1
|
Abstract
I've had serious misgivings about writing this article, because from living the experience day by day, it's hard to believe my accomplishments merit the attention. To skirt this roadblock, I forced myself to pretend I was in a conversation with my trainees, trying to distill the central driving forces of my career in science. The below chronicles my evolution from would-be astronaut/ballerina to budding developmental biologist to devoted T cell immunologist. It traces my work from a focus on intrathymic events that mold developing T cells into self-major histocompatibility complex (MHC)-restricted lymphocytes to extrathymic events that fine-tune the T cell receptor (TCR) repertoire and impose the finishing touches on T cell maturation. It is a story of a few personal attributes multiplied by generous mentors, good luck, hard work, perseverance, and knowing when to step down. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pamela J Fink
- Department of Immunology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
2
|
Song R, Jia X, Zhao J, Du P, Zhang JA. T cell receptor revision and immune repertoire changes in autoimmune diseases. Int Rev Immunol 2021; 41:517-533. [PMID: 34243694 DOI: 10.1080/08830185.2021.1929954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Autoimmune disease (AID) is a condition in which the immune system breaks down and starts to attack the body. Some common AIDs include systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus and so forth. The changes in T-cell receptor (TCR) repertoire have been found in several autoimmune diseases, and may be responsible for the breakdown of peripheral immune tolerance. In this review, we discussed the processes of TCR revision in peripheral immune environment, the changes in TCR repertoire that occurred in various AIDs, and the specifically expanded T cell clones. We hope our discussion can provide insights for the future studies, helping with the discovery of disease biomarkers and expanding the strategies of immune-targeted therapy. HighlightsRestricted TCR repertoire and biased TCR-usage are found in a variety of AIDs.TCR repertoire shows tissue specificity in a variety of AID diseases.The relationship between TCR repertoire diversity and disease activity is still controversial in AIDs.Dominant TCR clonotypes may help to discover new disease biomarkers and expand the strategies of immune-targeted therapy.
Collapse
Affiliation(s)
- Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
3
|
Jia X, Wang B, Zhai T, Yao Q, Li Q, Zhang JA. WITHDRAWN: T cell receptor revision and immune repertoire changes in autoimmune diseases. Clin Immunol 2018:S1521-6616(18)30724-1. [PMID: 30543918 DOI: 10.1016/j.clim.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Bing Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Tianyu Zhai
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai 201508, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
4
|
McGuire HM, Watkins TS, Field M, Taylor S, Yasuyama N, Farmer A, Miles JJ, Fazekas de St. Groth B. TCR deep sequencing of transgenic RAG-1-deficient mice reveals endogenous TCR recombination: a cause for caution. Immunol Cell Biol 2018; 96:642-645. [DOI: 10.1111/imcb.12033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Helen M McGuire
- Centenary Institute; Camperdown NSW Australia
- Discipline of Pathology; School of Medical Sciences; Charles Perkins Centre; University of Sydney; NSW Australia
- Ramaciotti Facility for Human Systems Biology; Charles Perkins Centre; University of Sydney; NSW Australia
| | - Thomas S Watkins
- Centre for Biodiscovery and Molecular Development of Therapeutics; AITHM; James Cook University; Cairns QLD Australia
- QIMR Berghofer Medical Research Institute; Brisbane QLD Australia
- Faculty of Medicine; The University of Queensland; Brisbane QLD Australia
| | - Matthew Field
- Centre for Biodiscovery and Molecular Development of Therapeutics; AITHM; James Cook University; Cairns QLD Australia
| | - Sarah Taylor
- Takara Bio USA, Inc.; 1290 Terra Bella Ave, Mountain View CA USA
| | - Nao Yasuyama
- Takara Bio USA, Inc.; 1290 Terra Bella Ave, Mountain View CA USA
| | - Andrew Farmer
- Takara Bio USA, Inc.; 1290 Terra Bella Ave, Mountain View CA USA
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics; AITHM; James Cook University; Cairns QLD Australia
- QIMR Berghofer Medical Research Institute; Brisbane QLD Australia
- Faculty of Medicine; The University of Queensland; Brisbane QLD Australia
- Institute of Infection and Immunity; Cardiff University School of Medicine; Heath Park Cardiff UK
| | - Barbara Fazekas de St. Groth
- Discipline of Pathology; School of Medical Sciences; Charles Perkins Centre; University of Sydney; NSW Australia
- Ramaciotti Facility for Human Systems Biology; Charles Perkins Centre; University of Sydney; NSW Australia
| |
Collapse
|
5
|
Wagner DH. Of the multiple mechanisms leading to type 1 diabetes, T cell receptor revision may play a prominent role (is type 1 diabetes more than a single disease?). Clin Exp Immunol 2016; 185:271-80. [PMID: 27271348 DOI: 10.1111/cei.12819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
A single determinant factor for autoimmunity does not exist; disease development probably involves contributions from genetics, the environment and immune dysfunction. Type 1 diabetes is no exception. Genomewide-associated studies (GWAS) analysis in T1D has proved disappointing in revealing contributors to disease prediction; the only reliable marker has been human leucocyte antigen (HLA). Specific HLAs include DR3/DR4/DQ2/DQ8, for example. Because HLA molecules present antigen to T cells, it is reasonable that certain HLA molecules have a higher affinity to present self-antigen. Recent studies have shown that additional polymorphisms in HLA that are restricted to autoimmune conditions are further contributory. A caveat is that not all individuals with the appropriate 'pro-autoimmune' HLA develop an autoimmune disease. Another crucial component is autoaggressive T cells. Finding a biomarker to discriminate autoaggressive T cells has been elusive. However, a subset of CD4 helper cells that express the CD40 receptor have been described as becoming pathogenic. An interesting function of CD40 on T cells is to induce the recombination-activating gene (RAG)1/RAG2 T cell receptor recombination machinery. This observation is contrary to immunology paradigms that changes in TCR molecules cannot take place outside the thymic microenvironment. Alteration in TCR, called TCR revision, not only occurs, but may help to account for the development of autoaggressive T cells. Another interesting facet is that type 1 diabetes (T1D) may be more than a single disease; that is, multiple cellular components contribute uniquely, but result ultimately in the same clinical outcome, T1D. This review considers the process of T cell maturation and how that could favor auto-aggressive T cell development in T1D. The potential contribution of TCR revision to autoimmunity is also considered.
Collapse
Affiliation(s)
- D H Wagner
- Department of Medicine, Department of Neurology, Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Fernandez I, Ooi TP, Roy K. Generation of functional, antigen-specific CD8+ human T cells from cord blood stem cells using exogenous Notch and tetramer-TCR signaling. Stem Cells 2014; 32:93-104. [PMID: 23939944 DOI: 10.1002/stem.1512] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022]
Abstract
In vitro differentiation of mouse and human stem cells into early T cells has been successfully demonstrated using artificial Notch signaling systems. However, generation of mature, antigen-specific, functional T cells, directly from human stem cells has remained elusive, except when using stromal coculture of stem cells retrovirally transfected with antigen-specific T cell receptors (TCRs). Here we show that human umbilical cord blood (UCB)-derived CD34+CD38-/low hematopoietic stem cells can be successfully differentiated into functional, antigen-specific cytotoxic CD8+ T cells without direct stromal coculture or retroviral TCR transfection. Surface-immobilized Notch ligands (DLL1) and stromal cell conditioned medium successfully induced the development of CD1a+CD7+ and CD4+CD8+ early T cells. These cells, upon continued culture with cytomegalovirus (CMV) or influenza-A virus M1 (GIL) epitope-loaded human leukocyte antigen (HLA)-A*0201 tetramers, resulted in the generation of a polyclonal population of CMV-specific or GIL-specific CD8+ T cells, respectively. Upon further activation with antigen-loaded target cells, these antigen-specific, stem cell-derived T cells exhibited cytolytic functionality, specifically CD107a surface mobilization, interferon gamma (IFNg) production, and Granzyme B secretion. Such scalable, in vitro generation of functional, antigen-specific T cells from human stem cells could eventually provide a readily available cell source for adoptive transfer immunotherapies and also allow better understanding of human T cell development.
Collapse
Affiliation(s)
- Irina Fernandez
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA; Dell Pediatric Research Institute and, The University of Texas at Austin, Austin, Texas, USA
| | | | | |
Collapse
|
7
|
Receptor revision in CD4 T cells is influenced by follicular helper T cell formation and germinal-center interactions. Proc Natl Acad Sci U S A 2014; 111:5652-7. [PMID: 24706795 DOI: 10.1073/pnas.1321803111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral CD4 T cells in Vβ5 transgenic (Tg) C57BL/6J mice undergo tolerance to an endogenous superantigen encoded by mouse mammary tumor virus 8 (Mtv-8) by either deletion or T-cell receptor (TCR) revision. Revision is a process by which surface expression of the Vβ5(+) TCR is down-regulated in response to Mtv-8 and recombination activating genes are expressed to drive rearrangement of the endogenous TCRβ locus, effecting cell rescue through the expression of a newly generated, non-self-reactive TCR. In an effort to identify the microenvironment in which revision takes place, we show here that the proportion of T follicular helper cells (Tfh) and production of high-affinity antibody during a primary response are increased in Vβ5 Tg mice in an Mtv-8-dependent manner. Revising T cells have a Tfh-like surface phenotype and transcription factor profile, with elevated expression of B-cell leukemia/lymphoma 6 (Bcl-6), CXC chemokine receptor 5, programmed death-1, and other Tfh-associated markers. Efficient revision requires Bcl-6 and is inhibited by B lymphocyte-induced maturation protein-1. Revision completes less efficiently in the absence of signaling lymphocytic activation molecule-associated protein although initiation proceeds normally. These data indicate that Tfh formation is required for the initiation of revision and germinal-center interactions for its completion. The germinal center is known to provide a confined space in which B-cell antigen receptors undergo selection. Our data extend the impact of this selective microenvironment into the arena of T cells, suggesting that this fluid structure also provides a regulatory environment in which TCR revision can safely take place.
Collapse
|
8
|
Zhang N, Bevan MJ. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 2013; 39:687-96. [PMID: 24076049 DOI: 10.1016/j.immuni.2013.08.019] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/01/2013] [Indexed: 01/19/2023]
Abstract
Tissue-resident memory T (Trm) cells represent a population of memory CD8⁺ T cells that can act as first responders to local infection. The mechanisms regulating the formation and maintenance of intestinal Trm cells remain elusive. Here we showed that transforming growth factor-β (TGF-β) controlled both stages of gut Trm cell differentiation through different mechanisms. During the formation phase of Trm cells, TGF-β signaling inhibited the migration of effector CD8⁺ T cells from the spleen to the gut by dampening the expression of integrin α4β7. During the maintenance phase, TGF-β was required for the retention of intestinal Trm cells at least in part through the induction of integrins αEβ7 and α1, as well as CD69. Thus, the cytokine acts to control cytotoxic T cell differentiation in lymphoid and peripheral organs.
Collapse
Affiliation(s)
- Nu Zhang
- Department of Immunology and the Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
9
|
Vaitaitis GM, Wagner DH. CD40 interacts directly with RAG1 and RAG2 in autoaggressive T cells and Fas prevents CD40-induced RAG expression. Cell Mol Immunol 2013; 10:483-9. [PMID: 24037181 DOI: 10.1038/cmi.2013.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/02/2013] [Accepted: 05/16/2013] [Indexed: 12/20/2022] Open
Abstract
CD4(+) T cells expressing CD40 (Th40 cells) constitute a pathogenic T-cell subset that is necessary and sufficient to transfer autoimmune disease. We have previously demonstrated that CD40 signals peripheral Th40 cells to induce RAG1 and RAG2 expression, proteins necessary for the expression of T-cell receptor (TCR), leading to TCR revision. The dependency of TCR expression in the thymus on RAG proteins has long been known. However, despite numerous publications, there is controversy as to whether TCR expression can be altered in the periphery, post-thymic selective pressures. Therefore, a better understanding of TCR expression in primary peripheral cells is needed. We now show that the CD40 protein itself interacts with RAG1 and RAG2 as well as with Ku70 and translocates to the nucleus in Th40 cells. This indicates that the CD40 molecule is closely involved in the mechanism of TCR expression in the periphery. In addition, Fas signals act as a silencing mechanism for CD40-induced RAGs and prevent CD40 translocation to the nucleus. It will be important to further understand the involvement of CD40 in peripheral TCR expression and how TCR revision impacts auto-antigen recognition in order to effectively target and tolerize autoaggressive T cells in autoimmune disease.
Collapse
|
10
|
Shih HY, Krangel MS. Chromatin architecture, CCCTC-binding factor, and V(D)J recombination: managing long-distance relationships at antigen receptor loci. THE JOURNAL OF IMMUNOLOGY 2013; 190:4915-21. [PMID: 23645930 DOI: 10.4049/jimmunol.1300218] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rearrangement of T and B lymphocyte Ag receptor loci occurs within a highly complex chromosomal environment and is orchestrated through complex mechanisms. During the past decade, a large body of literature has highlighted the significance of chromatin architecture at Ag receptor loci in supporting the genomic assembly process: in preparation for recombination, these loci tend to contract and form multiple loops that shorten the distances between gene segments and facilitate recombination events. CCCTC-binding factor, CTCF, has received much attention in this regard since it has emerged as an important regulator of chromatin organization and transcription. In this review, we summarize recent work outlining conformational dynamics at Ag receptor loci during lymphocyte development and we discuss the role of CTCF in Ag receptor locus conformation and repertoire development.
Collapse
Affiliation(s)
- Han-Yu Shih
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
11
|
|
12
|
TGF-β signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol 2012; 13:667-73. [PMID: 22634866 PMCID: PMC3380154 DOI: 10.1038/ni.2319] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/24/2012] [Indexed: 12/13/2022]
Abstract
T cell specific deletion of the Transforming growth factor-β (TGF-β) receptor mediated by CD4-cre leads to early onset lethal autoimmune disease that cannot be controlled by regulatory T cells. However, when we delete the receptor using distal Lck (dLck) promoter driven cre, adult mice in which the majority of peripheral CD4+ and CD8+ T cells lacked the TGF-β receptor, showed no signs of autoimmunity. Due to their heightened response to weak T cell receptor stimuli, when transferred into lymphopenic recipients, naive TGF-β unresponsive T cells exhibited dramatically enhanced proliferation, effector differentiation, and induced lymphoproliferative disease. We propose that TGF-β signaling controls self-reactivity of peripheral T cells but in the absence of TGF-β signals, an added trigger, such as lymphopenia, is required to drive overt autoimmune disease.
Collapse
|
13
|
Brady BL, Bassing CH. Differential regulation of proximal and distal Vbeta segments upstream of a functional VDJbeta1 rearrangement upon beta-selection. THE JOURNAL OF IMMUNOLOGY 2011; 187:3277-85. [PMID: 21844384 DOI: 10.4049/jimmunol.1101079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Developmental stage-specific regulation of transcriptional accessibility helps control V(D)J recombination. Vβ segments on unrearranged TCRβ alleles are accessible in CD4(-)/CD8(-) (double-negative [DN]) thymocytes, when they recombine, and inaccessible in CD4(+)/CD8(+) (double-positive [DP]) thymocytes, when they do not rearrange. Downregulation of Vβ accessibility on unrearranged alleles is linked with Lat-dependent β-selection signals that inhibit Vβ rearrangement, stimulate Ccnd3-driven proliferation, and promote DN-to-DP differentiation. Transcription and recombination of Vβs on VDJβ-rearranged alleles in DN cells has not been studied; Vβs upstream of functional VDJβ rearrangements have been found to remain accessible, yet not recombine, in DP cells. To elucidate contributions of β-selection signals in regulating Vβ transcription and recombination on VDJβ-rearranged alleles, we analyzed wild-type, Ccnd3(-/-), and Lat(-/-) mice containing a preassembled functional Vβ1DJCβ1 (Vβ1(NT)) gene. Vβ10 segments located just upstream of this VDJCβ1 gene were the predominant germline Vβs that rearranged in Vβ1(NT/NT) and Vβ1(NT/NT)Ccnd3(-/-) thymocytes, whereas Vβ4 and Vβ16 segments located further upstream rearranged at similar levels as Vβ10 in Vβ1(NT/NT)Lat(-/-) DN cells. We previously showed that Vβ4 and Vβ16, but not Vβ10, are transcribed on Vβ1(NT) alleles in DP thymocytes; we now demonstrate that Vβ4, Vβ16, and Vβ10 are transcribed at similar levels in Vβ1(NT/NT)Lat(-/-) DN cells. These observations indicate that suppression of Vβ rearrangements is not dependent on Ccnd3-driven proliferation, and DN residence can influence the repertoire of Vβs that recombine on alleles containing an assembled VDJCβ1 gene. Our findings also reveal that β-selection can differentially silence rearrangement of germline Vβ segments located proximal and distal to functional VDJβ genes.
Collapse
Affiliation(s)
- Brenna L Brady
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
14
|
Hale JS, Nelson LT, Simmons KB, Fink PJ. Bcl-2-interacting mediator of cell death influences autoantigen-driven deletion and TCR revision. THE JOURNAL OF IMMUNOLOGY 2010; 186:799-806. [PMID: 21148799 DOI: 10.4049/jimmunol.1002933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peripheral CD4(+)Vβ5(+) T cells are tolerized to an endogenous mouse mammary tumor virus superantigen either by deletion or TCR revision. Through TCR revision, RAG reexpression mediates extrathymic TCRβ rearrangement and results in a population of postrevision CD4(+)Vβ5(-) T cells expressing revised TCRβ chains. We have hypothesized that cell death pathways regulate the selection of cells undergoing TCR revision to ensure the safety and utility of the postrevision population. In this study, we investigate the role of Bcl-2-interacting mediator of cell death (Bim)-mediated cell death in autoantigen-driven deletion and TCR revision. Bim deficiency and Bcl-2 overexpression in Vβ5 transgenic (Tg) mice both impair peripheral deletion. Vβ5 Tg Bim-deficient and Bcl-2 Tg mice exhibit an elevated frequency of CD4(+) T cells expressing both the transgene-encoded Vβ5 chain and a revised TCRβ chain. We now show that these dual-TCR-expressing cells are TCR revision intermediates and that the population of RAG-expressing, revising CD4(+) T cells is increased in Bim-deficient Vβ5 Tg mice. These findings support a role for Bim and Bcl-2 in regulating the balance of survival versus apoptosis in peripheral T cells undergoing RAG-dependent TCR rearrangements during TCR revision, thereby ensuring the utility of the postrevision repertoire.
Collapse
Affiliation(s)
- J Scott Hale
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
15
|
Hale JS, Wubeshet M, Fink PJ. TCR revision generates functional CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6528-6534. [PMID: 20971922 PMCID: PMC3233755 DOI: 10.4049/jimmunol.1002696] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
CD4(+)Vβ5(+) peripheral T cells in C57BL/6 mice respond to encounter with a peripherally expressed endogenous superantigen by undergoing either deletion or TCR revision. In this latter process, cells lose surface Vβ5 expression and undergo RAG-dependent rearrangement of endogenous TCRβ genes, driving surface expression of novel TCRs. Although postrevision CD4(+)Vβ5(-)TCRβ(+) T cells accumulate with age in Vβ5 transgenic mice and bear a diverse TCR Vβ repertoire, it is unknown whether they respond to homeostatic and antigenic stimuli and thus may benefit the host. We demonstrate in this study that postrevision cells are functional. These cells have a high rate of steady-state homeostatic proliferation in situ, and they undergo extensive MHC class II-dependent lymphopenia-induced proliferation. Importantly, postrevision cells do not proliferate in response to the tolerizing superantigen, implicating TCR revision as a mechanism of tolerance induction and demonstrating that TCR-dependent activation of postrevision cells is not driven by the transgene-encoded receptor. Postrevision cells proliferate extensively to commensal bacterial Ags and can generate I-A(b)-restricted responses to Ag by producing IFN-γ following Listeria monocytogenes challenge. These data show that rescued postrevision T cells are responsive to homeostatic signals and recognize self- and foreign peptides in the context of self-MHC and are thus useful to the host.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/microbiology
- CD4-Positive T-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Proliferation
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/physiology
- Immune Tolerance/genetics
- Immunoglobulin Variable Region/genetics
- Listeriosis/genetics
- Listeriosis/immunology
- Listeriosis/pathology
- Lymphopenia/immunology
- Lymphopenia/microbiology
- Lymphopenia/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/microbiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- J Scott Hale
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
16
|
Brady BL, Oropallo MA, Yang-Iott KS, Serwold T, Hochedlinger K, Jaenisch R, Weissman IL, Bassing CH. Position-dependent silencing of germline Vß segments on TCRß alleles containing preassembled VßDJßCß1 genes. THE JOURNAL OF IMMUNOLOGY 2010; 185:3564-73. [PMID: 20709953 DOI: 10.4049/jimmunol.0903098] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The genomic organization of TCRbeta loci enables Vbeta-to-DJbeta2 rearrangements on alleles with assembled VbetaDJbetaCbeta1 genes, which could have deleterious physiologic consequences. To determine whether such Vbeta rearrangements occur and, if so, how they might be regulated, we analyzed mice with TCRbeta alleles containing preassembled functional VbetaDJbetaCbeta1 genes. Vbeta10 segments were transcribed, rearranged, and expressed in thymocytes when located immediately upstream of a Vbeta1DJbetaCbeta1 gene, but not on alleles with a Vbeta14DJbetaCbeta1 gene. Germline Vbeta10 transcription was silenced in mature alphabeta T cells. This allele-dependent and developmental stage-specific silencing of Vbeta10 correlated with increased CpG methylation and decreased histone acetylation over the Vbeta10 promoter and coding region. Transcription, rearrangement, and expression of the Vbeta4 and Vbeta16 segments located upstream of Vbeta10 were silenced on alleles containing either VbetaDJbetaCbeta1 gene; sequences within Vbeta4, Vbeta16, and the Vbeta4/Vbeta16-Vbeta10 intergenic region exhibited constitutive high CpG methylation and low histone acetylation. Collectively, our data indicate that the position of Vbeta segments relative to assembled VbetaDJbetaCbeta1 genes influences their rearrangement and suggest that DNA sequences between Vbeta segments may form boundaries between active and inactive Vbeta chromatin domains upstream of VbetaDJbetaCbeta genes.
Collapse
Affiliation(s)
- Brenna L Brady
- Immunology Graduate Group, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | | | | | | | | | | | | | | |
Collapse
|