1
|
Tao JH, Zhang J, Li HS, Zhou Y, Guan CX. Nature killer cell for solid tumors: Current obstacles and prospective remedies in NK cell therapy and beyond. Crit Rev Oncol Hematol 2025; 205:104553. [PMID: 39515404 DOI: 10.1016/j.critrevonc.2024.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, cell therapy has emerged as an innovative treatment method for the management of clinical tumors following immunotherapy. Among them, Natural killer (NK) cell therapy has achieved a significant breakthrough in the treatment of hematological tumors. However, the therapeutic effectiveness of NK cells in the treatment of solid tumors remains challenging. With the progress of gene editing and culture techniques and their application to NK cell engineering, it is expected that NK cell therapy will revolutionize the treatment of solid tumors. In this review, we explore the discovery and biological properties of NK cells, their role in the tumor microenvironment, and the therapeutic strategies, clinical trials, challenges, and prospects of NK cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Jia-Hao Tao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jun Zhang
- Ascle Therapeutics, Suzhou, Jiangsu 215000, China
| | - Hua-Shun Li
- Ascle Therapeutics, Suzhou, Jiangsu 215000, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
2
|
Extrinsic allospecific signals of hematopoietic origin dictate iNKT cell lineage-fate decisions during development. Sci Rep 2016; 6:28837. [PMID: 27354027 PMCID: PMC4926280 DOI: 10.1038/srep28837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/09/2016] [Indexed: 12/14/2022] Open
Abstract
Invariant NKT (iNKT) cells are critical to the maintenance of tolerance toward alloantigens encountered during postnatal life pointing to the existence of a process for self-education. However, the impact of developmentally encountered alloantigens in shaping the phenotype and function of iNKT cells has not been described. To better understand this process, the current report examined naïve iNKT cells as they matured in an allogeneic environment. Following the prenatal transfer of fetal hematopoietic cells between age-matched allogeneic murine fetuses, cell-extrinsic signals appeared to dictate allospecific patterns of Ly49 receptor expression and lineage diversity in developing iNKT cells. Regulation for this process arose from cells of hematopoietic origin requiring only rare exposure to facilitate broad changes in developing iNKT cells. These findings highlight surprisingly asymmetric allospecific alterations in iNKT cells as they develop and mature in an allogeneic environment and establish a new paradigm for study of the self-education of iNKT cells.
Collapse
|
3
|
Tamehiro N, Oda H, Shirai M, Suzuki H. Overexpression of RhoH Permits to Bypass the Pre-TCR Checkpoint. PLoS One 2015; 10:e0131047. [PMID: 26114424 PMCID: PMC4482576 DOI: 10.1371/journal.pone.0131047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
RhoH, an atypical small Rho-family GTPase, critically regulates thymocyte differentiation through the coordinated interaction with Lck and Zap70. Therefore, RhoH deficiency causes defective T cell development, leading to a paucity of mature T cells. Since there has been no gain-of-function study on RhoH before, we decided to take a transgenic approach to assess how the overexpression of RhoH affects the development of T cells. Although RhoH transgenic (RhoHtg) mice expressed three times more RhoH protein than wild-type mice, β-selection, positive, and negative selection in the thymus from RhoHtg mice were unaltered. However, transgenic introduction of RhoH into Rag2 deficient mice resulted in the generation of CD4+CD8+ (DP) thymocytes, indicating that overexpression of RhoH could bypass β-selection without TCRβ gene rearrangement. This was confirmed by the in vitro development of DP cells from Rag2-/-RhoHtg DN3 cells on TSt-4/Dll-1 stroma in an Lck dependent manner. Collectively, our results indicate that an excess amount of RhoH is able to initiate pre-TCR signaling in the absence of pre-TCR complexes.
Collapse
Affiliation(s)
- Norimasa Tamehiro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Hiroyo Oda
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Mutsunori Shirai
- Department of Microbiology, Yamaguchi University School of Medicine, Ube, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
- * E-mail:
| |
Collapse
|
4
|
Rahim MMA, Tu MM, Mahmoud AB, Wight A, Abou-Samra E, Lima PDA, Makrigiannis AP. Ly49 receptors: innate and adaptive immune paradigms. Front Immunol 2014; 5:145. [PMID: 24765094 PMCID: PMC3980100 DOI: 10.3389/fimmu.2014.00145] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/20/2014] [Indexed: 11/13/2022] Open
Abstract
The Ly49 receptors are type II C-type lectin-like membrane glycoproteins encoded by a family of highly polymorphic and polygenic genes within the mouse natural killer (NK) gene complex. This gene family is designated Klra, and includes genes that encode both inhibitory and activating Ly49 receptors in mice. Ly49 receptors recognize class I major histocompatibility complex-I (MHC-I) and MHC-I-like proteins on normal as well as altered cells. Their functional homologs in humans are the killer cell immunoglobulin-like receptors, which recognize HLA class I molecules as ligands. Classically, Ly49 receptors are described as being expressed on both the developing and mature NK cells. The inhibitory Ly49 receptors are involved in NK cell education, a process in which NK cells acquire function and tolerance toward cells that express “self-MHC-I.” On the other hand, the activating Ly49 receptors recognize altered cells expressing activating ligands. New evidence shows a broader Ly49 expression pattern on both innate and adaptive immune cells. Ly49 receptors have been described on multiple NK cell subsets, such as uterine NK and memory NK cells, as well as NKT cells, dendritic cells, plasmacytoid dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system, such as activated T cells and regulatory CD8+ T cells. In this review, we discuss the expression pattern and proposed functions of Ly49 receptors on various immune cells and their contribution to immunity.
Collapse
Affiliation(s)
- Mir Munir A Rahim
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Megan M Tu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Ahmad Bakur Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada ; College of Applied Medical Sciences, Taibah University , Madinah Munawwarah , Kingdom of Saudi Arabia
| | - Andrew Wight
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Elias Abou-Samra
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Patricia D A Lima
- Biomedical and Molecular Sciences, Queen's University , Kingston, ON , Canada
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
5
|
Chen T, Zhu L, Zhou Y, Pi B, Liu X, Deng G, Zhang R, Wang Y, Wu Z, Han M, Luo X, Ning Q. KCTD9 contributes to liver injury through NK cell activation during hepatitis B virus-induced acute-on-chronic liver failure. Clin Immunol 2013; 146:207-16. [PMID: 23376586 DOI: 10.1016/j.clim.2012.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/11/2022]
Abstract
We explored the expression of a newly identified potassium channel tetramerisation domain containing 9 (KCTD9) protein in 113 blood and 81 liver samples, from patients with mild chronic hepatitis B (CHB) or HBV-induced acute-on-chronic liver failure (HBV-ACLF). KCTD9 was highly expressed in peripheral and hepatic NK cells from HBV-ACLF patients compared with mild CHB patients, and this correlated positively with the severity of liver injury. The role of KCTD9 was further investigated in NK92 cells in vitro. KCTD9 overexpressed NK92 cells exhibited a marked increase in CD69 expression, cytotoxicity, IFN-γ secretion and a significant decrease in NKG2A receptor expression. Inhibition of KCTD9 by shRNA resulted in reduced cytotoxic function. These results suggest the involvement of KCTD9 in NK cell activation and provide additional insight into a potential therapeutic target for molecular manipulation for HBV-ACLF patients.
Collapse
Affiliation(s)
- Tao Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|