe interstitial fibrosis, glomerulopathy, and arteriopathy, accompanied by expression of pro-fibrogenic genes. These results suggest that NK cells synergize with DSA to cause acute kidney allograft rejection, whereas high DSA titers in the absence of NK cell activation cannot provoke acute ABMR but instead induce the indolent development of interstitial fibrosis and glomerular injury that leads to late graft failure.
Collapse
|
23
|
A review of the role of immune cells in acute kidney injury. Pediatr Nephrol 2018; 33:1629-1639. [PMID: 28801723 DOI: 10.1007/s00467-017-3774-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
Acute kidney injury (AKI) is a systemic disease occurring commonly in patients who are critically ill. Etiologies of AKI can be septic or aseptic (nephrotoxic, or ischemia-reperfusion injury). Recent evidence reveals that innate and adaptive immune responses are involved in mediating damage to renal tubular cells and in recovery from AKI. Dendritic cells, monocytes/macrophages, neutrophils, T lymphocytes, and B lymphocytes all contribute to kidney injury. Conversely, M2 macrophages and regulatory T cells are essential in suppressing inflammation, tissue remodeling and repair following kidney injury. AKI itself confers an increased risk for developing infection owing to increased production and decreased clearance of cytokines, in addition to dysfunction of immune cells themselves. Neutrophils are the predominant cell type rendered dysfunctional by AKI. In this review, we describe the bi-directional interplay between the immune system and AKI and summarize recent developments in this field of research.
Collapse
|
24
|
Osteopontin Blockade Attenuates Renal Injury After Ischemia Reperfusion by Inhibiting NK Cell Infiltration. Shock 2018; 47:52-60. [PMID: 27504800 DOI: 10.1097/shk.0000000000000721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Renal ischemia-reperfusion (RIR) injury is a common occurrence after major surgery and shock, leading to acute kidney injury (AKI). Osteopontin (OPN) is a secreted glycoprotein that acts as a proinflammatory cytokine and activator of T lymphocytes. We hypothesized that blockade of OPN reduces the severity of inflammation and injury in RIR. Renal ischemia was induced in adult C57BL/6 mice via bilateral clamping of renal pedicles for 35 min, followed by reperfusion for 24 h. Anti-OPN antibody (Ab), nonimmunized isotype immunoglobulin G, or normal saline was injected intravenously at the time of reperfusion. Blood and kidneys were collected for analysis. At 24 h after RIR, OPN mRNA and protein levels were significantly increased in renal tissue compared with sham mice. In serum, elevated levels of blood urea nitrogen and creatinine were reduced in anti-OPN Ab-treated mice compared with vehicle. Anti-OPN Ab-treated mice also had decreased mRNA levels of injury markers neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 compared with the vehicle. The histologic architecture and apoptosis of renal tissue were improved in the anti-OPN Ab-treated mice. In renal tissue, inflammatory cytokines interleukin 6 and tumor necrosis factor-α protein levels were reduced in the Ab-treated mice. Natural killer (NK) cell infiltration was decreased after anti-OPN Ab treatment, as was neutrophil infiltration, shown by reduced chemokine expression and Gr1 renal immunohistochemical staining. These findings demonstrate a beneficial role of OPN blockade in RIR associated with NK cell-mediated downregulation of inflammatory cytokines and chemokines. Administration of anti-OPN Ab may therefore serve as an immunomodulatory adjunct in the treatment of RIR-induced AKI.
Collapse
|
25
|
Carvacrol attenuates histopathogic and functional impairments induced by bilateral renal ischemia/reperfusion in rats. Biomed Pharmacother 2018; 98:656-661. [DOI: 10.1016/j.biopha.2017.12.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 01/16/2023] Open
|
26
|
Neutralization of Osteopontin Ameliorates Acute Lung Injury Induced by Intestinal Ischemia-Reperfusion. Shock 2018; 46:431-8. [PMID: 26974422 DOI: 10.1097/shk.0000000000000611] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestinal ischemia-reperfusion (I/R) is associated with acute respiratory distress syndrome. Osteopontin (OPN), a glycoprotein secreted from immune-reactive cells, plays a deleterious role in various inflammatory diseases. Considering OPN as a pro-inflammatory molecule, we hypothesize that the treatment with its neutralizing antibody (anti-OPN Ab) protects mice against intestinal I/R-induced acute lung injury (ALI). Intestinal I/R was induced in mice by superior mesenteric artery occlusion with a vascular clip. After 45 min of occlusion, the clip was removed and anti-OPN Ab (25 μg/mouse) or normal IgG isotype control (25 μg/mouse) was immediately administrated intravenously. Blood, small intestine, and lung tissues were collected at 4 h after reperfusion for various analyses. After intestinal I/R, mRNA and protein levels of OPN were significantly induced in the small intestine, lungs, and blood relative to sham-operated animals. Compared with the IgG control group, treatment of anti-OPN Ab significantly reduced plasma levels of pro-inflammatory cytokine and chemokine (IL-6 and MIP-2) and organ injury markers (AST, ALT, and LDH). The histological architecture of the gut and lung tissues in anti-OPN Ab-treated intestinal I/R-induced mice showed significant improvement versus the IgG control mice. The lung inflammation measured by the levels of IL-6, IL-1β, and MIP-2 was also significantly downregulated in the anti-OPN Ab-treated mice as compared with the IgG control mice. Besides, the lung MPO and neutrophil infiltration in anti-OPN Ab-treated mice showed significant reduction as compared with the IgG control animals. In conclusion, we have demonstrated beneficial outcomes of anti-OPN Ab treatment in protecting against ALI, implicating a novel therapeutic potential in intestinal I/R.
Collapse
|
27
|
Is Osteopontin a Friend or Foe of Cell Apoptosis in Inflammatory Gastrointestinal and Liver Diseases? Int J Mol Sci 2017; 19:ijms19010007. [PMID: 29267211 PMCID: PMC5795959 DOI: 10.3390/ijms19010007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Osteopontin (OPN) is involved in a variety of biological processes, including bone remodeling, innate immunity, acute and chronic inflammation, and cancer. The expression of OPN occurs in various tissues and cells, including intestinal epithelial cells and immune cells such as macrophages, dendritic cells, and T lymphocytes. OPN plays an important role in the efficient development of T helper 1 immune responses and cell survival by inhibiting apoptosis. The association of OPN with apoptosis has been investigated. In this review, we described the role of OPN in inflammatory gastrointestinal and liver diseases, focusing on the association of OPN with apoptosis. OPN changes its association with apoptosis depending on the type of disease and the phase of disease activity, acting as a promoter or a suppressor of inflammation and inflammatory carcinogenesis. It is essential that the roles of OPN in those diseases are elucidated, and treatments based on its mechanism are developed.
Collapse
|
28
|
Hultström M, Becirovic-Agic M, Jönsson S. Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol Genomics 2017; 50:127-141. [PMID: 29341864 DOI: 10.1152/physiolgenomics.00037.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is a syndrome of reduced glomerular filtration rate and urine production caused by a number of different diseases. It is associated with renal tissue damage. This tissue damage can cause tubular atrophy and interstitial fibrosis that leads to nephron loss and progression of chronic kidney disease (CKD). This review describes the in-common mechanisms behind tissue damage in AKI caused by different underlying diseases. Comparing six high-quality microarray studies of renal gene expression after AKI in disease models (gram-negative sepsis, gram-positive sepsis, ischemia-reperfusion, malignant hypertension, rhabdomyolysis, and cisplatin toxicity) identified 5,254 differentially expressed genes in at least one of the AKI models; 66% of genes were found only in one model, showing that there are unique features to AKI depending on the underlying disease. There were in-common features in the form of four genes that were differentially expressed in all six models, 49 in at least five, and 215 were found in common between at least four models. Gene ontology enrichment analysis could be broadly categorized into the injurious processes hypoxia, oxidative stress, and inflammation, as well as the cellular outcomes of cell death and tissue remodeling in the form of epithelial-to-mesenchymal transition. Pathway analysis showed that MYC is a central connection in the network of activated genes in-common to AKI, which suggests that it may be a central regulator of renal gene expression in tissue injury during AKI. The outlining of this molecular network may be useful for understanding progression from AKI to CKD.
Collapse
Affiliation(s)
- Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden.,Anaesthesia and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University , Uppsala , Sweden
| | - Mediha Becirovic-Agic
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Sofia Jönsson
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| |
Collapse
|
29
|
Roberts DD, Kaur S, Isenberg JS. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer. Antioxid Redox Signal 2017; 27:874-911. [PMID: 28712304 PMCID: PMC5653149 DOI: 10.1089/ars.2017.7140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H2S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H2S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. CRITICAL ISSUES Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. FUTURE DIRECTIONS Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.
Collapse
Affiliation(s)
- David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Labrousse-Arias D, Martínez-Ruiz A, Calzada MJ. Hypoxia and Redox Signaling on Extracellular Matrix Remodeling: From Mechanisms to Pathological Implications. Antioxid Redox Signal 2017; 27:802-822. [PMID: 28715969 DOI: 10.1089/ars.2017.7275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. CRITICAL ISSUES Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. FUTURE DIRECTIONS Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.
Collapse
Affiliation(s)
- David Labrousse-Arias
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Antonio Martínez-Ruiz
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Madrid, Spain
| | - María J Calzada
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Departmento de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| |
Collapse
|
31
|
Lee JS. Immunologic Mechanism of Ischemia Reperfusion Injury in Transplantation. KOREAN JOURNAL OF TRANSPLANTATION 2017. [DOI: 10.4285/jkstn.2017.31.3.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jong Soo Lee
- Division of Nephrology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
- Biomedical Research Center, Ulsan, Korea
| |
Collapse
|
32
|
Osteopontin at the Crossroads of Inflammation and Tumor Progression. Mediators Inflamm 2017; 2017:4049098. [PMID: 28769537 PMCID: PMC5523273 DOI: 10.1155/2017/4049098] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/04/2017] [Indexed: 12/13/2022] Open
Abstract
Complex interactions between tumor and host cells regulate systemic tumor dissemination, a process that begins early at the primary tumor site and goes on until tumor cells detach themselves from the tumor mass and start migrating into the blood or lymphatic vessels. Metastatic cells colonize the target organs and are capable of surviving and growing at distant sites. In this context, osteopontin (OPN) appears to be a key determinant of the crosstalk between cancer cells and the host microenvironment, which in turn modulates immune evasion. OPN is overexpressed in several human carcinomas and has been implicated in inflammation, tumor progression, and metastasis. Thus, it represents one of the most attracting targets for cancer therapy. Within the tumor mass, OPN is secreted in various forms either by the tumor itself or by stroma cells, and it can exert either pro- or antitumorigenic effects according to the cell type and tumor microenvironment. Thus, targeting OPN for therapeutic purposes needs to take into account the heterogeneous functions of the multiple OPN forms with regard to cancer formation and progression. In this review, we will describe the role of systemic, tumor-derived, and stroma-derived OPN, highlighting its pivotal role at the crossroads of inflammation and tumor progression.
Collapse
|
33
|
Reichetzeder C, von Websky K, Tsuprykov O, Mohagheghi Samarin A, Falke LG, Dwi Putra SE, Hasan AA, Antonenko V, Curato C, Rippmann J, Klein T, Hocher B. Head-to-head comparison of structurally unrelated dipeptidyl peptidase 4 inhibitors in the setting of renal ischemia reperfusion injury. Br J Pharmacol 2017; 174:2273-2286. [PMID: 28423178 PMCID: PMC5481645 DOI: 10.1111/bph.13822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 01/17/2023] Open
Abstract
Background and Purpose Results regarding protective effects of dipeptidyl peptidase 4 (DPP4) inhibitors in renal ischaemia–reperfusion injury (IRI) are conflicting. Here we have compared structurally unrelated DPP4 inhibitors in a model of renal IRI. Experimental Approach IRI was induced in uninephrectomized male rats by renal artery clamping for 30 min. The sham group was uninephrectomized but not subjected to IRI. DPP4 inhibitors or vehicle were given p.o. once daily on three consecutive days prior to IRI: linagliptin (1.5 mg·kg−1·day−1), vildagliptin (8 mg·kg−1·day−1) and sitagliptin (30 mg·kg−1·day−1). An additional group received sitagliptin until study end (before IRI: 30 mg·kg−1·day−1; after IRI: 15 mg·kg−1·day−1). Key Results Plasma‐active glucagon‐like peptide type 1 (GLP‐1) increased threefold to fourfold in all DPP4 inhibitor groups 24 h after IRI. Plasma cystatin C, a marker of GFR, peaked 48 h after IRI. Compared with the placebo group, DPP4 inhibition did not reduce increased plasma cystatin C levels. DPP4 inhibitors ameliorated histopathologically assessed tubular damage with varying degrees of drug‐specific efficacies. Renal osteopontin expression was uniformly reduced by all DPP4 inhibitors. IRI‐related increased renal cytokine expression was not decreased by DPP4 inhibition. Renal DPP4 activity at study end was significantly inhibited in the linagliptin group, but only numerically reduced in the prolonged/dose‐adjusted sitagliptin group. Active GLP‐1 plasma levels at study end were increased only in the prolonged/dose‐adjusted sitagliptin treatment group. Conclusions and Implications In rats with renal IRI, DPP4 inhibition did not alter plasma cystatin C, a marker of glomerular function, but may protect against tubular damage.
Collapse
Affiliation(s)
- Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karoline von Websky
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oleg Tsuprykov
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institut für Laboratoriumsmedizin, Berlin, Germany
| | - Azadeh Mohagheghi Samarin
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Institute of Aquaculture, University of South Bohemia, České Budějovice, Czech Republic
| | - Luise Gabriele Falke
- Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sulistyo Emantoko Dwi Putra
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - Ahmed Abdallah Hasan
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Viktoriia Antonenko
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Caterina Curato
- German Rheumatism Research Center (DRFZ), Berlin, Germany.,Cluster of Excellence NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Rippmann
- Cardio Metabolic Diseases, Boehringer-Ingelheim Pharma GmbH&Co KG, Biberach, Germany
| | - Thomas Klein
- Cardio Metabolic Diseases, Boehringer-Ingelheim Pharma GmbH&Co KG, Biberach, Germany
| | - Berthold Hocher
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Institut für Laboratoriumsmedizin, Berlin, Germany.,Department of Basic Medicine, Medical College of Hunan Normal University, Changsha, China
| |
Collapse
|
34
|
Law BMP, Wilkinson R, Wang X, Kildey K, Lindner M, Rist MJ, Beagley K, Healy H, Kassianos AJ. Interferon-γ production by tubulointerstitial human CD56 bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression. Kidney Int 2017; 92:79-88. [PMID: 28396119 DOI: 10.1016/j.kint.2017.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 01/04/2023]
Abstract
Natural killer (NK) cells are a population of lymphoid cells that play a significant role in mediating innate immune responses. Studies in mice suggest a pathological role for NK cells in models of kidney disease. In this study, we characterized the NK cell subsets present in native kidneys of patients with tubulointerstitial fibrosis, the pathological hallmark of chronic kidney disease. Significantly higher numbers of total NK cells (CD3-CD56+) were detected in renal biopsies with tubulointerstitial fibrosis compared with diseased biopsies without fibrosis and healthy kidney tissue using multi-color flow cytometry. At a subset level, both the CD56dim NK cell subset and particularly the CD56bright NK cell subset were elevated in fibrotic kidney tissue. However, only CD56bright NK cells significantly correlated with the loss of kidney function. Expression of the tissue-retention and -activation molecule CD69 on CD56bright NK cells was significantly increased in fibrotic biopsy specimens compared with non-fibrotic kidney tissue, indicative of a pathogenic phenotype. Further flow cytometric phenotyping revealed selective co-expression of activating receptor CD335 (NKp46) and differentiation marker CD117 (c-kit) on CD56bright NK cells. Multi-color immunofluorescent staining of fibrotic kidney tissue localized the accumulation of NK cells within the tubulointerstitium, with CD56bright NK cells (NKp46+ CD117+) identified as the source of pro-inflammatory cytokine interferon-γ within the NK cell compartment. Thus, activated interferon-γ-producing CD56bright NK cells are positioned to play a key role in the fibrotic process and progression to chronic kidney disease.
Collapse
Affiliation(s)
- Becker M P Law
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ray Wilkinson
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; University of Queensland Medical School, University of Queensland, Brisbane, Queensland, Australia
| | - Xiangju Wang
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Katrina Kildey
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Mae Lindner
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Melissa J Rist
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Kenneth Beagley
- Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Helen Healy
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; University of Queensland Medical School, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
35
|
Glazunova AM, Arutyunova MS, Tarasov EV, Nikankina LV, Ilyin AV, Shamkhalova MS, Shestakova MV, Moysyuk YG. [Evaluation of markers for renal graft dysfunction in patients with type 1 diabetes mellitus after kidney transplantation and simultaneous pancreas-kidney transplantation]. TERAPEVT ARKH 2016; 88:25-34. [PMID: 27801416 DOI: 10.17116/terarkh2016881025-34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIM To study the markers of renal graft dysfunction in patients with type 1 diabetes mellitus (T1DM) after kidney transplantation (KT) and simultaneous pancreas-kidney transplantation (SPKT). SUBJECTS AND METHODS The investigation enrolled 20 patients after successful SPKT and 41 patients after KT (of them 21 received continuous subcutaneous insulin infusion with an insulin doser; 20 had multiple insulin injections). The periods after KT and SPKT at patient inclusion were 8 (7; 8) and 11 (8; 18) months, respectively. A control group comprised 15 patients with T1DM without diabetic nephropathy. The patients were matched for gender, age, and T1DM duration. At a 9-month follow-up, the main biomarkers of kidney graft dysfunction were identified using the standard kits: Cystatin C (Cys C; serum; urine), NGAL, KIM-1, Podocin, Nephrin, IL-18, MMP-9 (urine), TGF-β1, VEGF-A, and Osteopontin (OPN; serum). Fasting blood was taken; a morning urinary portion was examined. RESULTS The posttransplantation glomerular filtration rate (GFR) in the patients corresponded to Stage C2; albuminuria did to Category A1 chronic kidney disease. Despite successful SPKT in the group of patients with T1DM, as in that of patients after isolated KT, there was a statistically significant increase in the level of kidney dysfunction markers (Cys C, NGAL, Podocin, and OPN) versus the control group regardless of the compensation for glucose metabolism. compensation. It was found that the level of Cys C was high and correlated negatively with GFR (r=-0.36; p<0.05) and positively with the level of albuminuria (r=0.40; p<0.05). There was also a direct correlation of urinary podocin concentrations with blood creatinine levels (r=0.35; p<0.05) and that of NGAL with albuminuria (r=0.35; p<0.05) in recipients after transplantation. CONCLUSION The high levels of biomarkers for kidney graft dysfunction in the examinees (including subjects after SPKT) reflect the persistence of graft microstructural injuries in clinically stable function.
Collapse
Affiliation(s)
- A M Glazunova
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - M S Arutyunova
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - E V Tarasov
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - L V Nikankina
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - A V Ilyin
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - M Sh Shamkhalova
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - M V Shestakova
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia
| | - Ya G Moysyuk
- Acad. V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
36
|
Danzaki K, Kanayama M, Alcazar O, Shinohara ML. Osteopontin has a protective role in prostate tumor development in mice. Eur J Immunol 2016; 46:2669-2678. [PMID: 27601131 DOI: 10.1002/eji.201646391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/12/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022]
Abstract
Osteopontin (OPN) is a protein, generally considered to play a pro-tumorigenic role, whereas several reports have demonstrated the anti-tumorigenic function of OPN during tumor development. These opposing anti- and pro-tumorigenic functions are not fully understood. Here, we report that host-derived OPN plays an anti-tumorigenic role in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model and a TRAMP tumor transplant model. Tumor suppression mediated by OPN in Rag2-/- mice suggests that OPN is dispensable in the adaptive immune response. We found that host-derived OPN enhanced infiltration of natural killer (NK) cells into TRAMP tumors. The requirement of OPN in NK cell migration towards TRAMP cells was confirmed by an ex vivo cell migration assay. In contrast to TRAMP cells, in vivo B16 tumor development was not inhibited by OPN, and B16 tumors did not show OPN-mediated cell recruitment. It is possible that low levels of chemokine expression by B16 cells do not allow OPN to enhance immune cell recruitment. In addition to demonstrating the anti-tumorigenic role of OPN in TRAMP tumor development, this study also suggests that the contribution of OPN to tumor development depends on the type of tumor as well as the source and isoform of OPN.
Collapse
Affiliation(s)
- Keiko Danzaki
- Department of Immunology, Duke University Medical School, Durham, NC, 27710, USA
| | - Masashi Kanayama
- Department of Immunology, Duke University Medical School, Durham, NC, 27710, USA
| | - Oscar Alcazar
- Department of Immunology, Duke University Medical School, Durham, NC, 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical School, Durham, NC, 27710, USA. .,Department of Molecular Genetics and Microbiology, Duke University Medical School, Durham, NC, 27710, USA.
| |
Collapse
|
37
|
Sakr HF, Abbas AM, Bin-Jaliah I. Modulation of the neurological and vascular complications by grape seed extract in a rat model of spinal cord ischemia–reperfusion injury by downregulation of both osteopontin and cyclooxygenase-2. Can J Physiol Pharmacol 2016; 94:719-27. [DOI: 10.1139/cjpp-2015-0498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we investigated the effects of grape seed extract (GSE) on the expression of osteopontin (OPN) and cyclooxygenase-2 (COX-2) in a rat model of spinal cord ischemia–reperfusion injury (SC-IRI). Fifty male rats were divided into 5 groups: control (CON); control + GSE (CON + GSE) (received GSE for 28 days); sham operated (Sham); IRI; and IRI + GSE. SC-IRI was induced by clamping the aorta just above the bifurcation for 45 min, and then the clamp was released for 48 h for reperfusion. IRI + GSE group received GSE for 28 days before SC-IRI. Sensory, motor, and placing/stepping reflex assessment was performed. Prostaglandin E2 (PGE2), thiobarbituric acid reactive substances (TBARs), and total antioxidant capacity (TAC) were measured in spinal cord homogenate. Immunohistochemical examination of the spinal cord for OPN and COX-2 were carried out. SC-IRI resulted in significant increase in plasma nitrite/nitrate level and spinal cord homogenate levels of TBARs and PGE2, and OPN and COX-2 expression with significant decrease in TAC. GSE improves the sensory and motor functions through decreasing OPN and COX-2 expression with reduction of oxidative stress parameters. We conclude a neuroprotective effect of GSE in SC-IRI through downregulating COX-2 and OPN expression plus its antioxidants effects.
Collapse
Affiliation(s)
- Hussein F. Sakr
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Physiology Department, College of Medicine, King Khalid University, KSA
| | - Amr M. Abbas
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ismaeel Bin-Jaliah
- Medical Physiology Department, College of Medicine, King Khalid University, KSA
| |
Collapse
|
38
|
Wang O, Liang G, McAllister TA, Plastow G, Stanford K, Selinger B, Guan LL. Comparative Transcriptomic Analysis of Rectal Tissue from Beef Steers Revealed Reduced Host Immunity in Escherichia coli O157:H7 Super-Shedders. PLoS One 2016; 11:e0151284. [PMID: 26959367 PMCID: PMC4784738 DOI: 10.1371/journal.pone.0151284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/25/2016] [Indexed: 12/21/2022] Open
Abstract
Super-shedder cattle are a major disseminator of E. coli O157:H7 into the environment, and the terminal rectum has been proposed as the primary E. coli O157:H7 colonization site. This study aimed to identify host factors that are associated with the super-shedding process by comparing transcriptomic profiles in rectal tissue collected from 5 super-shedder cattle and 4 non-shedder cattle using RNA-Seq. In total, 17,859 ± 354 genes and 399 ± 16 miRNAs were detected, and 11,773 genes were expressed in all animals. Fifty-eight differentially expressed (DE) genes (false discovery rate < 0.05) including 11 up-regulated and 47 down-regulated (log 2 (fold change) ranged from -5.5 to 4.2), and 2 up-regulated DE miRNAs (log 2 (fold change) = 2.1 and 2.5, respectively) were identified in super-shedders compared to non-shedders. Functional analysis of DE genes revealed that 31 down-regulated genes were potentially associated with reduced innate and adaptive immune functions in super-shedders, including 13 lymphocytes membrane receptors, 3 transcription factors and 5 cytokines, suggesting the decreased key host immune functions in the rectal tissue of super-shedders, including decreased quantity and migration of immune cells such as lymphocytes, neutrophils and dendritic cells. The up-regulation of bta-miR-29d-3p and the down regulation of its predicted target gene, regulator of G-protein signaling 13, suggested a potential regulatory role of this miRNA in decreased migration of lymphocytes in super-shedders. Based on these findings, the rectal tissue of super-shedders may inherently exhibit less effective innate and adaptive immune protection. Further study is required to confirm if such effect on host immunity is due to the nature of the host itself or due to actions mediated by E. coli O157:H7.
Collapse
Affiliation(s)
- Ou Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Guanxiang Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB, Canada
| | - Brent Selinger
- Biological Sciences Department, University of Lethbridge, Lethbridge, AB, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
39
|
dos Santos DC, Campos EF, Saraiva Câmara NO, David DSR, Malheiros DMAC. Compartment-specific expression of natural killer cell markers in renal transplantation: immune profile in acute rejection. Transpl Int 2015; 29:443-52. [DOI: 10.1111/tri.12726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/08/2015] [Accepted: 11/19/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Daniela Cristina dos Santos
- Department of Pathology; Botucatu Medical School; State University of São Paulo; São Paulo Brazil
- Department of Pathology; Faculty of Medicine; University of São Paulo; São Paulo Brazil
| | - Erika Fernandes Campos
- Department of Immunology; Institute of Biomedical Sciences; University of São Paulo State; São Paulo Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology; Institute of Biomedical Sciences; University of São Paulo State; São Paulo Brazil
| | | | | |
Collapse
|
40
|
Victorino F, Sojka DK, Brodsky KS, McNamee EN, Masterson JC, Homann D, Yokoyama WM, Eltzschig HK, Clambey ET. Tissue-Resident NK Cells Mediate Ischemic Kidney Injury and Are Not Depleted by Anti-Asialo-GM1 Antibody. THE JOURNAL OF IMMUNOLOGY 2015; 195:4973-85. [PMID: 26453755 DOI: 10.4049/jimmunol.1500651] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/15/2015] [Indexed: 01/01/2023]
Abstract
NK cells are innate lymphoid cells important for immune surveillance, identifying and responding to stress, infection, and/or transformation. Whereas conventional NK (cNK) cells circulate systemically, many NK cells reside in tissues where they appear to be poised to locally regulate tissue function. In the present study, we tested the contribution of tissue-resident NK (trNK) cells to tissue homeostasis by studying ischemic injury in the mouse kidney. Parabiosis experiments demonstrate that the kidney contains a significant fraction of trNK cells under homeostatic conditions. Kidney trNK cells developed independent of NFIL3 and T-bet, and they expressed a distinct cell surface phenotype as compared with cNK cells. Among these, trNK cells had reduced asialo-GM1 (AsGM1) expression relative to cNK cells, a phenotype observed in trNK cells across multiple organs and mouse strains. Strikingly, anti-AsGM1 Ab treatment, commonly used as an NK cell-depleting regimen, resulted in a robust and selective depletion of cNKs, leaving trNKs largely intact. Using this differential depletion, we tested the relative contribution of cNK and trNK cells in ischemic kidney injury. Whereas anti-NK1.1 Ab effectively depleted both trNK and cNK cells and protected against ischemic/reperfusion injury, anti-AsGM1 Ab preferentially depleted cNK cells and failed to protect against injury. These data demonstrate unanticipated specificity of anti-AsGM1 Ab depletion on NK cell subsets and reveal a new approach to study the contributions of cNK and trNK cells in vivo. In total, these data demonstrate that trNK cells play a key role in modulating local responses to ischemic tissue injury in the kidney and potentially other organs.
Collapse
Affiliation(s)
- Francisco Victorino
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045; Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045
| | - Dorothy K Sojka
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelley S Brodsky
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Eoin N McNamee
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Joanne C Masterson
- Gastrointestinal Eosinophilic Diseases Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045; Digestive Health Institute, Children's Hospital Colorado, Aurora, CO 80045; and
| | - Dirk Homann
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Wayne M Yokoyama
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Eric T Clambey
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045;
| |
Collapse
|
41
|
Song H, Kim Y, Park G, Kim YS, Kim S, Lee HK, Chung WY, Park SJ, Han SY, Cho D, Hur D. Transforming growth factor-β1 regulates human renal proximal tubular epithelial cell susceptibility to natural killer cells via modulation of the NKG2D ligands. Int J Mol Med 2015; 36:1180-8. [PMID: 26311146 DOI: 10.3892/ijmm.2015.2317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/13/2015] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-β (TGF-β) has a significant role in the response to injury and tissue repair, and it has been detected in various cell types. However, the mechanism by which it regulates the response to ischemia‑reperfusion injury (IRI) and manipulates natural killer (NK) cells is not well understood. In the present study, TGF‑β modulated NK cell function, thereby promoting recovery from renal IRI. Human renal proximal tubular epithelial cells (HK‑2) treated with TGF‑β exhibited increased surface and intracellular expression of the NK group 2 member D (NKG2D) ligand MICA. This increased surface expression of MICA inhibited NK cell cytotoxicity to the HK‑2 cells. In addition, an enzyme‑linked immunosorbent assay revealed that TGF‑β treatment evidently increased the amount of soluble MICA released into the culture supernatant from HK‑2 cells. Taken together, these findings suggest that TGF‑β‑induced release of soluble MICA leads to downregulation of NKG2D, thereby preventing NK cell‑mediated cytotoxicity toward renal proximal tubular epithelial cells in renal IRI, which in turn improves the survival of these cells.
Collapse
Affiliation(s)
- Hyunkeun Song
- Department of Microbiology and Immunology, Laboratory for Medical Oncology, Inje University College of Medicine, Busan 614‑735, Republic of Korea
| | - Yeonye Kim
- Department of Microbiology and Immunology, Laboratory for Medical Oncology, Inje University College of Medicine, Busan 614‑735, Republic of Korea
| | - Gabin Park
- Department of Anatomy, Inje University College of Medicine, Busan 614‑735, Republic of Korea
| | - Yeong-Seok Kim
- Department of Anatomy, Inje University College of Medicine, Busan 614‑735, Republic of Korea
| | - Seonghan Kim
- Department of Anatomy, Inje University College of Medicine, Busan 614‑735, Republic of Korea
| | - Hyun-Kyung Lee
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan 614‑735, Republic of Korea
| | - Woo Yeong Chung
- Department of Pediatrics, Inje University Busan Paik Hospital, Busan 614‑735, Republic of Korea
| | - Seok Ju Park
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan 614‑735, Republic of Korea
| | - Sang-Youb Han
- Department of Internal Medicine, Inje University Ilsan-Paik Hospital, Goyang, Gyeonggi 411‑706, Republic of Korea
| | - Daeho Cho
- Department of Life Science, Sookmyung Women's University, Yongsan-ku, Seoul 140-742, Republic of Korea
| | - Daeyoung Hur
- Department of Anatomy, Inje University College of Medicine, Busan 614‑735, Republic of Korea
| |
Collapse
|
42
|
Wang L, Chen H, Liu XH, Chen ZY, Weng XD, Qiu T, Liu L. The protective effect of ozone oxidative preconditioning against hypoxia/reoxygenation injury in rat kidney cells. Ren Fail 2015; 36:1449-54. [PMID: 25246346 DOI: 10.3109/0886022x.2014.950934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract Ozone (O3) has been viewed as a novel treatment for different diseases in these years and oxidative stress and apoptosis play a key role in the pathogenesis of kidney diseases including renal ischemia and reperfusion (I/R). In the present study, we investigated the role of ozone oxidative preconditioning (OzoneOP) in attenuating oxidative stress and apoptosis in a hypoxia/reoxygenation (H/R) injury model using rat kidney cells. We induced H/R injury in kidney cells treated with or without OzoneOP. Oxidative stress parameters such as superoxide dismutase (SOD), malondialdehyde (MDA) and lactate dehydrogenase (LDH) were determined, as well as some apoptotic proteins. We observed that oxidative stress and apoptosis were increased in H/R group compared to OzoneOP group; however, these changes were significantly decreased by the treatment with OzoneOP. We concluded that OzoneOP can protect the kidney cells against H/R injury and its mechanism may be through the reduction of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, Hubei Province , P.R. China
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhang ZX, Huang X, Jiang J, Lau A, Yin Z, Liu W, Haig A, Jevnikar AM. Natural Killer Cells Mediate Long-term Kidney Allograft Injury. Transplantation 2015; 99:916-924. [PMID: 25719259 DOI: 10.1097/tp.0000000000000665] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic allograft injury remains the leading cause of late kidney graft loss despite improvements in immunosuppressive drugs and a reduction in acute T cell-mediated rejection. We have recently demonstrated that natural killer (NK) cells are cytotoxic to tubular epithelial cells and contribute to acute kidney ischemia-reperfusion injury. The role of NK cells in kidney allograft rejection has not been studied. METHODS A "parent to F1" kidney transplant model was used to study NK cell-mediated transplant rejection. RESULTS The C57BL/6 kidneys were transplanted into fully nephrectomized CB6F1 (C57BL/6 x BALB/c) mice. Serum creatinine levels increased from baseline (18.8 ± 5.0 μmol/L to 37.2 ± 5.9 μmol/L, P < 0.001) at 60 days after transplantation. B6Rag-to-CB6F1Rag (B6RagxBALB/cRag) recipients, which lack T and B cells but retain NK cells, showed similar levels of kidney dysfunction 65 days after transplantation (creatinine, 33.8 ± 7.9 μmol/L vs 17.5 ± 5.1 μmol/L in nontransplant Rag mice, P < 0.05). Importantly, depletion of NK cells in Rag1 recipients inhibited kidney injury (24.6 ± 5.5 μmol/L, P < 0.05). Osteopontin, which can activate NK cells to mediate tubular epithelial cell death in vitro, was highly expressed in 60 days kidney grafts. Osteopontin null kidney grafts had reduced injury after transplantation into CB6F1 mice (17.7 ± 3.1 μmol/L, P < 0.001). CONCLUSIONS Collectively, these data demonstrate for the first time that independent of T and B cells, NK cells have a critical role in mediating long-term transplant kidney injury. Specific therapeutic strategies that target NK cells in addition to conventional immunosuppression may be required to attenuate chronic kidney transplant injury.
Collapse
Affiliation(s)
- Zhu-Xu Zhang
- 1 Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, Ontario, Canada. 2 Department of Medicine, Western University, London, Ontario, Canada. 3 Department of Pathology, Western University, London, Ontario, Canada. 4 Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kidney injury molecule-1 protects against Gα12 activation and tissue damage in renal ischemia-reperfusion injury. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1207-15. [PMID: 25759266 DOI: 10.1016/j.ajpath.2015.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/31/2014] [Accepted: 02/03/2015] [Indexed: 11/23/2022]
Abstract
Ischemic acute kidney injury is a serious untreatable condition. Activation of the G protein α12 (Gα12) subunit by reactive oxygen species is a major cause of tissue damage during renal ischemia-reperfusion injury. Kidney injury molecule-1 (KIM-1) is a transmembrane glycoprotein that is highly up-regulated during acute kidney injury, but the physiologic significance of this up-regulation is unclear. Here, we report for the first time that Kim-1 inhibits Gα12 activation and protects mice against renal ischemia-reperfusion injury. We reveal that Kim-1 physically interacts with and inhibits cellular Gα12 activation after inflammatory stimuli, including reactive oxygen species, by blocking GTP binding to Gα12. Compared with Kim-1(+/+) mice, Kim-1(-/-) mice exhibited greater Gα12 and downstream Src activation both in primary tubular epithelial cells after in vitro stimulation with H2O2 and in whole kidneys after unilateral renal artery clamping. Finally, we show that Kim-1-deficient mice had more severe kidney dysfunction and tissue damage after bilateral renal artery clamping, compared with wild-type mice. Our results suggest that KIM-1 is an endogenous protective mechanism against renal ischemia-reperfusion injury through inhibition of Gα12.
Collapse
|
45
|
Wang L, Liu X, Chen H, Chen Z, Weng X, Qiu T, Liu L. Effect of picroside II on apoptosis induced by renal ischemia/reperfusion injury in rats. Exp Ther Med 2015; 9:817-822. [PMID: 25667634 PMCID: PMC4316970 DOI: 10.3892/etm.2015.2192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023] Open
Abstract
Renal ischemia and reperfusion (I/R) injury, which commonly occurs in kidney transplantation, is the leading cause of acute kidney injury. Picroside II possesses a wide range of pharmacological effects, including anti-apoptosis effects. In the present study, the ability of picroside II to attenuate apoptosis in a rat model of renal I/R injury was investigated. Sprague-Dawley rats were subjected to 45 min of ischemia followed by 24 h of reperfusion. Prior to reperfusion, the rats were treated with picroside II or an equal volume of phosphate-buffered saline. It was observed that renal function was significantly improved by the treatment with picroside II. Morphological analysis indicated that picroside II markedly reduced tissue damage and the expression of cleaved caspase-3. Reverse transcription-quantitative polymerase chain reaction and western blotting revealed that the expression levels of Bax and poly(ADP-ribose) polymerase-1 (PARP-1) were upregulated in the I/R group, whereas those of Bcl-2 were downregulated. However, the treatment with picroside II inhibited these changes induced by renal I/R injury. In conclusion, picroside II has potent anti-apoptotic activity against renal I/R injury.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Qiu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lin Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
46
|
The osteopontin transgenic mouse is a new model for Sjögren's syndrome. Clin Immunol 2015; 157:30-42. [PMID: 25572532 DOI: 10.1016/j.clim.2014.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/08/2014] [Accepted: 12/19/2014] [Indexed: 12/22/2022]
Abstract
Osteopontin (Opn) is a cytokine involved in both physiological and pathological processes, and is elevated in many autoimmune diseases. Sjögren's syndrome (SS) is an autoimmune disease with a strong female predilection characterized by lymphocytic infiltration of exocrine glands. We hypothesized that Opn contributes to SS pathogenesis. We examined an established SS model and found increased Opn locally and systemically. Next, we examined Opn transgenic (Opn Tg) mice for evidence of SS. Opn Tg animals exhibited lymphocytic infiltration of salivary and lacrimal glands, and Opn co-localized with the infiltrates. Moreover, saliva production was reduced, and SS autoantibodies were observed in the serum of these mice. Finally, female Opn Tg mice showed more severe disease compared to males. Taken together, these data support a role for Opn in SS pathogenesis. We identify a new model of spontaneous SS that recapitulates the human disease in terms of sex predilection, histopathology, salivary deficits, and autoantibodies.
Collapse
|
47
|
Abstract
Acute kidney injury (AKI) prolongs hospital stay and increases mortality in various clinical settings. Ischaemia-reperfusion injury (IRI), nephrotoxic agents and infection leading to sepsis are among the major causes of AKI. Inflammatory responses substantially contribute to the overall renal damage in AKI. Both innate and adaptive immune systems are involved in the inflammatory process occurring in post-ischaemic AKI. Proinflammatory damage-associated molecular patterns, hypoxia-inducible factors, adhesion molecules, dysfunction of the renal vascular endothelium, chemokines, cytokines and Toll-like receptors are involved in the activation and recruitment of immune cells into injured kidneys. Immune cells of both the innate and adaptive immune systems, such as neutrophils, dendritic cells, macrophages and lymphocytes contribute to the pathogenesis of renal injury after IRI, and some of their subpopulations also participate in the repair process. These immune cells are also involved in the pathogenesis of nephrotoxic AKI. Experimental studies of immune cells in AKI have resulted in improved understanding of the immune mechanisms underlying AKI and will be the foundation for development of novel diagnostic and therapeutic targets. This Review describes what is currently known about the function of the immune system in the pathogenesis and repair of ischaemic and nephrotoxic AKI.
Collapse
Affiliation(s)
- Hye Ryoun Jang
- Nephrology Division, Department of Medicine, Samsung Medical Centre, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 81 Irwon-Ro Gangnam-gu, Seoul 135-710, South Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
48
|
Jang HR, Park JH, Kwon GY, Lee JE, Huh W, Jin HJ, Choi SJ, Oh W, Oh HY, Kim YG. Effect of preemptive treatment with human umbilical cord blood-derived mesenchymal stem cells on the development of renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol 2014; 307:F1149-61. [PMID: 25143451 DOI: 10.1152/ajprenal.00555.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSCs) have been studied in several models of immune-mediated disease because of their unique immunomodulatory properties. We hypothesized that HUCB-MSCs could suppress the inflammatory response in postischemic kidneys and attenuate early renal injury. In 8- to 10-wk-old male C57BL/6 mice, bilateral ischemia-reperfusion injury (IRI) surgery was performed, and 1 × 10(6) HUCB-MSCs were injected intraperitoneally 24 h before surgery and during reperfusion. Renal functional and histological changes, HUCB-MSC trafficking, leukocyte infiltration, and cytokine expression were analyzed. Renal functional decline and tubular injury after IRI were attenuated by HUCB-MSC treatment. PKH-26-labeled HUCB-MSCs trafficked into the postischemic kidney. Although numbers of CD45-positive leukocytes in the postischemic kidney were comparable between groups, the expression of interferon-γ in the postischemic kidney was suppressed by HUCB-MSC treatment. The rapid decrease in intrarenal VEGF after IRI was markedly mitigated by HUCB-MSC treatment. In inflammatory conditions simulated in a cell culture experiment, VEGF secretion from HUCB-MSCs was substantially enhanced. VEGF inhibitor abolished the renoprotective effect of HUCB-MSCs after IRI. Flow cytometry analysis revealed the decreased infiltration of natural killer T cells and increased number of regulatory T cells in postischemic kidneys. In addition, these effects of HUCB-MSCs on kidney infiltrating mononuclear cells after IRI were attenuated by VEGF inhibitor. HUCB-MSCs attenuated renal injury in mice in the early injury phase after IRI, mainly by humoral effects and secretion of VEGF. Our results suggest a promising role for HUCB-MSCs in the treatment of renal IRI.
Collapse
Affiliation(s)
- Hye Ryoun Jang
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Hyeon Park
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea; and
| | - Jung Eun Lee
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Wooseong Huh
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Jin Jin
- Biomedical Research Institute, MEDIPOST Company Limited, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Company Limited, Seoul, Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Company Limited, Seoul, Korea
| | - Ha Young Oh
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-Goo Kim
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea;
| |
Collapse
|
49
|
Park JS, Kim S, Jo CH, Oh IH, Kim GH. Effects of Dietary Salt Restriction on Renal Progression and Interstitial Fibrosis in Adriamycin Nephrosis. Kidney Blood Press Res 2014; 39:86-96. [DOI: 10.1159/000355782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2014] [Indexed: 11/19/2022] Open
|
50
|
Abstract
The mammalian kidney has an intrinsic ability to repair after significant injury. However, this process is inefficient: patients are at high risk for the loss of kidney function in later life. No therapy exists to treat established acute kidney injury (AKI) per se: strategies to promote endogenous repair processes and retard associated fibrosis are a high priority. Whole-organ gene expression profiling has been used to identify repair responses initiated with AKI, and factors that may promote the transition from AKI to chronic kidney disease. Transcriptional profiling has shown molecular markers and potential regulatory pathways of renal repair. Activation of a few key developmental pathways has been reported during repair. Whether these are comparable networks with similar target genes with those in earlier nephrogenesis remains unclear. Altered microRNA profiles, persistent tubular injury responses, and distinct late inflammatory responses highlight continuing kidney pathology. Additional insights into injury and repair processes will be gained by study of the repair transcriptome and cell-specific translatome using high-resolution technologies such as RNA sequencing and translational profiling tailored to specific cellular compartments within the kidney. An enhanced understanding holds promise for both the identification of novel therapeutic targets and biomarker-based evaluation of the damage-repair process.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-California Institute of Regenerative Medicine (CIRM) Center for Regenerative Medicine and Stem Cell Research, The Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-California Institute of Regenerative Medicine (CIRM) Center for Regenerative Medicine and Stem Cell Research, The Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-California Institute of Regenerative Medicine (CIRM) Center for Regenerative Medicine and Stem Cell Research, The Keck School of Medicine of the University of Southern California, Los Angeles, CA.
| |
Collapse
|