1
|
Costa GL, Sautto GA. Towards an HCV vaccine: an overview of the immunization strategies for eliciting an effective B-cell response. Expert Rev Vaccines 2025; 24:96-120. [PMID: 39825640 DOI: 10.1080/14760584.2025.2452955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Fifty-eight million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development. The protective role of the humoral response directed against the HCV E2 glycoprotein is well established, and broadly neutralizing antibodies play a crucial role in effective viral clearance. AREAS COVERED This review explores the HCV targets and the different vaccination approaches, encompassing different expression systems, antigen selection strategies, and delivery methods, focusing on those aimed at eliciting a broad and effective humoral response. Our search criteria included the keywords 'HCV,' 'Hepatitis C,' and 'vaccine' using publicly available databases. Following the screening, 54 papers were selected. EXPERT OPINION The investigation of novel vaccine platforms beyond traditional approaches is necessary. While progress has been made in this direction, continued investigations on the HCV virology, immunology, and vaccinology are essential to surmount associated obstacles, heling in the development of an HCV vaccine that can benefit the global public health.
Collapse
Affiliation(s)
- Gabriel L Costa
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| |
Collapse
|
2
|
Costa GL, Sautto GA. Exploring T-Cell Immunity to Hepatitis C Virus: Insights from Different Vaccine and Antigen Presentation Strategies. Vaccines (Basel) 2024; 12:890. [PMID: 39204016 PMCID: PMC11359689 DOI: 10.3390/vaccines12080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The hepatitis C virus (HCV) is responsible for approximately 50 million infections worldwide. Effective drug treatments while available face access barriers, and vaccine development is hampered by viral hypervariability and immune evasion mechanisms. The CD4+ and CD8+ T-cell responses targeting HCV non-structural (NS) proteins have shown a role in the viral clearance. In this paper, we reviewed the studies exploring the relationship between HCV structural and NS proteins and their effects in contributing to the elicitation of an effective T-cell immune response. The use of different vaccine platforms, such as viral vectors and virus-like particles, underscores their versability and efficacy for vaccine development. Diverse HCV antigens demonstrated immunogenicity, eliciting a robust immune response, positioning them as promising vaccine candidates for protein/peptide-, DNA-, or RNA-based vaccines. Moreover, adjuvant selection plays a pivotal role in modulating the immune response. This review emphasizes the importance of HCV proteins and vaccination strategies in vaccine development. In particular, the NS proteins are the main focus, given their pivotal role in T-cell-mediated immunity and their sequence conservation, making them valuable vaccine targets.
Collapse
Affiliation(s)
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA;
| |
Collapse
|
3
|
Shayeghpour A, Kianfar R, Hosseini P, Ajorloo M, Aghajanian S, Hedayat Yaghoobi M, Hashempour T, Mozhgani SH. Hepatitis C virus DNA vaccines: a systematic review. Virol J 2021; 18:248. [PMID: 34903252 PMCID: PMC8667529 DOI: 10.1186/s12985-021-01716-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Vaccination against HCV is an effective measure in reduction of virus-related public health burden and mortality. However, no prophylactic vaccine is available as of yet. DNA-based immunization is a promising modality to generate cellular and humoral immune responses. The objective of this study is to provide a systematic review of HCV DNA vaccines and investigate and discuss the strategies employed to optimize their efficacies. METHODS MEDLINE (PubMed), Web of Science, Scopus, ScienceDirect, and databases in persian language including the Regional Information Centre for Science & Technology (RICeST), the Scientific Information Database and the Iranian Research Institute for Information Science and Technology (IranDoc) were examined to identify studies pertaining to HCV nucleic acid vaccine development from 2000 to 2020. RESULTS Twenty-seven articles were included. Studies related to HCV RNA vaccines were yet to be published. A variety of strategies were identified with the potential to optimize HCV DNA vaccines such as incorporating multiple viral proteins and molecular tags such as HBsAg and Immunoglobulin Fc, multi-epitope expression, co-expression plasmid utilization, recombinant subunit immunogens, heterologous prime-boosting, incorporating NS3 mutants in DNA vaccines, utilization of adjuvants, employment of less explored methods such as Gene Electro Transfer, construction of multi- CTL epitopes, utilizing co/post translational modifications and polycistronic genes, among others. The effectiveness of the aforementioned strategies in boosting immune response and improving vaccine potency was assessed. CONCLUSIONS The recent progress on HCV vaccine development was examined in this systematic review to identify candidates with most promising prophylactic and therapeutic potential.
Collapse
Affiliation(s)
- Ali Shayeghpour
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Roya Kianfar
- Department of Medical Virology, Tarbiat Modares University, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ajorloo
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sepehr Aghajanian
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mojtaba Hedayat Yaghoobi
- Department of Infectious Disease, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Tayebeh Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
4
|
Hasanshahi Z, Hashempour A, Ghasabi F, Moayedi J, Musavi Z, Dehghani B, Sharafi H, Joulaei H. First report on molecular docking analysis and drug resistance substitutions to approved HCV NS5A and NS5B inhibitors amongst Iranian patients. BMC Gastroenterol 2021; 21:443. [PMID: 34819046 PMCID: PMC8612383 DOI: 10.1186/s12876-021-01988-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background NS5A and NS5B proteins of hepatitis C virus (HCV) are the main targets of compounds that directly inhibit HCV infections. However, the emergence of resistance-associated substitutions (RASs) may cause substantial reductions in susceptibility to inhibitors. Methods Viral load and genotyping were determined in eighty-seven naïve HCV-infected patients, and the amplified NS5A and NS5B regions were sequenced by Sanger sequencing. In addition, physicochemical properties, structural features, immune epitopes, and inhibitors-protein interactions of sequences were analyzed using several bioinformatics tools. Results Several amino acid residue changes were found in NS5A and NS5B proteins; however, we did not find any mutations related to resistance to the treatment in NS5B. Different phosphorylation and few glycosylation sites were assessed. Disulfide bonds were identified in both proteins that had a significant effect on the function and structure of HCV proteins. Applying reliable software to predict B-cell epitopes, 3 and 5 regions were found for NS5A and NS5B, respectively, representing a considerable potential to induce the humoral immune system. Docking analysis determined amino acids involved in the interaction of inhibitors and mentioned proteins may not decrease the drug efficiency. Conclusions Strong interactions between inhibitors, NS5A and NS5B proteins and the lack of efficient drug resistance mutations in the analyzed sequences may confirm the remarkable ability of NS5A and NS5B inhibitors to control HCV infection amongst Iranian patients. The results of bioinformatics analysis could unveil all features of both proteins, which can be beneficial for further investigations on HCV drug resistance and designing novel vaccines. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01988-y.
Collapse
Affiliation(s)
- Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Farzane Ghasabi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Musavi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heidar Sharafi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Middle East Liver Diseases (MELD) Center, Tehran, Iran
| | - Hassan Joulaei
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
6
|
Koutsoumpli G, Ip PP, Schepel I, Hoogeboom BN, Boerma A, Daemen T. Alphavirus-based hepatitis C virus therapeutic vaccines: can universal helper epitopes enhance HCV-specific cytotoxic T lymphocyte responses? Ther Adv Vaccines Immunother 2019; 7:2515135519874677. [PMID: 31620673 PMCID: PMC6777054 DOI: 10.1177/2515135519874677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Antigen-specific T cell immune responses play a pivotal role in resolving
acute and chronic hepatitis C virus (HCV) infections. Currently, no
prophylactic or therapeutic vaccines against HCV are available. We
previously demonstrated the preclinical potency of therapeutic HCV vaccines
based on recombinant Semliki Forest virus (SFV) replicon particles. However,
clinical trials do not always meet the high expectations of preclinical
studies, thus, optimization of vaccine strategies is crucial. In efforts to
further increase the frequency of HCV-specific immune responses in the
candidate SFV-based vaccines, the authors assessed whether inclusion of
three strong, so-called universal helper T cell epitopes, and an endoplasmic
reticulum localization, and retention signal (collectively termed
sigHELP-KDEL cassette) could enhance HCV-specific immune responses. Methods: We included the sigHELP-KDEL cassette in two of the candidate SFV-based HCV
vaccines, targeting NS3/4A and NS5A/B proteins. We characterized the new
constructs in vitro for the expression and stability of the
transgene-encoded proteins. Their immune efficacy with respect to
HCV-specific immune responses in vivo was compared with the
parental SFV vaccine expressing the corresponding HCV antigen. Further
characterization of the functionality of the HCV-specific CD8+ T
cells was assessed by surface and intracellular cytokine staining and flow
cytometry analysis. Results: Moderate, but significantly, enhanced frequencies of antigen-specific immune
responses were achieved upon lower/suboptimal dosage immunization. In
optimal dosage immunization, the inclusion of the cassette did not further
increase the frequencies of HCV-specific CD8+ T cells when
compared with the parental vaccines and the frequencies of effector and
memory populations were identical. Conclusion: We hypothesize that the additional effect of the sigHELP-KDEL cassette in
SFV-based vaccines depends on the immunogenicity, nature, and stability of
the target antigen expressed by the vaccine.
Collapse
Affiliation(s)
- Georgia Koutsoumpli
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peng Peng Ip
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ilona Schepel
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Baukje Nynke Hoogeboom
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Annemarie Boerma
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Toos Daemen
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| |
Collapse
|
7
|
Holmström F, Chen M, Balasiddaiah A, Sällberg M, Ahlén G, Frelin L. Functional differences in hepatitis C virus nonstructural (NS) 3/4A- and 5A-specific T cell responses. Sci Rep 2016; 6:24991. [PMID: 27141891 PMCID: PMC4855235 DOI: 10.1038/srep24991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
The hepatitis C virus nonstructural (NS) 3/4A and NS5A proteins are major targets for the new direct-acting antiviral compounds. Both viral proteins have been suggested as modulators of the response to the host cell. We have shown that NS3/4A- and NS5A-specific T cell receptors confer different effector functions, and that killing of NS3/4A-expressing hepatocytes is highly dependent on IFN-γ. We here characterize the functional differences in the T cell responses to NS3/4A and NS5A. NS3/4A- and NS5A-specific T cells could be induced at various frequencies in wild-type-, NS3/4A-, and NS5A-transgenic mice. Priming of NS5A-specific T cells required a high DNA dose, and was unlike NS3/4A dependent on both CD4+ and CD8+ T cells, but less influenced by CD25+/GITR+ regulatory T cells. The presence of IL-12 greatly improved specific CD8+ T cell priming by NS3/4A but not by NS5A, suggesting a less dependence of IFN-γ for NS5A. This notion was supported by the observation that NS5A-specific T cells could eliminate NS5A-expressing hepatocytes also in the absence of IFN-γ-receptor-2. This supports that NS3/4A- and NS5A-specific T cells become activated and eliminate antigen expressing, or infected hepatocytes, by distinct mechanisms, and that NS5A-specific T cells show an overall less dependence of IFN-γ.
Collapse
Affiliation(s)
- Fredrik Holmström
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Margaret Chen
- Department of Dental Medicine, Karolinska Institutet, Huddinge, S-141 04 Stockholm, Sweden
| | - Anangi Balasiddaiah
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.,Department of Dental Medicine, Karolinska Institutet, Huddinge, S-141 04 Stockholm, Sweden
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| |
Collapse
|
8
|
Jones CH, Hakansson AP, Pfeifer BA. Biomaterials at the interface of nano- and micro-scale vector-cellular interactions in genetic vaccine design. J Mater Chem B 2014; 46:8053-8068. [PMID: 29887986 PMCID: PMC5990286 DOI: 10.1039/c4tb01058b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The development of safe and effective vaccines for the prevention of elusive infectious diseases remains a public health priority. Immunization, characterized by adaptive immune responses to specific antigens, can be raised by an array of delivery vectors. However, current commercial vaccination strategies are predicated on the retooling of archaic technology. This review will discuss current and emerging strategies designed to elicit immune responses in the context of genetic vaccination. Selected strategies at the biomaterial-biological interface will be emphasized to illustrate the potential of coupling both fields towards a common goal.
Collapse
Affiliation(s)
- Charles H Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anders P Hakansson
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| |
Collapse
|
9
|
Long-term functional duration of immune responses to HCV NS3/4A induced by DNA vaccination. Gene Ther 2014; 21:739-50. [PMID: 24871581 PMCID: PMC4126484 DOI: 10.1038/gt.2014.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/18/2014] [Accepted: 04/14/2014] [Indexed: 12/26/2022]
Abstract
We have investigated the ability of hepatitis C virus non-structural (NS) 3/4A-DNA-based vaccines to activate long-term cell-mediated immune responses in mice. Wild-type and synthetic codon optimized (co) NS3/4A DNA vaccines have previously been shown to be immunogenic in mice, rabbits and humans, although we have very poor knowledge about the longevity of the immune responses primed. We therefore analyzed the functionality of primed NS3/4A-specific immune responses in BALB/c (H-2d) and/or C57BL/6J (H-2b) mice 1, 2, 3, 4, 6, 12 and 16 months after the last immunization. Mice were immunized one, two, three or four times using gene gun delivery to the skin or by intramuscular administration. Immunological responses after immunization were monitored by protection against in vivo challenge of NS3/4A-expressing syngeneic tumor cells. In addition, functionality of the NS3/4A-specific T cells was analyzed by a standard cytotoxicity assay. First, we identified a new unique murine H-2d-restricted NS3/4A cytotoxic T lymphocyte (CTL) epitope, which enabled us to study the epitope-specific immune responses. Our results show that the coNS3/4A vaccine was highly immunogenic by determination of interferon-γ/tumor necrosis factor-α production and lytic cytotoxic T cells, which could efficiently inhibit in vivo tumor growth. Importantly, we showed that one to four monthly immunizations protected mice from tumor development when challenged up to 16 months after the last immunization. When determining the functionality of NS3/4A-specific T cells in vitro, we showed detectable lytic activity up to 12 months after the last immunization. Thus, NS3/4A-based DNA vaccines activate potent cellular immune responses that are present and function in both BALB/c and C57BL/6J mice up to 12–16 months after the last immunization. The induction of long-term immunity after NS3/4A DNA immunization has not been shown previously and supports the use of NS3/4A in hepatitis C virus vaccine compositions.
Collapse
|
10
|
Alphavirus-based vaccines encoding nonstructural proteins of hepatitis C virus induce robust and protective T-cell responses. Mol Ther 2013; 22:881-90. [PMID: 24370701 DOI: 10.1038/mt.2013.287] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/17/2013] [Indexed: 01/07/2023] Open
Abstract
An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all- or a part of the conserved nonstructural proteins (nsPs) of HCV. We demonstrated that an rSFV vector was able to encode a transgene as large as 6.1 kb without affecting its vaccine immunogenicity. Prime-boost immunizations of mice with rSFV expressing all nsPs induced strong and long-lasting NS3-specific CD8(+) T-cell responses. The strength and functional heterogeneity of the T-cell response was similar to that induced with rSFV expressing only NS3/4A. Furthermore this leads to a significant growth delay and negative selection of HCV-expressing EL4 tumors in an in vivo mouse model. In general, as broad-spectrum T-cell responses are only seen in patients with resolved HCV infection, this rSFV-based vector, which expresses all nsPs, inducing robust T-cell activity has a potential for the treatment of HCV infections.
Collapse
|
11
|
Wada T, Kohara M, Yasutomi Y. DNA vaccine expressing the non-structural proteins of hepatitis C virus diminishes the expression of HCV proteins in a mouse model. Vaccine 2013; 31:5968-74. [PMID: 24144476 DOI: 10.1016/j.vaccine.2013.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/08/2013] [Indexed: 12/20/2022]
Abstract
Most of the people infected with hepatitis C virus (HCV) develop chronic hepatitis, which in some cases progresses to cirrhosis and ultimately to hepatocellular carcinoma. Although various immunotherapies against the progressive disease status of HCV infection have been studied, a preventive or therapeutic vaccine against this pathogen is still not available. In this study, we constructed a DNA vaccine expressing an HCV structural protein (CN2), non-structural protein (N25) or the empty plasmid DNA as a control and evaluated their efficacy as a candidate HCV vaccine in C57BL/6 and novel genetically modified HCV infection model (HCV-Tg) mice. Strong cellular immune responses to several HCV structural and non-structural proteins, characterized by cytotoxicity and interferon-gamma (IFN-γ) production, were observed in CN2 or N25 DNA vaccine-immunized C57BL/6 mice but not in empty plasmid DNA-administered mice. The therapeutic effects of these DNA vaccines were also examined in HCV-Tg mice that conditionally express HCV proteins in their liver. Though a reduction in cellular immune responses was observed in HCV-Tg mice, there was a significant decrease in the expression of HCV protein in mice administered the N25 DNA vaccine but not in mice administered the empty plasmid DNA. Moreover, both CD8(+) and CD4(+) T cells were required for the decrease of HCV protein in the liver. We found that the N25 DNA vaccine improved pathological changes in the liver compared to the empty plasmid DNA. Thus, these DNA vaccines, especially that expressing the non-structural protein gene, may be an alternative approach for treatment of individuals chronically infected with HCV.
Collapse
Affiliation(s)
- Takeshi Wada
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
12
|
Flingai S, Czerwonko M, Goodman J, Kudchodkar SB, Muthumani K, Weiner DB. Synthetic DNA vaccines: improved vaccine potency by electroporation and co-delivered genetic adjuvants. Front Immunol 2013; 4:354. [PMID: 24204366 PMCID: PMC3816528 DOI: 10.3389/fimmu.2013.00354] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/20/2013] [Indexed: 01/07/2023] Open
Abstract
In recent years, DNA vaccines have undergone a number of technological advancements that have incited renewed interest and heightened promise in the field. Two such improvements are the use of genetically engineered cytokine adjuvants and plasmid delivery via in vivo electroporation (EP), the latter of which has been shown to increase antigen delivery by nearly 1000-fold compared to naked DNA plasmid delivery alone. Both strategies, either separately or in combination, have been shown to augment cellular and humoral immune responses in not only mice, but also in large animal models. These promising results, coupled with recent clinical trials that have shown enhanced immune responses in humans, highlight the bright prospects for DNA vaccines to address many human diseases.
Collapse
Affiliation(s)
- Seleeke Flingai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | | | | | | | | | | |
Collapse
|