1
|
Britt RD, Ruwanpathirana A, Ford ML, Lewis BW. Macrophages Orchestrate Airway Inflammation, Remodeling, and Resolution in Asthma. Int J Mol Sci 2023; 24:10451. [PMID: 37445635 PMCID: PMC10341920 DOI: 10.3390/ijms241310451] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a heterogenous chronic inflammatory lung disease with endotypes that manifest different immune system profiles, severity, and responses to current therapies. Regardless of endotype, asthma features increased immune cell infiltration, inflammatory cytokine release, and airway remodeling. Lung macrophages are also heterogenous in that there are separate subsets and, depending on the environment, different effector functions. Lung macrophages are important in recruitment of immune cells such as eosinophils, neutrophils, and monocytes that enhance allergic inflammation and initiate T helper cell responses. Persistent lung remodeling including mucus hypersecretion, increased airway smooth muscle mass, and airway fibrosis contributes to progressive lung function decline that is insensitive to current asthma treatments. Macrophages secrete inflammatory mediators that induce airway inflammation and remodeling. Additionally, lung macrophages are instrumental in protecting against pathogens and play a critical role in resolution of inflammation and return to homeostasis. This review summarizes current literature detailing the roles and existing knowledge gaps for macrophages as key inflammatory orchestrators in asthma pathogenesis. We also raise the idea that modulating inflammatory responses in lung macrophages is important for alleviating asthma.
Collapse
Affiliation(s)
- Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Anushka Ruwanpathirana
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Maria L Ford
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Brandon W Lewis
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| |
Collapse
|
2
|
From Allergy to Cancer-Clinical Usefulness of Eotaxins. Cancers (Basel) 2021; 13:cancers13010128. [PMID: 33401527 PMCID: PMC7795139 DOI: 10.3390/cancers13010128] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Eotaxins are small proteins included in the group of chemokines. They act mainly on blood cells called eosinophils which are involved in the pathogenesis of inflammatory processes. This connection leads to involvement of eotaxins in the pathogenesis of all inflammatory related diseases, such as allergic diseases and cancer. This paper summarizes the current knowledge about eotaxins, showing their usefulness as markers that can be used not only in the detection of these diseases, but also to determine the effectiveness of treatment. Abstract Eotaxins are proteins which belong to the group of cytokines. These small molecules are secreted by cells that are mainly involved in immune-mediated reactions in the course of allergic diseases. Eotaxins were discovered in 1994 and their main role was considered to be the selective recruitment of eosinophils. As those blood cells are involved in the course of all inflammatory diseases, including cancer, we decided to perform an extensive search of the literature pertaining to our investigation via the MEDLINE/PubMed database. On the basis of available literature, we can assume that eotaxins can be used as markers for the detection and determination of origin or type of allergic disease. Many publications also confirm that eotaxins can be used in the determination of allergic disease treatment. Moreover, there are also studies indicating a connection between eotaxins and cancer. Some researchers revealed that CCL11 (C-C motif chemokine ligand 11, eotaxin-1) concentrations differed between the control and tested groups indicating their possible usefulness in cancer detection. Furthermore, some papers showed usefulness of eotaxins in determining the treatment efficacy as markers of decreasing inflammation. Therefore, in this paper we present the current knowledge on eotaxins in the course of allergic and cancerous diseases.
Collapse
|
3
|
Sing CW, Kiel DP, Hubbard RB, Lau WC, Li GH, Kung AW, Wong IC, Cheung CL. Nitrogen-Containing Bisphosphonates Are Associated With Reduced Risk of Pneumonia in Patients With Hip Fracture. J Bone Miner Res 2020; 35:1676-1684. [PMID: 32488902 DOI: 10.1002/jbmr.4030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 01/12/2023]
Abstract
The objective of this work was to study the risk of pneumonia and pneumonia mortality among patients receiving nitrogen-containing bisphosphonates (N-BPs), non-N-BP anti-osteoporosis medications, and no anti-osteoporosis medications after hip fracture. We studied a historical cohort using a population-wide database. Patients with first hip fracture during 2005-2015 were identified and matched by time-dependent propensity score. The cohort was followed until December 31, 2016, to capture any pneumonia and pneumonia mortality. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox-proportional hazards regression. Absolute risk difference (ARD) and number needed to treat (NNT) were calculated. We identified 54,047 patients with hip fracture. Of these, 4041 patients who received N-BPs and 11,802 without anti-osteoporosis medication were propensity score-matched. N-BPs were associated with a significantly lower risk of pneumonia compared with no treatment (6.9 versus 9.0 per 100 person-years; HR 0.76; 95% CI, 0.70 to 0.83), resulting in an ARD of 0.02 and NNT of 46. A similar association was observed with pneumonia mortality (HR 0.65; 95% CI, 0.56 to 0.75). When N-BPs were compared with non-N-BP anti-osteoporosis medications, the association remained significant. N-BPs were associated with lower risks of pneumonia and pneumonia mortality. Randomized controlled trials are now required to determine whether N-BPs, non-vaccine-based medications, can reduce pneumonia incidence in high risk groups. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chor-Wing Sing
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research Hebrew SeniorLife, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Richard B Hubbard
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Wallis Cy Lau
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Research Department of Practice and Policy, University College London (UCL) School of Pharmacy, London, UK
| | - Gloria Hy Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Annie Wc Kung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ian Ck Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Research Department of Practice and Policy, University College London (UCL) School of Pharmacy, London, UK
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
4
|
Karamzad N, Izadi N, Sanaie S, Ahmadian E, Eftekhari A, Sullman MJM, Safiri S. Asthma and metabolic syndrome: a comprehensive systematic review and meta-analysis of observational studies. J Cardiovasc Thorac Res 2020; 12:120-128. [PMID: 32626552 PMCID: PMC7321001 DOI: 10.34172/jcvtr.2020.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/12/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction: This study aimed to perform a meta-analysis on the prevalence of metabolic syndrome (MetS) among patients with asthma and to measure the association asthma has with MetS.
Methods: The Web of Science, Medline, Scopus, Embase and Google Scholar were searched using the "Asthma", "Metabolic Syndrome", "Dysmetabolic Syndrome", "Cardiovascular Syndrome", "Insulin Resistance Syndrome", "Prevalence", "Odds Ratio", "Cross-Sectional Studies", and "Case-Control Studies" keywords. All observational studies reporting the prevalence of MetS among people with and without asthma were included in the study. In the presence of heterogeneity, random-effects models were used to pool the prevalence and odds ratios (OR), as measures of association in cross-sectional and case-control/ cohort studies, respectively. Results: The prevalence of MetS among patients with asthma (8 studies) and the OR comparing the prevalence of MetS among patients with and without asthma (5 studies) were pooled separately. The pooled prevalence of MetS among patients with asthma was found to be 25% (95% confidence interval (CI): 13%–38%). In contrast, the overall pooled OR for MetS in patients with asthma, compared to healthy controls, was 1.34 (95% CI: 0.91–1.76), which was not statistically significant. Conclusion: The prevalence of MetS was relatively high in patients with asthma. Furthermore, the odds of MetS was higher in patients with asthma, compared to healthy controls, although this difference was not statistically significant. More original studies among different populations are needed in order to more accurately examine the association between asthma and MetS, as well as the relationship asthma has with the individual components of MetS.
Collapse
Affiliation(s)
- Nahid Karamzad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Izadi
- Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Aziz Eftekhari
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mark J M Sullman
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus.,Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Saeid Safiri
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Jung K, Kim J, Ahn G, Matsuda H, Akane T, Ahn M, Shin T. Alendronate alleviates the symptoms of experimental autoimmune encephalomyelitis. Int Immunopharmacol 2020; 84:106534. [PMID: 32361191 DOI: 10.1016/j.intimp.2020.106534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022]
Abstract
Nitrogen-containing bisphosphonates, such as alendronate, have been widely used to treat osteoporosis because they may target multiple signals in the mevalonate cascade. The present study evaluated the therapeutic effects of alendronate on experimental autoimmune encephalomyelitis (EAE), which is a prototypical autoimmune disease model. EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide. The mice were checked daily for clinical symptoms, such as paralysis, and the levels of inflammatory cytokines were analyzed using ELISA, western blot analyses, and immunohistochemistry. The daily oral administration of alendronate to EAE-induced mice significantly reduced the severity of paralysis and lowered T cell proliferation. Additionally, histopathological examinations confirmed that alendronate mitigated inflammation in the spinal cord after EAE induction, suppressed the infiltration of CD68-positive inflammatory cells, and reduced the production of various pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, as well as inducible nitric oxide synthase (iNOS). Furthermore, the alendronate-treated group exhibited a decrease in the number of iNOS-positive inflammatory cells compared to the vehicle-treated group. Taken together, the present results suggest that alendronate alleviated neuro-inflammation in the spinal cords of EAE-induced mice, which is an animal model of multiple sclerosis, possibly by inhibiting the downstream effects of the mevalonate cascade.
Collapse
Affiliation(s)
- Kyungsook Jung
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Republic of Korea
| | - Jeongtae Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea; Department of Anatomy, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - Hiroshi Matsuda
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan; Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tanaka Akane
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan; Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Meejung Ahn
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea; Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
6
|
Yamazumi Y, Sasaki O, Suyama-Fuchino S, Kohu K, Kamoshida Y, Harada H, Fujio K, Oda T, Akiyama T. The RNA-binding protein Mex-3B plays critical roles in the development of steroid-resistant neutrophilic airway inflammation. Biochem Biophys Res Commun 2019; 519:220-226. [PMID: 31493864 DOI: 10.1016/j.bbrc.2019.08.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 01/18/2023]
Abstract
While most asthma can be treated with steroids, about 10%, called severe asthma, is refractory to steroids. It has recently been shown that in a subgroup of severe asthma cases, neutrophils that infiltrate into the airways play an important role in inflammation. However, the mechanisms underlying this increased neutrophil infiltration are not well understood. Here, using a mouse model of steroid-resistant neutrophilic inflammation, we show that mice deficient for the RNA-binding protein Mex-3B have significantly less neutrophil infiltration in the airways than wild-type mice. We further demonstrate that Mex-3B post-transcriptionally upregulates CXCL2, a chemokine that induces neutrophil chemotaxis and migration. Moreover, we show that treatment with either anti-CXCL2 antibody or anti-Mex-3B antisense oligonucleotide suppresses neutrophilic allergic airway inflammation. These results suggest that Mex-3B-mediated induction of CXCL2 is crucial for steroid-resistant neutrophilic allergic airway inflammation. Our findings suggest new strategies for therapeutic intervention in steroid-resistant severe asthma.
Collapse
Affiliation(s)
- Yusuke Yamazumi
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Oh Sasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Saki Suyama-Fuchino
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kazuyoshi Kohu
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yuki Kamoshida
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hiroaki Harada
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeaki Oda
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
7
|
Ha SG, Dileepan M, Ge XN, Kang BN, Greenberg YG, Rao A, Muralidhar G, Medina-Kauwe L, Thompson MA, Pabelick CM, O'Grady SM, Rao SP, Sriramarao P. Knob protein enhances epithelial barrier integrity and attenuates airway inflammation. J Allergy Clin Immunol 2018; 142:1808-1817.e3. [PMID: 29522849 PMCID: PMC6126992 DOI: 10.1016/j.jaci.2018.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 12/12/2017] [Accepted: 01/29/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Altered epithelial physical and functional barrier properties along with TH1/TH2 immune dysregulation are features of allergic asthma. Regulation of junction proteins to improve barrier function of airway epithelial cells has the potential for alleviation of allergic airway inflammation. OBJECTIVE We sought to determine the immunomodulatory effect of knob protein of the adenoviral capsid on allergic asthma and to investigate its mechanism of action on airway epithelial junction proteins and barrier function. METHODS Airway inflammation, including junction protein expression, was evaluated in allergen-challenged mice with and without treatment with knob. Human bronchial epithelial cells were exposed to knob, and its effects on expression of junction proteins and barrier integrity were determined. RESULTS Administration of knob to allergen-challenged mice suppressed airway inflammation (eosinophilia, airway hyperresponsiveness, and IL-5 levels) and prevented allergen-induced loss of airway epithelial occludin and E-cadherin expression. Additionally, knob decreased expression of TH2-promoting inflammatory mediators, specifically IL-33, by murine lung epithelial cells. At a cellular level, treatment of human bronchial epithelial cells with knob activated c-Jun N-terminal kinase, increased expression of occludin and E-cadherin, and enhanced epithelial barrier integrity. CONCLUSION Increased expression of junction proteins mediated by knob leading to enhanced epithelial barrier function might mitigate the allergen-induced airway inflammatory response, including asthma.
Collapse
Affiliation(s)
- Sung Gil Ha
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Mythili Dileepan
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Xiao Na Ge
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Bit Na Kang
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Yana G Greenberg
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Amrita Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | | | - Lali Medina-Kauwe
- Department of Biomedical Sciences, Cedars-Sinai Medical Center and Geffen School of Medicine, University of California-Los Angeles, Los Angeles, Calif
| | | | - Christina M Pabelick
- Departments of Anesthesiology and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minn
| | - Scott M O'Grady
- Departments of Animal Science and Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Savita P Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - P Sriramarao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn; Department of Medicine, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
8
|
Bratt JM, Chang KY, Rabowsky M, Franzi LM, Ott SP, Filosto S, Goldkorn T, Arif M, Last JA, Kenyon NJ, Zeki AA. Farnesyltransferase Inhibition Exacerbates Eosinophilic Inflammation and Airway Hyperreactivity in Mice with Experimental Asthma: The Complex Roles of Ras GTPase and Farnesylpyrophosphate in Type 2 Allergic Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3840-3856. [PMID: 29703864 PMCID: PMC5964018 DOI: 10.4049/jimmunol.1601317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Ras, a small GTPase protein, is thought to mediate Th2-dependent eosinophilic inflammation in asthma. Ras requires cell membrane association for its biological activity, and this requires the posttranslational modification of Ras with an isoprenyl group by farnesyltransferase (FTase) or geranylgeranyltransferase (GGTase). We hypothesized that inhibition of FTase using FTase inhibitor (FTI)-277 would attenuate allergic asthma by depleting membrane-associated Ras. We used the OVA mouse model of allergic inflammation and human airway epithelial (HBE1) cells to determine the role of FTase in inflammatory cell recruitment. BALB/c mice were first sensitized then exposed to 1% OVA aerosol or filtered air, and half were injected daily with FTI-277 (20 mg/kg per day). Treatment of mice with FTI-277 had no significant effect on lung membrane-anchored Ras, Ras protein levels, or Ras GTPase activity. In OVA-exposed mice, FTI-277 treatment increased eosinophilic inflammation, goblet cell hyperplasia, and airway hyperreactivity. Human bronchial epithelial (HBE1) cells were pretreated with 5, 10, or 20 μM FTI-277 prior to and during 12 h IL-13 (20 ng/ml) stimulation. In HBE1 cells, FTase inhibition with FTI-277 had no significant effect on IL-13-induced STAT6 phosphorylation, eotaxin-3 peptide secretion, or Ras translocation. However, addition of exogenous FPP unexpectedly augmented IL-13-induced STAT6 phosphorylation and eotaxin-3 secretion from HBE1 cells without affecting Ras translocation. Pharmacological inhibition of FTase exacerbates allergic asthma, suggesting a protective role for FTase or possibly Ras farnesylation. FPP synergistically augments epithelial eotaxin-3 secretion, indicating a novel Ras-independent farnesylation mechanism or direct FPP effect that promotes epithelial eotaxin-3 production in allergic asthma.
Collapse
Affiliation(s)
- Jennifer M Bratt
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| | - Kevin Y Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
| | - Michelle Rabowsky
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
| | - Lisa M Franzi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| | - Sean P Ott
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| | - Simone Filosto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
- Department of Internal Medicine, Respiratory Signal Transduction, Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA 95616
| | - Tzipora Goldkorn
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
- Department of Internal Medicine, Respiratory Signal Transduction, Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA 95616
| | - Muhammad Arif
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| | - Jerold A Last
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| | - Nicholas J Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95817;
- Department of Internal Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95817; and
| |
Collapse
|
9
|
Zeki AA, Elbadawi-Sidhu M. Innovations in asthma therapy: is there a role for inhaled statins? Expert Rev Respir Med 2018; 12:461-473. [PMID: 29575963 PMCID: PMC6018057 DOI: 10.1080/17476348.2018.1457437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Asthma manifests as chronic airflow obstruction with persistent inflammation and airway hyperresponsiveness. The immunomodulatory and anti-inflammatory properties of the HMG-CoA reductase (HMGCR) inhibitors (a.k.a. statins), suggest a therapeutic role in chronic inflammatory lung diseases. However, despite positive laboratory investigations and promising epidemiological data, clinical trials using statins for the treatment of asthma have yielded conflicting results. Inadequate statin levels in the airway compartment could explain these findings. Areas covered: HMGCR is in the mevalonate (MA) pathway and MA signaling is fundamental to lung biology and asthma. This article will discuss clinical trials of oral statins in asthma, review lab investigations relevant to the systemic versus inhaled administration of statins, address the advantages and disadvantages of inhaled statins, and answer the question: is there a role for inhaled statins in the treatment of asthma? Expert commentary: If ongoing investigations show that oral administration of statins has no clear clinical benefits, then repurposing statins for delivery via inhalation is a logical next step. Inhalation of statins bypasses first-pass metabolism by the liver, and therefore, allows for delivery of significantly lower doses to the airways at greater potency. Statins could become the next major class of novel inhalers for the treatment of asthma.
Collapse
Affiliation(s)
- Amir A. Zeki
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, CA, USA
| | - Mona Elbadawi-Sidhu
- NIH West Coast Metabolomics Center, Genome and Biomedical Sciences Facility, University of California, Davis, CA, USA
| |
Collapse
|
10
|
Huber AK, Giles DA, Segal BM, Irani DN. An emerging role for eotaxins in neurodegenerative disease. Clin Immunol 2016; 189:29-33. [PMID: 27664933 DOI: 10.1016/j.clim.2016.09.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022]
Abstract
Eotaxins are C-C motif chemokines first identified as potent eosinophil chemoattractants. They facilitate eosinophil recruitment to sites of inflammation in response to parasitic infections as well as allergic and autoimmune diseases such as asthma, atopic dermatitis, and inflammatory bowel disease. The eotaxin family currently includes three members: eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26). Despite having only ~30% sequence homology to one another, each was identified based on its ability to bind the chemokine receptor, CCR3. Beyond their role in innate immunity, recent studies have shown that CCL11 and related molecules may directly contribute to degenerative processes in the central nervous system (CNS). CCL11 levels increase in the plasma and cerebrospinal fluid of both mice and humans as part of normal aging. In mice, these increases are associated with declining neurogenesis and impaired cognition and memory. In humans, elevated plasma levels of CCL11 have been observed in Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and secondary progressive multiple sclerosis when compared to age-matched, healthy controls. Since CCL11 is capable of crossing the blood-brain barrier of normal mice, it is plausible that eotaxins generated in the periphery may exert physiological and pathological actions in the CNS. Here, we briefly review known functions of eotaxin family members during innate immunity, and then focus on whether and how these molecules might participate in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda K Huber
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David A Giles
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N Irani
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Tashiro H, Takahashi K, Hayashi S, Kato G, Kurata K, Kimura S, Sueoka-Aragane N. Interleukin-33 from Monocytes Recruited to the Lung Contributes to House Dust Mite-Induced Airway Inflammation in a Mouse Model. PLoS One 2016; 11:e0157571. [PMID: 27310495 PMCID: PMC4910993 DOI: 10.1371/journal.pone.0157571] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/01/2016] [Indexed: 12/24/2022] Open
Abstract
Background Interleukin-33 (IL-33) activates group 2 innate lymphoid cells (ILC2), resulting in T-helper-2 inflammation in bronchial asthma. Airway epithelial cells were reported as sources of IL-33 during apoptosis and necrosis. However, IL-33 is known to be from sources other than airway epithelial cells such as leukocytes, and the mechanisms of IL-33 production and release are not fully understood. The aim of this study was to clarify the role of IL-33 production by monocytes in airway inflammation. Methods BALB/c mice were sensitized and challenged with a house dust mite (HDM) preparation. Airway inflammation was assessed by quantifying inflammatory cells in bronchoalveolar lavage (BAL) fluid, and IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) levels in lung. Immunohistochemistry for IL-33 in lung sections was also performed. Ly6c, CD11b, and CD11c expression was examined by flow cytometry. Clodronate liposomes were used in the HDM-airway inflammation model to deplete circulating monocytes. Results The IL-33, but not IL-25 or TSLP, level in lung homogenates was markedly increased in HDM mice compared to control mice. IL-33-positive cells in the lungs were identified using immunohistochemistry and were increased in areas surrounding bronchi and vasculature. Furthermore, IL-33 levels were increased in mononuclear cells derived from lungs of HDM mice compared to controls. The expression of Ly6c in mononuclear cells was significantly higher in HDM mice than in controls. Treatment with clodronate liposomes led to inhibition of not only inflammatory cells in BAL fluid, airway hyper reactivity and Th2 cytokines in lung, but also IL-33 in lung. Conclusion IL-33 from monocytes recruited to the lung may contribute to the pathogenesis of HDM-induced airway inflammation.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
- * E-mail:
| | - Shinichiro Hayashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Go Kato
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Keigo Kurata
- Institute of Tokyo Environmental Allergy, Tokyo, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoko Sueoka-Aragane
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
12
|
Serafino-Agrusa L, Spatafora M, Scichilone N. Asthma and metabolic syndrome: Current knowledge and future perspectives. World J Clin Cases 2015; 3:285-292. [PMID: 25789301 PMCID: PMC4360500 DOI: 10.12998/wjcc.v3.i3.285] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 02/05/2023] Open
Abstract
Asthma and obesity are epidemiologically linked; however, similar relationships are also observed with other markers of the metabolic syndrome, such as insulin resistance and dyslipidemia, which cannot be accounted for by increased body mass alone. Obesity appears to be a predisposing factor for the asthma onset, both in adults and in children. In addition, obesity could make asthma more difficult to control and to treat. Although obesity may predispose to increased Th2 inflammation or tendency to atopy, other mechanisms need to be considered, such as those mediated by hyperglycaemia, hyperinsulinemia and dyslipidemia in the context of metabolic syndrome. The mechanisms underlying the association between asthma and metabolic syndrome are yet to be determined. In the past, these two conditions were believed to occur in the same individual without any pathogenetic link. However, the improvement in asthma symptoms following weight reduction indicates a causal relationship. The interplay between these two diseases is probably due to a bidirectional interaction. The purpose of this review is to describe the current knowledge about the possible link between metabolic syndrome and asthma, and explore potential application for future studies and strategic approaches.
Collapse
|
13
|
Pneumopathie à éosinophiles chez un patient atteint de psoriasis en plaques traité par ustékinumab. Ann Dermatol Venereol 2015; 142:193-6. [DOI: 10.1016/j.annder.2014.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/02/2014] [Accepted: 11/07/2014] [Indexed: 11/30/2022]
|