1
|
Swain AC, Borghans JA, de Boer RJ. Effect of cellular aging on memory T-cell homeostasis. Front Immunol 2022; 13:947242. [PMID: 36059495 PMCID: PMC9429809 DOI: 10.3389/fimmu.2022.947242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
The fact that T-cell numbers remain relatively stable throughout life, and that T-cell proliferation rates increase during lymphopenia, has led to the consensus that T-cell numbers are regulated in a density-dependent manner. Competition for resources among memory T cells has been proposed to underlie this ‘homeostatic’ regulation. We first review how two classic models of resource competition affect the T-cell receptor (TCR) diversity of the memory T-cell pool. First, ‘global’ competition for cytokines leads to a skewed repertoire that tends to be dominated by the very first immune response. Second, additional ‘cognate’ competition for specific antigens results in a very diverse and stable memory T-cell pool, allowing every antigen to be remembered, which we therefore define as the ‘gold-standard’. Because there is limited evidence that memory T cells of the same specificity compete more strongly with each other than with memory T cells of different specificities, i.e., for ‘cognate’ competition, we investigate whether cellular aging could account for a similar level of TCR diversity. We define cellular aging as a declining cellular fitness due to reduced proliferation. We find that the gradual erosion of previous T-cell memories due to cellular aging allows for better establishment of novel memories and for a much higher level of TCR diversity compared to global competition. A small continual source (either from stem-cell-like memory T-cells or from naive T-cells due to repeated antigen exposure) improves the diversity of the memory T-cell pool, but remarkably, only in the cellular aging model. We further show that the presence of a source keeps the inflation of chronic memory responses in check by maintaining the immune memories to non-chronic antigens. We conclude that cellular aging along with a small source provides a novel and immunologically realistic mechanism to achieve and maintain the ‘gold-standard’ level of TCR diversity in the memory T-cell pool.
Collapse
Affiliation(s)
- Arpit C. Swain
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Arpit C. Swain,
| | - José A.M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob J. de Boer
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
2
|
Zenkov VS, O’Connor JH, Cockburn IA, Ganusov VV. A New Method Based on the von Mises-Fisher Distribution Shows that a Minority of Liver-Localized CD8 T Cells Display Hard-To-Detect Attraction to Plasmodium-Infected Hepatocytes. FRONTIERS IN BIOINFORMATICS 2022; 1:770448. [PMID: 36303744 PMCID: PMC9580869 DOI: 10.3389/fbinf.2021.770448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a disease caused by Plasmodium parasites, resulting in over 200 million infections and 400,000 deaths every year. A critical step of malaria infection is when sporozoites, injected by mosquitoes, travel to the liver and form liver stages. Malaria vaccine candidates which induce large numbers of malaria-specific CD8 T cells in mice are able to eliminate all liver stages, preventing fulminant malaria. However, how CD8 T cells find all parasites in 48 h of the liver stage lifespan is not well understood. Using intravital microscopy of murine livers, we generated unique data on T cell search for malaria liver stages within a few hours after infection. To detect attraction of T cells to an infection site, we used the von Mises-Fisher distribution in 3D, similar to the 2D von Mises distribution previously used in ecology. Our results suggest that the vast majority (70-95%) of malaria-specific and non-specific liver-localized CD8 T cells did not display attraction towards the infection site, suggesting that the search for malaria liver stages occurs randomly. However, a small fraction (15-20%) displayed weak but detectable attraction towards parasites which already had been surrounded by several T cells. We found that speeds and turning angles correlated with attraction, suggesting that understanding mechanisms that determine the speed of T cell movement in the liver may improve the efficacy of future T cell-based vaccines. Stochastic simulations suggest that a small movement bias towards the parasite dramatically reduces the number of CD8 T cells needed to eliminate all malaria liver stages, but to detect such attraction by individual cells requires data from long imaging experiments which are not currently feasible. Importantly, as far as we know this is the first demonstration of how activated/memory CD8 T cells might search for the pathogen in nonlymphoid tissues a few hours after infection. We have also established a framework for how attraction of individual T cells towards a location in 3D can be rigorously evaluated.
Collapse
Affiliation(s)
- Viktor S. Zenkov
- Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, United States,*Correspondence: Viktor S. Zenkov, ; Vitaly V. Ganusov,
| | - James H. O’Connor
- Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia,The Australian National University Medical School, Australian National University, Canberra, ACT, Australia
| | - Ian A. Cockburn
- Division of Immunology, Inflammation and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States,Department of Mathematics, University of Tennessee, Knoxville, TN, United States,*Correspondence: Viktor S. Zenkov, ; Vitaly V. Ganusov,
| |
Collapse
|
3
|
Luo XH, Poiret T, Liu Z, Meng Q, Nagchowdhury A, Ljungman P. Different recovery patterns of CMV-specific and WT1-specific T cells in patients with acute myeloid leukemia undergoing allogeneic hematopoietic cell transplantation: Impact of CMV infection and leukemia relapse. Front Immunol 2022; 13:1027593. [PMID: 36824620 PMCID: PMC9941532 DOI: 10.3389/fimmu.2022.1027593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/03/2022] [Indexed: 02/10/2023] Open
Abstract
In allogeneic hematopoietic cell transplantation (allo-HSCT), both virus-specific T cells and leukemia-specific T cells need to be reconstituted to protect patients from virus infections and primary disease relapse. Cytomegalovirus (CMV) infection remains an important cause of morbidity and mortality after allo-HSCT. Emerging data indicate that CMV reactivation is associated with reduced risk of leukemia relapse in patients with acute myeloid leukemia (AML) undergoing allo-HSCT. In a cohort of 24 WT1+ AML patients during the first year following HSCT, CMV specific CD8+ T cells (CMV-CTL) reconstituted much faster than WT1-specific CD8+ T cell (WT1-CTL) after allo-SCT. Moreover, CMV-CTL expressed lower levels of exhaustion markers and were more functional as identified by production of IFN-γ/TNF-α and expression of Eomes/T-bet. Interestingly, our patients with CMV reactivation presented higher frequency of CMV-CTL, lower levels of Eomes+T-bet- and higher levels of Eomes+T-bet+ expression in response to WT1 and CMV pp65 antigen during the first year after transplantation as compared to patients without CMV reactivation. Kinetics of CMV-CTL and WT1-CTL after transplantation might be associated with measurable residual disease and later leukemia relapse. Our results support that CMV reactivation, aside from the CMV-CTL reconstitution, could influence WT1-CTL reconstitution after allo-HSCT, thus potentially contributing to the remission/relapse of AML.
Collapse
Affiliation(s)
- Xiao-Hua Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Poiret
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhenjiang Liu
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Qingda Meng
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital and Division of Hematology, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Lefebvre MN, Harty JT. You Shall Not Pass: Memory CD8 T Cells in Liver-Stage Malaria. Trends Parasitol 2019; 36:147-157. [PMID: 31843536 DOI: 10.1016/j.pt.2019.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Each year over 200 million malaria infections occur, with over 400 000 associated deaths. Vaccines formed with attenuated whole parasites can induce protective memory CD8 T cell responses against liver-stage malaria; however, widespread administration of such vaccines is logistically challenging. Recent scientific findings are delineating how protective memory CD8 T cell populations are primed and maintained and how such cells mediate immunity to liver-stage malaria. Memory CD8 T cell anatomic localization and expression of transcription factors, homing receptors, and signaling molecules appear to play integral roles in protective immunity to liver-stage malaria. Further investigation of how such factors contribute to optimal protective memory CD8 T cell generation and maintenance in humans will inform efforts for improved vaccines.
Collapse
Affiliation(s)
- Mitchell N Lefebvre
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Department of Pathology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Hansen SG, Womack J, Scholz I, Renner A, Edgel KA, Xu G, Ford JC, Grey M, St Laurent B, Turner JM, Planer S, Legasse AW, Richie TL, Aguiar JC, Axthelm MK, Villasante ED, Weiss W, Edlefsen PT, Picker LJ, Früh K. Cytomegalovirus vectors expressing Plasmodium knowlesi antigens induce immune responses that delay parasitemia upon sporozoite challenge. PLoS One 2019; 14:e0210252. [PMID: 30673723 PMCID: PMC6343944 DOI: 10.1371/journal.pone.0210252] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The development of a sterilizing vaccine against malaria remains one of the highest priorities for global health research. While sporozoite vaccines targeting the pre-erythrocytic stage show great promise, it has not been possible to maintain efficacy long-term, likely due to an inability of these vaccines to maintain effector memory T cell responses in the liver. Vaccines based on human cytomegalovirus (HCMV) might overcome this limitation since vectors based on rhesus CMV (RhCMV), the homologous virus in rhesus macaques (RM), elicit and indefinitely maintain high frequency, non-exhausted effector memory T cells in extralymphoid tissues, including the liver. Moreover, RhCMV strain 68-1 elicits CD8+ T cells broadly recognizing unconventional epitopes exclusively restricted by MHC-II and MHC-E. To evaluate the potential of these unique immune responses to protect against malaria, we expressed four Plasmodium knowlesi (Pk) antigens (CSP, AMA1, SSP2/TRAP, MSP1c) in RhCMV 68-1 or in Rh189-deleted 68-1, which additionally elicits canonical MHC-Ia-restricted CD8+ T cells. Upon inoculation of RM with either of these Pk Ag expressing RhCMV vaccines, we obtained T cell responses to each of the four Pk antigens. Upon challenge with Pk sporozoites we observed a delayed appearance of blood stage parasites in vaccinated RM consistent with a 75-80% reduction of parasite release from the liver. Moreover, the Rh189-deleted RhCMV/Pk vectors elicited sterile protection in one RM. Once in the blood, parasite growth was not affected. In contrast to T cell responses induced by Pk infection, RhCMV vectors maintained sustained T cell responses to all four malaria antigens in the liver post-challenge. The delayed appearance of blood stage parasites is thus likely due to a T cell-mediated inhibition of liver stage parasite development. As such, this vaccine approach can be used to efficiently test new T cell antigens, improve current vaccines targeting the liver stage and complement vaccines targeting erythrocytic antigens.
Collapse
Affiliation(s)
- Scott G Hansen
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Jennie Womack
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Isabel Scholz
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Andrea Renner
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Kimberly A Edgel
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Guangwu Xu
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Julia C Ford
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Mikayla Grey
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Brandyce St Laurent
- National Institutes of Health, Laboratory of Malaria and Vector Research, Malaria Pathogenesis and Human Immunity Unit, Rockville, MD, United States of America
| | - John M Turner
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Shannon Planer
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Al W Legasse
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Thomas L Richie
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Joao C Aguiar
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Michael K Axthelm
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Eileen D Villasante
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Walter Weiss
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Paul T Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Louis J Picker
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Klaus Früh
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| |
Collapse
|
6
|
Nonspecific CD8 + T Cells and Dendritic Cells/Macrophages Participate in Formation of CD8 + T Cell-Mediated Clusters against Malaria Liver-Stage Infection. Infect Immun 2018; 86:IAI.00717-17. [PMID: 29426043 DOI: 10.1128/iai.00717-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022] Open
Abstract
CD8+ T cells are the major effector cells that protect against malaria liver-stage infection, forming clusters around Plasmodium-infected hepatocytes and eliminating parasites after a prolonged interaction with these hepatocytes. We aimed to investigate the roles of specific and nonspecific CD8+ T cells in cluster formation and protective immunity. To this end, we used Plasmodium berghei ANKA expressing ovalbumin as well as CD8+ T cells from transgenic mice expressing a T cell receptor specific for ovalbumin (OT-I) and CD8+ T cells specific for an unrelated antigen, respectively. While antigen-specific CD8+ T cells were essential for cluster formation, both antigen-specific and nonspecific CD8+ T cells joined the clusters. However, nonspecific CD8+ T cells did not significantly contribute to protective immunity. In the livers of infected mice, specific CD8+ T cells expressed high levels of CD25, compatible with a local, activated effector phenotype. In vivo imaging of the liver revealed that specific CD8+ T cells interact with CD11c+ cells around infected hepatocytes. The depletion of CD11c+ cells virtually eliminated the clusters in the liver, leading to a significant decrease in protection. These experiments reveal an essential role of hepatic CD11c+ dendritic cells and presumably macrophages in the formation of CD8+ T cell clusters around Plasmodium-infected hepatocytes. Once cluster formation is triggered by parasite-specific CD8+ T cells, specific and unrelated activated CD8+ T cells join the clusters in a chemokine- and dendritic cell-dependent manner. Nonspecific CD8+ T cells seem to play a limited role in protective immunity against Plasmodium parasites.
Collapse
|
7
|
Heterologous Immunity and Persistent Murine Cytomegalovirus Infection. J Virol 2017; 91:JVI.01386-16. [PMID: 27807227 DOI: 10.1128/jvi.01386-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/25/2016] [Indexed: 11/20/2022] Open
Abstract
One's history of infections can affect the immune response to unrelated pathogens and influence disease outcome through the process of heterologous immunity. This can occur after acute viral infections, such as infections with lymphocytic choriomeningitis virus (LCMV) and vaccinia virus, where the pathogens are cleared, but it becomes a more complex issue in the context of persistent infections. In this study, murine cytomegalovirus (MCMV) was used as a persistent infection model to study heterologous immunity with LCMV. If mice were previously immune to LCMV and then infected with MCMV (LCMV+MCMV), they had more severe immunopathology, enhanced viral burden in multiple organs, and suppression of MCMV-specific T cell memory inflation. MCMV infection initially reduced the numbers of LCMV-specific memory T cells, but continued MCMV persistence did not further erode memory T cells specific to LCMV. When MCMV infection was given first (MCMV+LCMV), the magnitude of the acute T cell response to LCMV declined with age though this age-dependent decline was not dependent on MCMV. However, some of these MCMV persistently infected mice with acute LCMV infection (7 of 36) developed a robust immunodominant CD8 T cell response apparently cross-reactive between a newly defined putative MCMV epitope sequence, M57727-734, and the normally subdominant LCMV epitope L2062-2069, indicating a profound private specificity effect in heterologous immunity between these two viruses. These results further illustrate how a history of an acute or a persistent virus infection can substantially influence the immune responses and immune pathology associated with acute or persistent infections with an unrelated virus. IMPORTANCE This study extends our understanding of heterologous immunity in the context of persistent viral infection. The phenomenon has been studied mostly with viruses such as LCMV that are cleared, but the situation can be more complex with a persistent virus such as MCMV. We found that the history of LCMV infection intensifies MCMV immunopathology, enhances MCMV burden in multiple organs, and suppresses MCMV-specific T cell memory inflation. In the reverse infection sequence, we show that some of the long-term MCMV-immune mice mount a robust CD8 T cell cross-reactive response between a newly defined putative MCMV epitope sequence and a normally subdominant LCMV epitope. These results further illustrate how a history of infection can substantially influence the immune responses and immune pathology associated with infections with an unrelated virus.
Collapse
|
8
|
Martin MD, Badovinac VP. Influence of time and number of antigen encounters on memory CD8 T cell development. Immunol Res 2015; 59:35-44. [PMID: 24825776 DOI: 10.1007/s12026-014-8522-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
CD8 T cells are an important part of the adaptive immune system providing protection against intracellular bacteria, viruses, and protozoa. After infection and/or vaccination, increased numbers of antigen-specific CD8 T cells remain as a memory population that is capable of responding and providing enhanced protection during reinfection. Experimental studies indicate that while memory CD8 T cells can be maintained for great lengths of time, their properties change with time after infection and/or vaccination. However, the full scope of these changes and what effects they have on memory CD8 T cell function remain unknown. In addition, memory CD8 T cells can encounter antigen multiple times through either reinfection or prime-boost vaccine strategies designed to increase numbers of protective memory CD8 T cells. Importantly, recent studies suggest that memory CD8 T cell development following infection and/or vaccination is influenced by the number of times they have encountered cognate antigen. Since protection offered by memory CD8 T cells in response to infection depends on both the numbers and quality (functional characteristics) at the time of pathogen re-encounter, a thorough understanding of how time and antigen stimulation history impacts memory CD8 T cell properties is critical for the design of vaccines aimed at establishing populations of long-lived, protective memory CD8 T cells.
Collapse
Affiliation(s)
- Matthew D Martin
- Department of Pathology, University of Iowa, 1160 Med Labs, Iowa City, IA, 52242, USA
| | | |
Collapse
|
9
|
Khan SH, Hemann EA, Legge KL, Norian LA, Badovinac VP. Diet-induced obesity does not impact the generation and maintenance of primary memory CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:5873-82. [PMID: 25378592 DOI: 10.4049/jimmunol.1401685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The extent to which obesity compromises the differentiation and maintenance of protective memory CD8 T cell responses and renders obese individuals susceptible to infection remains unknown. In this study, we show that diet-induced obesity did not impact the maintenance of pre-existing memory CD8 T cells, including acquisition of a long-term memory phenotype (i.e., CD27(hi), CD62L(hi), KLRG1(lo)) and function (i.e., cytokine production, secondary expansion, and memory CD8 T cell-mediated protection). Additionally, obesity did not influence the differentiation and maintenance of newly evoked memory CD8 T cell responses in inbred and outbred hosts generated in response to different types of systemic (LCMV, L. monocytogenes) and/or localized (influenza virus) infections. Interestingly, the rate of naive-to-memory CD8 T cell differentiation after a peptide-coated dendritic cell immunization was similar in lean and obese hosts, suggesting that obesity-associated inflammation, unlike pathogen- or adjuvant-induced inflammation, did not influence the development of endogenous memory CD8 T cell responses. Therefore, our studies reveal that the obese environment does not influence the development or maintenance of memory CD8 T cell responses that are either primed before or after obesity is established, a surprising notion with important implications for future studies aiming to elucidate the role obesity plays in host susceptibility to infections.
Collapse
Affiliation(s)
- Shaniya H Khan
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Emily A Hemann
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Kevin L Legge
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242; Department of Pathology, University of Iowa, Iowa City, IA 52242; and
| | - Lyse A Norian
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242; Department of Urology, University of Iowa, Iowa City, IA 52242
| | - Vladimir P Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242; Department of Pathology, University of Iowa, Iowa City, IA 52242; and
| |
Collapse
|
10
|
Van Braeckel-Budimir N, Harty JT. CD8 T-cell-mediated protection against liver-stage malaria: lessons from a mouse model. Front Microbiol 2014; 5:272. [PMID: 24936199 PMCID: PMC4047659 DOI: 10.3389/fmicb.2014.00272] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023] Open
Abstract
Malaria is a major global health problem, with severe mortality in children living in sub-Saharan Africa, and there is currently no licensed, effective vaccine. However, vaccine-induced protection from Plasmodium infection, the causative agent of malaria, was established for humans in small clinical trials and for rodents in the 1960s. Soon after, a critical role for memory CD8 T cells in vaccine-induced protection against Plasmodium liver-stage infection was established in rodent models and is assumed to apply to humans. However, these seminal early studies have led to only modest advances over the ensuing years in our understanding the basic features of memory CD8 T cells required for protection against liver-stage Plasmodium infection, an issue which has likely impeded the development of effective vaccines for humans. Given the ethical and practical limitations in gaining mechanistic insight from human vaccine and challenge studies, animal models still have an important role in dissecting the basic parameters underlying memory CD8 T-cell immunity to Plasmodium. Here, we will highlight recent data from our own work in the mouse model of Plasmodium infection that identify quantitative and qualitative features of protective memory CD8 T-cell responses. Finally, these lessons will be discussed in the context of recent findings from clinical trials of vaccine-induced protection in controlled human challenge models.
Collapse
Affiliation(s)
| | - John T Harty
- Department of Microbiology, University of Iowa Iowa, IA, USA
| |
Collapse
|
11
|
Villarino N, Schmidt NW. CD8 + T Cell Responses to Plasmodium and Intracellular Parasites. ACTA ACUST UNITED AC 2014; 9:169-178. [PMID: 24741372 PMCID: PMC3983867 DOI: 10.2174/1573395509666131126232327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Parasitic protozoa are major threats to human health affecting millions of people around the world. Control of these infections by the host immune system relies on a myriad of immunological mechanisms that includes both humoral and cellular immunity. CD8+ T cells contribute to the control of these parasitic infections in both animals and humans. Here, we will focus on the CD8+ T cell response against a subset of these protozoa: Plasmodium, Toxoplasma gondii, Leishmania and Trypanosoma cruzi, with an emphasis on experimental rodent systems. It is evident a complex interaction occurs between CD8+ T cells and the invading protozoa. A detailed understanding of how CD8+ T cells mediate protection should provide the basis for the development of effective vaccines that prevent and control infections by these parasites.
Collapse
Affiliation(s)
- Nicolas Villarino
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nathan W Schmidt
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
12
|
Vasconcelos JR, Dominguez MR, Araújo AF, Ersching J, Tararam CA, Bruna-Romero O, Rodrigues MM. Relevance of long-lived CD8(+) T effector memory cells for protective immunity elicited by heterologous prime-boost vaccination. Front Immunol 2012; 3:358. [PMID: 23264773 PMCID: PMC3525016 DOI: 10.3389/fimmu.2012.00358] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/10/2012] [Indexed: 11/13/2022] Open
Abstract
Owing to the importance of major histocompatibility complex class Ia-restricted CD8(+) T cells for host survival following viral, bacterial, fungal, or parasitic infection, it has become largely accepted that these cells should be considered in the design of a new generation of vaccines. For the past 20 years, solid evidence has been provided that the heterologous prime-boost regimen achieves the best results in terms of induction of long-lived protective CD8(+) T cells against a variety of experimental infections. Although this regimen has often been used experimentally, as is the case for many vaccines, the mechanism behind the efficacy of this vaccination regimen is still largely unknown. The main purpose of this review is to examine the characteristics of the protective CD8(+) T cells generated by this vaccination regimen. Part of its efficacy certainly relies on the generation and maintenance of large numbers of specific lymphocytes. Other specific characteristics may also be important, and studies on this direction have only recently been initiated. So far, the characterization of these protective, long-lived T cell populations suggests that there is a high frequency of polyfunctional T cells; these cells cover a large breadth and display a T effector memory (TEM) phenotype. These TEM cells are capable of proliferating after an infectious challenge and are highly refractory to apoptosis due to a control of the expression of pro-apoptotic receptors such as CD95. Also, they do not undergo significant long-term immunological erosion. Understanding the mechanisms that control the generation and maintenance of the protective activity of these long-lived TEM cells will certainly provide important insights into the physiology of CD8(+) T cells and pave the way for the design of new or improved vaccines.
Collapse
Affiliation(s)
- José R Vasconcelos
- Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo - Escola Paulista de Medicina São Paulo, São Paulo, Brazil ; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Escola Paulista de Medicina São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Vaughan AM, Kappe SHI. Malaria vaccine development: persistent challenges. Curr Opin Immunol 2012; 24:324-31. [DOI: 10.1016/j.coi.2012.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/26/2012] [Indexed: 12/25/2022]
|
14
|
Spence PJ, Langhorne J. T cell control of malaria pathogenesis. Curr Opin Immunol 2012; 24:444-8. [PMID: 22658628 DOI: 10.1016/j.coi.2012.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 05/10/2012] [Indexed: 01/08/2023]
Abstract
Transmission of Plasmodium from mosquito to the mammalian host leads to a clinically silent pre-erythrocytic stage of malaria infection, and subsequent cyclical erythrocytic invasion associated with disease. Recent evidence demonstrates that it is the interplay between CD4+ and CD8+ T cells, and the regulation of their response, throughout infection that dictates immunity and the pathogenesis of malaria. The elicited T cell response is context dependent, influenced by diverse host and parasite factors, necessitating the development of a unifying model of T cell potential during Plasmodium infection. Only then can we predict their capacity to dictate the outcome of human disease.
Collapse
Affiliation(s)
- Philip J Spence
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | | |
Collapse
|
15
|
Chen AT, Cornberg M, Gras S, Guillonneau C, Rossjohn J, Trees A, Emonet S, de la Torre JC, Welsh RM, Selin LK. Loss of anti-viral immunity by infection with a virus encoding a cross-reactive pathogenic epitope. PLoS Pathog 2012; 8:e1002633. [PMID: 22536152 PMCID: PMC3334890 DOI: 10.1371/journal.ppat.1002633;ppathogens-d-11-02190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
T cell cross-reactivity between different strains of the same virus, between different members of the same virus group, and even between unrelated viruses is a common occurrence. We questioned here how an intervening infection with a virus containing a sub-dominant cross-reactive T cell epitope would affect protective immunity to a previously encountered virus. Pichinde virus (PV) and lymphocytic choriomeningitis virus (LCMV) encode subdominant cross-reactive NP₂₀₅₋₂₁₂ CD8 T cell epitopes sharing 6 of 8 amino acids, differing only in the MHC anchoring regions. These pMHC epitopes induce cross-reactive but non-identical T cell receptor (TCR) repertoires, and structural studies showed that the differing anchoring amino acids altered the conformation of the MHC landscape presented to the TCR. PV-immune mice receiving an intervening infection with wild type but not NP205-mutant LCMV developed severe immunopathology in the form of acute fatty necrosis on re-challenge with PV, and this pathology could be predicted by the ratio of NP205-specific to the normally immunodominant PV NP₃₈₋₄₅-specific T cells. Thus, cross-reactive epitopes can exert pathogenic properties that compromise protective immunity by impairing more protective T cell responses.
Collapse
Affiliation(s)
- Alex T. Chen
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Markus Cornberg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Carole Guillonneau
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Andrew Trees
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sebastien Emonet
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Juan C. de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raymond M. Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| | - Liisa K. Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
16
|
Chen AT, Cornberg M, Gras S, Guillonneau C, Rossjohn J, Trees A, Emonet S, de la Torre JC, Welsh RM, Selin LK. Loss of anti-viral immunity by infection with a virus encoding a cross-reactive pathogenic epitope. PLoS Pathog 2012; 8:e1002633. [PMID: 22536152 PMCID: PMC3334890 DOI: 10.1371/journal.ppat.1002633] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/23/2012] [Indexed: 12/31/2022] Open
Abstract
T cell cross-reactivity between different strains of the same virus, between different members of the same virus group, and even between unrelated viruses is a common occurrence. We questioned here how an intervening infection with a virus containing a sub-dominant cross-reactive T cell epitope would affect protective immunity to a previously encountered virus. Pichinde virus (PV) and lymphocytic choriomeningitis virus (LCMV) encode subdominant cross-reactive NP205–212 CD8 T cell epitopes sharing 6 of 8 amino acids, differing only in the MHC anchoring regions. These pMHC epitopes induce cross-reactive but non-identical T cell receptor (TCR) repertoires, and structural studies showed that the differing anchoring amino acids altered the conformation of the MHC landscape presented to the TCR. PV-immune mice receiving an intervening infection with wild type but not NP205-mutant LCMV developed severe immunopathology in the form of acute fatty necrosis on re-challenge with PV, and this pathology could be predicted by the ratio of NP205-specific to the normally immunodominant PV NP38–45 -specific T cells. Thus, cross-reactive epitopes can exert pathogenic properties that compromise protective immunity by impairing more protective T cell responses. The purpose of vaccination against viruses is to induce strong neutralizing antibody responses that inactivate viruses on contact and strong T cell responses that attack and kill virus-infected cells. Some viruses, however, like HIV and hepatitis C virus, are only weakly controlled by neutralizing antibody, so T cell immunity is very important for control of these infections. T cells recognize small virus-encoded peptides, called epitopes, presented on the surface of infected cells, and some of these epitopes induce strongly protective and others weakly protective T cell responses. However, the same T cells can sometimes demonstrate cross-reactivity and recognize similar epitopes encoded by two different viruses. We questioned here what infection with a virus encoding a weak cross-reactive epitope would do to immunity to a previously-encountered virus. Here we report that such an infection can compromise protective immunity by enhancing the normally weak response and suppressing the normally strong response. Under these conditions such epitopes function as “pathogenic” epitopes, and we suggest that the potential for inducing responses to pathogenic epitopes should be an important consideration in the design of T cell vaccines.
Collapse
Affiliation(s)
- Alex T. Chen
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Markus Cornberg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Carole Guillonneau
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Andrew Trees
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sebastien Emonet
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Juan C. de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raymond M. Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| | - Liisa K. Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
17
|
Odumade OA, Knight JA, Schmeling DO, Masopust D, Balfour HH, Hogquist KA. Primary Epstein-Barr virus infection does not erode preexisting CD8⁺ T cell memory in humans. ACTA ACUST UNITED AC 2012; 209:471-8. [PMID: 22393125 PMCID: PMC3302231 DOI: 10.1084/jem.20112401] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute Epstein-Barr virus (EBV) infection results in an unusually robust CD8(+) T cell response in young adults. Based on mouse studies, such a response would be predicted to result in attrition of preexisting memory to heterologous infections like influenza A (Flu) and cytomegalovirus (CMV). Furthermore, many studies have attempted to define the lymphocytosis that occurs during acute EBV infection in humans, but it is unclear whether bystander T cells contribute to it. To address these issues, we performed a longitudinal prospective study of primary EBV infection in humans. During acute EBV infection, both preexisting CMV- and Flu-specific memory CD8(+) T cells showed signs of bystander activation, including up-regulation of granzyme B. However, they generally did not expand, suggesting that the profound CD8(+) lymphocytosis associated with acute EBV infection is composed largely of EBV-specific T cells. Importantly, the numbers of CMV- and Flu-specific T cells were comparable before and after acute EBV infection. The data support the concept that, in humans, a robust CD8(+) T cell response creates a new memory CD8(+) T cell niche without substantially depleting preexisting memory for heterologous infections.
Collapse
Affiliation(s)
- Oludare A Odumade
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Raymond M Welsh
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
19
|
Borrmann S, Matuschewski K. Protective immunity against malaria by 'natural immunization': a question of dose, parasite diversity, or both? Curr Opin Immunol 2011; 23:500-8. [PMID: 21719266 DOI: 10.1016/j.coi.2011.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/29/2011] [Indexed: 10/18/2022]
Abstract
Plasmodium undergoes an obligate liver phase before the onset of malaria, which is caused exclusively by cyclic propagation of the parasite inside erythrocytes. The diagnostically inaccessible and clinically silent pre-erythrocytic expansion phase is a promising target for inducing sterilizing immunity against reinfections. Recent studies in rodent and human malaria models called attention to the induction of potent protective immunity by administration of anti-malarial drugs during sporozoite exposure. Here, we review the concept of drug-mediated pathogen arrest as a natural immunization strategy. This previously unrecognized immunological benefit might also open new opportunities for population-wide presumptive drug administration as an adjunct malaria control tool.
Collapse
Affiliation(s)
- Steffen Borrmann
- Clinical Parasitology Unit, Heidelberg University School of Medicine, 69120 Heidelberg, Germany.
| | | |
Collapse
|