1
|
Alsaidalani AA, García-Solís B, Bukhari E, Van Den Rym A, López-Collazo E, Sánchez-Ramón S, Corvillo F, López-Lera A, de Andrés A, Martínez-Barricarte R, Perez de Diego R. Inherited Human BCL10 Deficiencies. J Clin Immunol 2023; 44:13. [PMID: 38129623 PMCID: PMC10966939 DOI: 10.1007/s10875-023-01619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
Human BCL10 deficiency causes combined immunodeficiency with bone marrow transplantation as its only curative option. To date, there are four homozygous mutations described in the literature that were identified in four unrelated patients. Here, we describe a fifth patient with a novel mutation and summarize what we have learned about BCL10 deficiency. Due to the severity of the disease, accurate knowledge of its clinical and immunological characteristics is instrumental for early diagnosis and adequate clinical management of the patients.
Collapse
Affiliation(s)
- Ashwag A Alsaidalani
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, 22252, Jeddah, Saudi Arabia
| | - Blanca García-Solís
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Esraa Bukhari
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, 22252, Jeddah, Saudi Arabia
| | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Clinical Immunology Department and IdSSC, San Carlos Clinical Hospital, 28040, Madrid, Spain
| | - Fernando Corvillo
- IdiPAZ Institute for Health Research, La Paz University Hospital, CIBERER U-754, 28046, Madrid, Spain
| | - Alberto López-Lera
- IdiPAZ Institute for Health Research, La Paz University Hospital, CIBERER U-754, 28046, Madrid, Spain
| | - Ana de Andrés
- Immunology Department, Hospital Ramon y Cajal, 28034, Madrid, Spain
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Immunology, and Inflammation, Vanderbilt Institute for Infection, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain.
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, 28046, Madrid, Spain.
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.
| |
Collapse
|
2
|
D Lempicki M, Paul S, Serbulea V, Upchurch CM, Sahu S, Gray JA, Ailawadi G, Garcia BL, McNamara CA, Leitinger N, Meher AK. BAFF antagonism via the BAFF receptor 3 binding site attenuates BAFF 60-mer-induced classical NF-κB signaling and metabolic reprogramming of B cells. Cell Immunol 2022; 381:104603. [PMID: 36182705 PMCID: PMC10691782 DOI: 10.1016/j.cellimm.2022.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
Human recombinant B cell activating factor (BAFF) is secreted as 3-mers, which can associate to form 60-mers in culture supernatants. However, the presence of BAFF multimers in humans is still debated and it is incompletely understood how BAFF multimers activate the B cells. Here, we demonstrate that BAFF can exist as 60-mers or higher order multimers in human plasma. In vitro, BAFF 60-mer strongly induced the transcriptome of B cells which was partly attenuated by antagonism using a soluble fragment of BAFF receptor 3. Furthermore, compared to BAFF 3-mer, BAFF 60-mer strongly induced a transient classical and prolonged alternate NF-κB signaling, glucose oxidation by both aerobic glycolysis and oxidative phosphorylation, and succinate utilization by mitochondria. BAFF antagonism selectively attenuated classical NF-κB signaling and glucose oxidation. Altogether, our results suggest critical roles of BAFF 60-mer and its BAFF receptor 3 binding site in hyperactivation of B cells.
Collapse
Affiliation(s)
- Melissa D Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Saikat Paul
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Clint M Upchurch
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Srabani Sahu
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Jake A Gray
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Gorav Ailawadi
- Department of Surgery, University of Virginia, VA 22908, United States
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Coleen A McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, VA 22908, United States
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Akshaya K Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States; Department of Pharmacology, University of Virginia, VA 22908, United States.
| |
Collapse
|
3
|
He S, Zheng G, Yang X, Dong J, Zhou D, Venugopal N, Yao Y, Cheng Z. Avian leukosis virus subgroup J induces B cell anergy mediated by Lyn inhibited BCR signal transduction. Vet Microbiol 2020; 247:108781. [PMID: 32768227 DOI: 10.1016/j.vetmic.2020.108781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022]
Abstract
Immune tolerance induced by avian leukosis virus subgroup J (ALV-J) is a prerequisite for tumorigenesis. Although we had reported that B cell anergy induced by ALV-J was the main reason for immune tolerance, the molecular mechanism still remains unclear. Here, we found SU protein of ALV-J interacted with tyrosine kinase Lyn (a key protein in BCR signaling pathway) by confocal laser scanning microscopy and co-immunoprecipitation test, which suggested that Lyn might play an important role in B cell anergy induced by ALV-J. Correspondingly, the mRNA and protein level of Lyn was significantly up-regulated in B cells after ALV-J infection. Subsequently, the phosphorylated protein levels of Lyn at Tyr507 site were significantly up-regulated in ALV-J-infected B cells after BCR signal activation, but the phosphorylated protein level of Syk (a direct substrate of Lyn) at Tyr525/526 site, Ca2+ flux, and NF-κB p65 protein level were significantly down-regulated. Interestingly, the phosphorylated protein level of Syk at Tyr525/526 site, Ca2+ flux, and NF-κB p65 protein level were both significantly retrieved after the shLyn treatment in B cells infected by ALV-J. In summary, these results indicated that ALV-J activated the negative regulatory effect of phosphorylated Lyn protein at 507 site in BCR signal transduction pathway and then mediated B cell anergy, which will provide a new insight for revealing the pathogenesis of immune tolerance induced by ALV-J.
Collapse
Affiliation(s)
- Shuhai He
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China; College of Husbandry and Veterinary, Xinyang Agriculture and Forestry University, No 1, North Ring Road, Xinyang City, Henan Province, 464000, China.
| | - Gaoying Zheng
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Xiaoxia Yang
- Hospital of Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Jianguo Dong
- College of Husbandry and Veterinary, Xinyang Agriculture and Forestry University, No 1, North Ring Road, Xinyang City, Henan Province, 464000, China.
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Nair Venugopal
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK.
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK.
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
4
|
Wu SZ, Wei HX, Jiang D, Li SM, Zou WH, Peng HJ. Genome-Wide CRISPR Screen Identifies Host Factors Required by Toxoplasma gondii Infection. Front Cell Infect Microbiol 2020; 9:460. [PMID: 32039045 PMCID: PMC6987080 DOI: 10.3389/fcimb.2019.00460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii are obligate intracellular protoza, and due to their small genome and limited encoded proteins, they have to exploit host factors for entry, replication, and dissemination. Such host factors can be defined as host dependency factors (HDFs). Though HDFs are inessential for cell viability, they are critical for pathogen infection, and potential ideal targets for therapeutic intervention. However, information about these HDFs required by T. gondii infection is highly deficient. In this study, the genes of human foreskin fibroblast (HFF) cells were comprehensively edited using the lentiviral CRISPR-Cas9-sgRNA library, and then the lentivirus-treated cells were infected with T. gondii at multiplication of infection 1 (MOI = 1) for 10 days to identify HDFs essential for T. gondii infection. The survival cells were harvested and sent for sgRNA sequencing. The sgRNA sequence matched genes or miRNAs were potential HDFs. Some cells in the lentivirus-treated group could survive longer than those in the untreated control group after T. gondii infection. From a pool of 19,050 human genes and 1,864 human pri-miRNAs, 1,193 potential HDFs were identified, including 1,183 genes and 10 pri-miRNAs (corresponding with 17 mature miRNAs). Among them, seven genes and five mature miRNAs were validated with siRNAs, miRNA inhibitors, and mimics, respectively. Bioinformatics analysis revealed that, among the 1,183 genes, 53 potential HDFs were associated with regulation of host actin cytoskeleton and 23 potential HDFs coded immune negative regulators. This result indicated that actin dynamics were indispensable for T. gondii infection, and some host immune negative regulators may be involved in disarming host defenses. Our findings contribute to the current limited knowledge about host factors required by T. gondii infection and provide us with new targets for medication therapy and vaccine exploitation.
Collapse
Affiliation(s)
- Shui-Zhen Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hai-Xia Wei
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Sheng-Min Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei-Hao Zou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong-Juan Peng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
B-Cell Activating Factor Enhances Hepatocyte-Driven Angiogenesis via B-Cell CLL/Lymphoma 10/Nuclear Factor-KappaB Signaling during Liver Regeneration. Int J Mol Sci 2019; 20:ijms20205022. [PMID: 31658764 PMCID: PMC6829427 DOI: 10.3390/ijms20205022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
B-cell activating factor (BAFF) is found to be associated with the histological severity of nonalcoholic steatohepatitis (NASH). BAFF was also found to have a protective role in hepatic steatosis via down regulating the expression of steatogenesis genes and enhancing steatosis in hepatocytes through BAFF-R. However, the roles of BAFF during liver regeneration are not well defined. In this study, C57/B6 mice with 70% partial hepatectomy were used as a liver regeneration model. BAFF expression was determined by enzyme immunoassay, and anti-BAFF-neutralizing antibodies were administered to confirm the effects of BAFF on liver regeneration. Western blotting, immunohistochemistry, and florescence staining determined the expression of B-cell CCL/lymphoma 10 (BCL10). The angiogenesis promoting capability was evaluated after the transfection of cells with siRNA targeting BCL10 expression, and the role of NF-κB was assessed. The results revealed that the BAFF and BCL10 levels were upregulated after partial hepatectomy. Treatment with anti-BAFF-neutralizing antibodies caused death in mice that were subjected to 70% partial hepatectomy within 72 h. In vitro, recombinant BAFF protein did not enhance hepatocyte proliferation; however, transfection with BCL10 siRNA arrested hepatocytes at the G2/M phase. Interestingly, conditioned medium from BAFF-treated hepatocytes enhanced angiogenesis and endothelial cell proliferation. Moreover, Matrix metalloproteinase-9 (MMP-9), Fibroblast growth factor 4 (FGF4), and Interleukin-8 (IL-8) proteins were upregulated by BAFF through BCL10/NF-κB signaling. In mice that were treated with anti-BAFF-neutralizing antibodies, the microvessel density (MVD) of the remaining liver tissues and liver regeneration were both reduced. Taken together, our study demonstrated that an increased expression of BAFF and activation of BCL10/NF-κB signaling were involved in hepatocyte-driven angiogenesis and survival during liver regeneration.
Collapse
|
6
|
Meijers RWJ, Muggen AF, Leon LG, de Bie M, van Dongen JJM, Hendriks RW, Langerak AW. Responsiveness of chronic lymphocytic leukemia cells to B-cell receptor stimulation is associated with low expression of regulatory molecules of the nuclear factor-κB pathway. Haematologica 2019; 105:182-192. [PMID: 31097630 PMCID: PMC6939541 DOI: 10.3324/haematol.2018.215566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/15/2019] [Indexed: 11/09/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a disease with heterogeneous clinical and biological characteristics. Differences in Ca2+ levels among cases, both basal and upon B-cell receptor (BCR) stimulation, may reflect heterogeneity in the pathogenesis due to cell-intrinsic factors. Our aim was to elucidate cell-intrinsic differences between BCR-responsive and -unresponsive cases. We therefore determined BCR responsiveness ex vivo based on Ca2+ influx upon α-IgM stimulation of purified CLL cell fractions from 52 patients. Phosphorylation levels of various BCR signaling molecules, and expression of activation markers were assessed by flow cytometry. Transcription profiling of responsive (n=6) and unresponsive cases (n=6) was performed by RNA sequencing. Real-time quantitative polymerase chain reaction analysis was used to validate transcript level differences in a larger cohort. In 24 cases an α-IgM response was visible by Ca2+ influx which was accompanied by higher phosphorylation of PLCγ2 and Akt after α-IgM stimulation in combination with higher surface expression of IgM, IgD, CD19, CD38 and CD43 compared to the unresponsive cases (n=28). Based on RNA sequencing analysis several components of the canonical nuclear factor (NF)-κB pathway, especially those related to NF-κB inhibition, were expressed more highly in unresponsive cases. Moreover, upon α-IgM stimulation, the expression of these NF-κB pathway genes (especially genes coding for NF-κB pathway inhibitors but also NF-κB subunit REL) was upregulated in BCR-responsive cases while the level did not change, compared to basal level, in the unresponsive cases. These findings suggest that cells from CLL cases with enhanced NF-κB signaling have a lesser capacity to respond to BCR stimulation.
Collapse
Affiliation(s)
- Ruud W J Meijers
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam
| | - Alice F Muggen
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam
| | - Leticia G Leon
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam
| | - Maaike de Bie
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam
| | - Jacques J M van Dongen
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam
| |
Collapse
|
7
|
Marcelis L, Tousseyn T, Sagaert X. MALT Lymphoma as a Model of Chronic Inflammation-Induced Gastric Tumor Development. Curr Top Microbiol Immunol 2019; 421:77-106. [PMID: 31123886 DOI: 10.1007/978-3-030-15138-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosa-associated lymphoid tissue (MALT) lymphoma, or extranodal marginal zone lymphoma of MALT, is an indolent B-cell non-Hodgkin lymphoma linked with preexisting chronic inflammation. The stomach is the most commonly affected organ and the MALT lymphoma pathogenesis is clearly associated with Helicobacter pylori gastroduodenitis. Inflammation induces the lymphoid infiltrates in extranodal sites, where the lymphoma then subsequently develops. Genetic aberrations arise through the release of reactive oxygen species (ROS), H. pylori-induced endonucleases, and other effects. The involvement of nuclear factor kappa B (NF-κB) pathway activation, a critical regulator of pro-inflammatory responses, further highlights the role of inflammation in gastric MALT lymphoma. The NF-κB pathway regulates key elements of normal lymphocyte function, including the transcription of proliferation-promoting and anti-apoptotic genes. Aberrant constitutive activation of NF-κB signaling can lead to autoimmunity and malignancy. NF-κB pathway activation can happen through both the canonical and non-canonical pathways and can be caused by multiple genetic aberrations such as t(11;18)(q12;q21), t(1;14)(p22;q32), and t(14;18)(q32;q21) translocations, chronic inflammation and even directly by H. pylori-associated mechanisms. Gastric MALT lymphoma is considered one of the best models of how inflammation initiates genetic events that lead to oncogenesis, determines tumor biology, dictates clinical behavior and leads to viable therapeutic targets. The purpose of this review is to present gastric MALT lymphoma as an outstanding example of the close pathogenetic link between chronic inflammation and tumor development and to describe how this information can be integrated into daily clinical practice.
Collapse
Affiliation(s)
- Lukas Marcelis
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium
| | - Thomas Tousseyn
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium
- Department of Pathology, UZ Leuven, University Hospitals, Louvain, Belgium
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium
| | - Xavier Sagaert
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium.
- Department of Pathology, UZ Leuven, University Hospitals, Louvain, Belgium.
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium.
| |
Collapse
|
8
|
Zhang F, Shu JL, Li Y, Wu YJ, Zhang XZ, Han L, Tang XY, Wang C, Wang QT, Chen JY, Chang Y, Wu HX, Zhang LL, Wei W. CP-25, a Novel Anti-inflammatory and Immunomodulatory Drug, Inhibits the Functions of Activated Human B Cells through Regulating BAFF and TNF-alpha Signaling and Comparative Efficacy with Biological Agents. Front Pharmacol 2017; 8:933. [PMID: 29311935 PMCID: PMC5743740 DOI: 10.3389/fphar.2017.00933] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022] Open
Abstract
Paeoniflorin-6′-O-benzene sulfonate (code: CP-25) was the chemistry structural modifications of Paeoniflorin (Pae). CP-25 inhibited B cells proliferation stimulated by B cell activating factor belonging to the TNF family (BAFF) or Tumor necrosis factor alpha (TNF-alpha). CP-25, Rituximab and Etanercept reduced the percentage and numbers of CD19+ B cells, CD19+CD20+ B cells, CD19+CD27+ B cells and CD19+CD20+CD27+ B cells induced by BAFF or TNF-alpha. There was significant difference between CP-25 and Rituximab or CP-25 and Etanercept. CP-25 down-regulated the high expression of BAFFR, BCMA, and TACI stimulated by BAFF or TNF-alpha. The effects of Rituximab and Etanercept on BAFFR or BCMA were stronger than that of CP-25. CP-25, Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha. CP-25, Rituximab and Etanercept down-regulated the expression of MKK3, P-p38, P-p65, TRAF2, and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha. These results suggest that CP-25 regulated moderately activated B cells function by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway. This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jin-Ling Shu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Ying Li
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu-Jing Wu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xian-Zheng Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Le Han
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiao-Yu Tang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Chen Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Qing-Tong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jing-Yu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yan Chang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Hua-Xun Wu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Ling-Ling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Ma Q, Wu X, Wu J, Liang Z, Liu T. SERP1 is a novel marker of poor prognosis in pancreatic ductal adenocarcinoma patients via anti-apoptosis and regulating SRPRB/NF-κB axis. Int J Oncol 2017; 51:1104-1114. [PMID: 28902358 PMCID: PMC5592859 DOI: 10.3892/ijo.2017.4111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Stress associated endoplasmic reticulum protein 1 (SERP1), can cause accumulation of unfolded proteins in ER stress. However, studies on the role of SERP1 in pancreatic ductal adenocarcinoma (PDAC) are still incomplete. The present study aimed at identifying whether SERP1 acts as a potential novel prognostic marker of PDAC, and analyzed its possible mechanism. GEO database analysis showed SERP1 was significantly upregulated in PDAC tissues, and strongly associated with advanced clinical stage of PDAC patients from TCGA database. Univariate and multivariate Cox regression analysis further revealed SERP1 high expression was an independent factor for the prognosis of PDAC. Gene set enrichment analysis (GSEA) revealed that SERP1 was mainly involved in regulating cell apoptosis and nuclear factor-κB (NF-κB) signaling pathway, and downregulated SERP1 significantly promoted PANC-1 cell apoptosis. To further explore its possible mechanism, protein-protein interaction (PPI) and gene ontology (GO) analysis showed the functions of proteins interacting with SERP1 were mainly enriched in regulating cell apoptosis, and SRP receptor β subunit (SRPRB) was the core of the whole PPI network. The expression of SERP1 was negatively correlated with SRPRB expression. In vitro, downregulated SERP1 significantly increased SRPRB expression. Furthermore, upregulated SRPRB could increase cell apoptosis rate and decreased the expression level of NF-κB and the phosphorylation NF-κB. The above results indicated that SERP1 as a potential novel prognostic marker of PDAC probably via regulating cell apoptosis and NF-κB activation, which may be associated with SRPRB.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiuxiu Wu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jing Wu
- Department of Medical Imaging, Beijing Huairou Hospital, University of Chinese Academy of Science, Beijing 101400, P.R. China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Tonghua Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
10
|
Du MQ. MALT lymphoma: Genetic abnormalities, immunological stimulation and molecular mechanism. Best Pract Res Clin Haematol 2017; 30:13-23. [DOI: 10.1016/j.beha.2016.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023]
|
11
|
Kuo SH, Tsai HJ, Lin CW, Yeh KH, Lee HW, Wei MF, Shun CT, Wu MS, Hsu PN, Chen LT, Cheng AL. The B-cell-activating factor signalling pathway is associated with Helicobacter pylori independence in gastric mucosa-associated lymphoid tissue lymphoma without t(11;18)(q21;q21). J Pathol 2017; 241:420-433. [PMID: 27873317 DOI: 10.1002/path.4852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 10/22/2016] [Accepted: 10/30/2016] [Indexed: 12/14/2022]
Abstract
We previously reported that activation of the B-cell-activating factor (BAFF) pathway upregulates nuclear factor-κB (NF-κB) and induces BCL3 and BCL10 nuclear translocation in Helicobacter pylori (HP)-independent gastric diffuse large B-cell lymphoma (DLBCL) tumours with evidence of mucosa-associated lymphoid tissue (MALT). However, the significance of BAFF expression in HP independence of gastric low-grade MALT lymphomas without t(11;18)(q21;q21) remains unexplored. Sixty-four patients who underwent successful HP eradication for localized HP-positive gastric MALT lymphomas without t(11;18)(q21;q21) were studied. BAFF expression was significantly higher in the HP-independent group than in the HP-dependent group [22/26 (84.6%) versus 8/38 (21.1%); p < 0.001]. Similarly, BAFF receptor (BAFF-R) expression (p = 0.004) and nuclear BCL3 (p = 0.004), BCL10 (p < 0.001), NF-κB (p65) (p = 0.001) and NF-κB (p52) (p = 0.005) expression were closely correlated with the HP independence of these tumours. Moreover, BAFF overexpression was significantly associated with BAFF-R expression and nuclear BCL3, BCL10, NF-κB (p65) and NF-κB (p52) expression. These findings were further validated in an independent cohort, including 40 HP-dependent cases and 18 HP-independent cases of gastric MALT lymphoma without t(11;18)(q21;q21). The biological significance of BAFF signalling in t(11;18)(q21;q21)-negative lymphoma cells was further studied in two types of lymphoma B cell: OCI-Ly3 [non-germinal centre B-cell origin DLBCL without t(11;18)(q21;q21) cell line] and MA-1 [t(14;18)(q32;q21)/IGH-MALT1-positive DLBCL cell line]. In both cell lines, we found that BAFF activated the canonical NF-κB and AKT pathways, and induced the formation of BCL10-BCL3 complexes, which translocated to the nucleus. BCL10 and BCL3 nuclear translocation and NF-κB (p65) transactivation were inhibited by either LY294002 or by silencing BCL3 or BCL10 with small interfering RNA. BAFF also activated non-canonical NF-κB pathways (p52) through tumour necrosis factor receptor-associated factor 3 degradation, NF-κB-inducing kinase accumulation, inhibitor of κB kinase (IKK) α/β phosphorylation and NF-κB p100 processing in both cell lines. Our data indicate that the autocrine BAFF signal transduction pathway contributes to HP independence in gastric MALT lymphomas without the t(11;18)(q21;q21) translocation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Wu Lin
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kun-Huei Yeh
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiao-Wei Lee
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Feng Wei
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ping-Ning Hsu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, National Cheng-Kung University Hospital, Tainan, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| |
Collapse
|
12
|
Du MQ. MALT lymphoma: A paradigm of NF-κB dysregulation. Semin Cancer Biol 2016; 39:49-60. [PMID: 27452667 DOI: 10.1016/j.semcancer.2016.07.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/12/2016] [Accepted: 07/20/2016] [Indexed: 01/29/2023]
Abstract
Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) invariably arises from a background of chronic microbial infection and/or autoimmune disorder at diverse mucosal sites. The prolonged chronic infection and/or autoimmunity generate active immune and inflammatory responses that provide a setting for evolution and development of autoreactive B-cells, their expansion and eventual malignant transformation following acquisition of genetic changes. The immune responses also play a critical role in sustaining the growth and survival of the transformed cells as shown by complete regression of a high proportion of MALT lymphoma of the stomach, ocular adnexa and skin following anti-microbial treatment. B-cell receptor engagement by auto-antigen as well as T-cell help including both cognate interaction and bystander help via soluble ligands such as CD40L and BAFF are thought to underpin the immunological drive in the lymphoma development through activation of the canonical and non-canonical NF-κB pathway respectively. Similarly, the three MALT lymphoma associated chromosome translocations, namely t(1;14)(p22;q32)/BCL10-IGH, t(14;18)(q32;q21)/IGH-MALT1,and t(11;18)(q21;q21)/BIRC3 (API2)-MALT1, are also capable of activating both canonical and non-canonical NF-κB pathways. Furthermore, TNFAIP3 (A20) inactivation by deletion and/or mutation abolishes the auto-negative feedback to several signalling including BCR and TLR, which connect to the canonical NF-κB activation pathway. Thus, there is a considerable overlap in the molecular pathways dysregulated by immunological drive and somatic genetic changes, strongly arguing for their oncogenic cooperation in the development of MALT lymphoma.
Collapse
Affiliation(s)
- Ming-Qing Du
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Pérez de Diego R, Sánchez-Ramón S, López-Collazo E, Martínez-Barricarte R, Cubillos-Zapata C, Ferreira Cerdán A, Casanova JL, Puel A. Genetic errors of the human caspase recruitment domain-B-cell lymphoma 10-mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: Molecular, immunologic, and clinical heterogeneity. J Allergy Clin Immunol 2015; 136:1139-49. [PMID: 26277595 DOI: 10.1016/j.jaci.2015.06.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022]
Abstract
Three members of the caspase recruitment domain (CARD) family of adaptors (CARD9, CARD10, and CARD11) are known to form heterotrimers with B-cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1). These 3 CARD-BCL10-MALT1 (CBM) complexes activate nuclear factor κB in both the innate and adaptive arms of immunity. Human inherited defects of the 3 components of the CBM complex, including the 2 adaptors CARD9 and CARD11 and the 2 core components BCL10 and MALT1, have recently been reported. Biallelic loss-of-function mutant alleles underlie several different immunologic and clinical phenotypes, which can be assigned to 2 distinct categories. Isolated invasive fungal infections of unclear cellular basis are associated with CARD9 deficiency, whereas a broad range of clinical manifestations, including those characteristic of T- and B-lymphocyte defects, are associated with CARD11, MALT1, and BCL10 deficiencies. Interestingly, human subjects with these mutations have some features in common with the corresponding knockout mice, but other features are different between human subjects and mice. Moreover, germline and somatic gain-of-function mutations of MALT1, BCL10, and CARD11 have also been found in patients with other lymphoproliferative disorders. This broad range of germline and somatic CBM lesions, including loss-of-function and gain-of-function mutations, highlights the contribution of each of the components of the CBM complex to human immunity.
Collapse
Affiliation(s)
- Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain.
| | | | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Laboratory of Tumor Immunology, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Rubén Martínez-Barricarte
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Laboratory of Tumor Immunology, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | | | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University Paris Descartes, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University Paris Descartes, Imagine Institute, Paris, France
| |
Collapse
|
14
|
Liu M, Song W, Zhang J, Sun M, Sun X, Yu Q. Non-canonical NF-κB Plays a Pivotal Role in Non-Hodgkin’s Lymphoma. Cell Biochem Biophys 2015; 72:681-5. [DOI: 10.1007/s12013-015-0518-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Gardam S, Brink R. Non-Canonical NF-κB Signaling Initiated by BAFF Influences B Cell Biology at Multiple Junctures. Front Immunol 2014; 4:509. [PMID: 24432023 PMCID: PMC3880999 DOI: 10.3389/fimmu.2013.00509] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/24/2013] [Indexed: 01/13/2023] Open
Abstract
It has been more than a decade since it was recognized that the nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) transcription factor family was activated by two distinct pathways: the canonical pathway involving NF-κB1 and the non-canonical pathway involving NF-κB2. During this time a great deal of evidence has been amassed on the ligands and receptors that activate these pathways, the cytoplasmic adapter molecules involved in transducing the signals from receptors to nucleus, and the resulting physiological outcomes within body tissues. In contrast to NF-κB1 signaling, which can be activated by a wide variety of receptors, the NF-κB2 pathway is typically only activated by a subset of receptor and ligand pairs belonging to the tumor necrosis factor (TNF) family. Amongst these is B cell activating factor of the TNF family (BAFF) and its receptor BAFFR. Whilst BAFF is produced by many cell types throughout the body, BAFFR expression appears to be restricted to the hematopoietic lineage and B cells in particular. For this reason, the main physiological outcomes of BAFF mediated NF-κB2 activation are confined to B cells. Indeed BAFF mediated NF-κB2 signaling contributes to peripheral B cell survival and maturation as well as playing a role in antibody responses and long term maintenance plasma cells. Thus the importance BAFF and NF-κB2 permeates the entire B cell lifespan and impacts on this important component of the immune system in a variety of ways.
Collapse
Affiliation(s)
- Sandra Gardam
- Immunology Division, Garvan Institute of Medical Research , Darlinghurst, NSW , Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research , Darlinghurst, NSW , Australia ; St. Vincent's Clinical School, University of New South Wales , Darlinghurst, NSW , Australia
| |
Collapse
|