1
|
Lai M, Lin K, Chen X, Cheng Y. Diverse Cytokines Secreted by Adipocyte in Linking Cardio-Metabolic Disorder and SLE. FRONT BIOSCI-LANDMRK 2024; 29:373. [PMID: 39614444 DOI: 10.31083/j.fbl2911373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Systemic lupus erythematosus (SLE) is a multi-factorial autoimmune-mediated disease with hyper-stimulation of immune cells especially the T lymphocytes. By this method, it might facilitate the systematic damages in multiple tissues and organs. Otherwise, SLE is also correlated with diverse cardio-metabolic comorbidities, including dyslipidemia, insulin resistance, and hypertension. It is worth-noting that the risk of cardio-metabolic disorders is significantly higher compared with the healthy patients which was reported as approximately one-third of SLE patients were proved as obesity. Notably, current focus is shifting to implementing cardio-metabolic protective strategies as well as elucidating underlying mechanisms of lupus-mediated obese status. On the other hand, adipocyte, as the most abundant endocrine cell in fat tissue, are dysfunctional in obese individuals with aberrant secretion of adipokines. It is proposing that the adipokine might link the pathology of cardio-metabolic disorders and SLE, whereas the related mechanism is complicated. In the current review, the functions of adipokine and the potential mechanisms by which the adipokine link cardio-metabolic disorders and SLE was well listed. Furthermore, the recommendations, which identify the adipokine as the potential therapeutic targets for the treatment of cardio-metabolic disorders and SLE, were also summarized.
Collapse
Affiliation(s)
- Min Lai
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, 361000 Xiamen, Fujian, China
| | - Kai Lin
- Department of Interventional Clinic, The Xiamen Cardiovascular Hospital of Xiamen University, 361000 Xiamen, Fujian, China
| | - Xiaofang Chen
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, 361000 Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, 361000 Xiamen, Fujian, China
| |
Collapse
|
2
|
Kwon OC, Park MC. Patients with systemic lupus erythematosus who are underweight have distinct disease characteristics. Lupus 2024; 33:68-74. [PMID: 38050807 DOI: 10.1177/09612033231220726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
OBJECTIVE This study aimed to detail the disease characteristics of systemic lupus erythematosus (SLE) in individuals who are underweight and assess whether underweight status is associated with SLE disease activity. METHODS This was a retrospective cohort study involving 218 patients newly diagnosed with SLE. Patients were categorized as underweight (body mass index [BMI] <18.5 kg/m2) or not underweight (BMI ≥18.5 kg/m2). We reviewed disease characteristics including the SLE Disease Activity Index 2000 (SLEDAI-2K) at diagnosis. High disease activity was defined as SLEDAI-2K ≥10. Disease characteristics were compared between those who were underweight and not underweight. We used multivariable logistic regression analysis to determine whether underweight status is associated with high disease activity. RESULTS Out of the 218 patients, 35 (16.1%) were underweight and 183 (83.9%) were not. Underweight patients had less renal involvement (5.7% vs 20.2%, p = .040), lower C-reactive protein levels (1.0 [0.3-2.3] mg/L vs 1.2 [0.8-5.0] mg/L, p = .028), and lower SLEDAI-2K scores (6.7 ± 4.6 vs 9.1 ± 5.7, p = .009), and were less likely to be at high disease activity status (22.9% vs 42.6%, p = .028), compared with those who were not underweight. Following adjustment for multiple covariates, being underweight was inversely associated with high disease activity status (adjusted odds ratio = 0.38, 95% confidence interval = 0.16 to 0.92, p = .031). CONCLUSION Patients with SLE who were underweight showed less renal involvement and lower SLEDAI-2K scores compared with those who were not underweight. Moreover, those with SLE who were underweight had a 60% lower risk of exhibiting high disease activity.
Collapse
Affiliation(s)
- Oh Chan Kwon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Chan Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Kwiat VR, Reis G, Valera IC, Parvatiyar K, Parvatiyar MS. Autoimmunity as a sequela to obesity and systemic inflammation. Front Physiol 2022; 13:887702. [PMID: 36479348 PMCID: PMC9720168 DOI: 10.3389/fphys.2022.887702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/31/2022] [Indexed: 08/10/2023] Open
Abstract
The rising prevalence of obesity presents a world-wide challenge as it is associated with numerous comorbidities including cardiovascular disease, insulin resistance and hypertension. Obesity-associated illnesses are estimated to cause nearly 4 million deaths globally per year, therefore there is a critical need to better understand associated pathogenesis, identify new therapeutic targets, and develop new interventions. Emerging data identify a key role for chronic inflammation in mediating obesity related disease states and reveal higher incidence of autoimmune disease development. Of the multiple potential mechanisms linking obesity and autoimmunity, the strongest link has been shown for leptin, a hormone secreted at high levels from obese white adipose tissue. Numerous studies have demonstrated that leptin enhances activation of both arms of the immune system, while its absence protects against development of autoimmunity. Other potential newly discovered mechanisms that contribute to autoimmune pathogenesis are not directly connected but also associated with obesity including sustained platelet activation, gut dysbiosis, and aging. Here we review how obesity instigates autoimmunity, particularly in the context of immune cell activations and adipokine secretion.
Collapse
Affiliation(s)
- Victoria R. Kwiat
- Department of Nutrition and Integrative Physiology, The Florida State University, Tallahassee, FL, United States
| | - Gisienne Reis
- Department of Nutrition and Integrative Physiology, The Florida State University, Tallahassee, FL, United States
| | - Isela C. Valera
- Department of Nutrition and Integrative Physiology, The Florida State University, Tallahassee, FL, United States
| | - Kislay Parvatiyar
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Michelle S. Parvatiyar
- Department of Nutrition and Integrative Physiology, The Florida State University, Tallahassee, FL, United States
| |
Collapse
|
4
|
Effects of high fat diet-induced obesity on pathophysiology, immune cells, and therapeutic efficacy in systemic lupus erythematosus. Sci Rep 2022; 12:18532. [PMID: 36323742 PMCID: PMC9630451 DOI: 10.1038/s41598-022-21381-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Prior studies have suggested a strong link between obesity and autoimmune diseases. This study aimed to evaluate the effects of high fat diet (HFD)-induced obesity on the disease pathogenesis, immune cell infiltration, and therapeutic efficacy in systemic lupus erythematosus (SLE). Treatment with methylprednisolone significantly increased the survival in the control diet group, but not in the HFD group. An HFD significantly increased the incidence of severe proteinuria and glucose intolerance. Regardless of the diet, treatment with methylprednisolone significantly decreased the serum levels of anti-dsDNA antibodies, IL-2, IL-10, and interferon γ-induced protein 10 (IP-10), and improved the renal pathology scores. Treatment with methylprednisolone significantly lowered the serum levels of IL-6, MCP-1, and TNF-α in the control diet group, but not in the HFD group. HFD significantly increased the proportions of CD45+ and M1 cells and significantly decreased the proportion of M2 cells in white adipose tissue; methylprednisolone treatment significantly rescued this effect. In the HFD group, methylprednisolone treatment significantly decreased the M1:M2 and increased the Foxp3+:RORγt+ cell in the spleen compared with the untreated group. These data improve our understanding of the effect of HFD on the therapeutic efficacy of corticosteroids in SLE treatment, which could have clinical implications.
Collapse
|
5
|
Mao Y, Zhao K, Li P, Sheng Y. The emerging role of leptin in obesity-associated cardiac fibrosis: evidence and mechanism. Mol Cell Biochem 2022; 478:991-1011. [PMID: 36214893 DOI: 10.1007/s11010-022-04562-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
Cardiac fibrosis is a hallmark of various cardiovascular diseases, which is quite commonly found in obesity, and may contribute to the increased incidence of heart failure arrhythmias, and sudden cardiac death in obese populations. As an endogenous regulator of adiposity metabolism, body mass, and energy balance, obesity, characterized by increased circulating levels of the adipocyte-derived hormone leptin, is a critical contributor to the pathogenesis of cardiac fibrosis. Although there are some gaps in our knowledge linking leptin and cardiac fibrosis, this review will focus on the interplay between leptin and major effectors involved in the pathogenesis underlying cardiac fibrosis at both cellular and molecular levels based on the current reports. The profibrotic effect of leptin is predominantly mediated by activated cardiac fibroblasts but may also involve cardiomyocytes, endothelial cells, and immune cells. Moreover, a series of molecular signals with a known profibrotic property is closely involved in leptin-induced fibrotic events. A more comprehensive understanding of the underlying mechanisms through which leptin contributes to the pathogenesis of cardiac fibrosis may open up a new avenue for the rapid emergence of a novel therapy for preventing or even reversing obesity-associated cardiac fibrosis.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Yanhui Sheng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China. .,Department of Cardiology, Jiangsu Province Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Chen J, Liao S, Pang W, Guo F, Yang L, Liu HF, Pan Q. Life factors acting on systemic lupus erythematosus. Front Immunol 2022; 13:986239. [PMID: 36189303 PMCID: PMC9521426 DOI: 10.3389/fimmu.2022.986239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease that primarily affects women. Currently, in the search for the mechanisms of SLE pathogenesis, the association of lifestyle factors such as diet, cigarette smoking, ultraviolet radiation exposure, alcohol and caffeine-rich beverage consumption with SLE susceptibility has been systematically investigated. The cellular and molecular mechanisms mediating lifestyle effects on SLE occurrence, including interactions between genetic risk loci and environment, epigenetic changes, immune dysfunction, hyper-inflammatory response, and cytotoxicity, have been proposed. In the present review of the reports published in reputable peer-reviewed journals and government websites, we consider the current knowledge about the relationships between lifestyle factors and SLE incidence and outline directions of future research in this area. Formulation of practical measures with regard to the lifestyle in the future will benefit SLE patients and may provide potential therapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingjun Pan
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| |
Collapse
|
7
|
Aral AM, Zamora R, Barclay D, Yin J, El-Dehaibi F, Erbas VE, Dong L, Zhang Z, Sahin H, Gorantla VS, Vodovotz Y. The Effects of Tacrolimus on Tissue-Specific, Protein-Level Inflammatory Networks in Vascularized Composite Allotransplantation. Front Immunol 2021; 12:591154. [PMID: 34017323 PMCID: PMC8129572 DOI: 10.3389/fimmu.2021.591154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Systems-level insights into inflammatory events after vascularized composite allotransplantation (VCA) are critical to the success of immunomodulatory strategies of these complex procedures. To date, the effects of tacrolimus (TAC) immunosuppression on inflammatory networks in VCA, such as in acute rejection (AR), have not been investigated. We used a systems biology approach to elucidate the effects of tacrolimus on dynamic networks and principal drivers of systemic inflammation in the context of dynamic tissue-specific immune responses following VCA. Lewis (LEW) rat recipients received orthotopic hind limb VCA from fully major histocompatibility complex-mismatched Brown Norway (BN) donors or matched LEW donors. Group 1 (syngeneic controls) received LEW limbs without TAC, and Group 2 (treatment group) received BN limbs with TAC. Time-dependent changes in 27 inflammatory mediators were analyzed in skin, muscle, and peripheral blood using Principal Component Analysis (PCA), Dynamic Bayesian Network (DyBN) inference, and Dynamic Network Analysis (DyNA) to define principal characteristics, central nodes, and putative feedback structures of systemic inflammation. Analyses were repeated on skin + muscle data to construct a "Virtual VCA", and in skin + muscle + peripheral blood data to construct a "Virtual Animal." PCA, DyBN, and DyNA results from individual tissues suggested important roles for leptin, VEGF, various chemokines, the NLRP3 inflammasome (IL-1β, IL-18), and IL-6 after TAC treatment. The chemokines MCP-1, MIP-1α; and IP-10 were associated with AR in controls. Statistical analysis suggested that 24/27 inflammatory mediators were altered significantly between control and TAC-treated rats in peripheral blood, skin, and/or muscle over time. "Virtual VCA" and "Virtual Animal" analyses implicated the skin as a key control point of dynamic inflammatory networks, whose connectivity/complexity over time exhibited a U-shaped trajectory and was mirrored in the systemic circulation. Our study defines the effects of TAC on complex spatiotemporal evolution of dynamic inflammation networks in VCA. We also demonstrate the potential utility of computational analyses to elucidate nonlinear, cross-tissue interactions. These approaches may help define precision medicine approaches to better personalize TAC immunosuppression in VCA recipients.
Collapse
Affiliation(s)
- Ali Mubin Aral
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vasil E Erbas
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medicalpark Gaziantep Hospital, Gaziantep, Turkey
| | - Liwei Dong
- Plastic and Aesthetic Surgery Department, XiJing Hospital, Xi'an, China
| | - Zhaoxiang Zhang
- Plastic and Aesthetic Surgery Department, XiJing Hospital, Xi'an, China
| | | | - Vijay S Gorantla
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
de Candia P, Prattichizzo F, Garavelli S, Alviggi C, La Cava A, Matarese G. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J Exp Med 2021; 218:211994. [PMID: 33857282 PMCID: PMC8056770 DOI: 10.1084/jem.20191593] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of the archetypal adipocytokine leptin and how it regulates energy homeostasis have represented breakthroughs in our understanding of the endocrine function of the adipose tissue and the biological determinants of human obesity. Investigations on leptin have also been instrumental in identifying physio-pathological connections between metabolic regulation and multiple immunological functions. For example, the description of the promoting activities of leptin on inflammation and cell proliferation have recognized the detrimental effects of leptin in connecting dysmetabolic conditions with cancer and with onset and/or progression of autoimmune disease. Here we review the multiple biological functions and complex framework of operations of leptin, discussing why and how the pleiotropic activities of this adipocytokine still pose major hurdles in the development of effective leptin-based therapeutic opportunities for different clinical conditions.
Collapse
Affiliation(s)
- Paola de Candia
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | | | - Silvia Garavelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Carlo Alviggi
- Department of Neuroscience, Reproductive Science and Odontostomatology, Università di Napoli "Federico II," Naples, Italy
| | - Antonio La Cava
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy.,T reg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II," Naples, Italy
| |
Collapse
|
9
|
Cordero-Barreal A, González-Rodríguez M, Ruiz-Fernández C, Eldjoudi DA, AbdElHafez YRF, Lago F, Conde J, Gómez R, González-Gay MA, Mobasheri A, Pino J, Gualillo O. An Update on the Role of Leptin in the Immuno-Metabolism of Cartilage. Int J Mol Sci 2021; 22:ijms22052411. [PMID: 33673730 PMCID: PMC7957536 DOI: 10.3390/ijms22052411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in 1994, leptin has been considered as an adipokine with pleiotropic effects. In this review, we summarize the actual information about the impact of this hormone on cartilage metabolism and pathology. Leptin signalling depends on the interaction with leptin receptor LEPR, being the long isoform of the receptor (LEPRb) the one with more efficient intracellular signalling. Chondrocytes express the long isoform of the leptin receptor and in these cells, leptin signalling, alone or in combination with other molecules, induces the expression of pro-inflammatory molecules and cartilage degenerative enzymes. Leptin has been shown to increase the proliferation and activation of immune cells, increasing the severity of immune degenerative cartilage diseases. Leptin expression in serum and synovial fluid are related to degenerative diseases such as osteoarthritis (OA), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Inhibition of leptin signalling showed to have protective effects in these diseases showing the key role of leptin in cartilage degeneration.
Collapse
Affiliation(s)
- Alfonso Cordero-Barreal
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
| | - María González-Rodríguez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
| | - Yousof Ramadan Farrag AbdElHafez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain; (F.L.); (J.C.)
| | - Javier Conde
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain; (F.L.); (J.C.)
| | - Rodolfo Gómez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The Muscle-Skeletal Pathology Group, Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain;
| | - Miguel Angel González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Universidad de Cantabria and IDIVAL, Hospital Universitario Marqués de Valdecilla, Av. Valdecilla, 39008 Santander, Spain;
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FIN-90230 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
- Correspondence: (J.P.); (O.G.); Tel./Fax: +34-981950905 (O.G.)
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (A.C.-B.); (M.G.-R.); (C.R.-F.); (D.A.E.); (Y.R.F.A.)
- Correspondence: (J.P.); (O.G.); Tel./Fax: +34-981950905 (O.G.)
| |
Collapse
|
10
|
Kono M, Nagafuchi Y, Shoda H, Fujio K. The Impact of Obesity and a High-Fat Diet on Clinical and Immunological Features in Systemic Lupus Erythematosus. Nutrients 2021; 13:nu13020504. [PMID: 33557015 PMCID: PMC7913625 DOI: 10.3390/nu13020504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with multiple organ involvement predominantly affecting women of childbearing age. Environmental factors, as well as genetic predisposition, can cause immunological disturbances that manifest as SLE. A habitual high-fat diet and obesity have recently been reported to play a role in the pathogenesis of autoimmune diseases. The frequency of obesity is higher in patients with SLE than in general populations. Vitamin D and adipokines, such as leptin and adiponectin, are possible mediators connecting obesity and SLE. Serum leptin and adiponectin levels are elevated in patients with SLE and can impact innate and adaptive immunity. Vitamin D deficiency is commonly observed in SLE. Because vitamin D can modulate the functionality of various immune cells, we review vitamin D supplementation and its effects on the course of clinical disease in this work. We also discuss high-fat diets coinciding with alterations of the gut microbiome, or dysbiosis. Contingent upon dietary habits, microbiota can be conducive to the maintenance of immune homeostasis. A high-fat diet can give rise to dysbiosis, and patients who are affected by obesity and/or have SLE possess less diverse microbiota. Interestingly, a hypothesis about dysbiosis and the development of SLE has been suggested and reviewed here.
Collapse
|
11
|
Hwang J, Yoo JA, Yoon H, Han T, Yoon J, An S, Cho JY, Lee J. The Role of Leptin in the Association between Obesity and Psoriasis. Biomol Ther (Seoul) 2021; 29:11-21. [PMID: 32690821 PMCID: PMC7771847 DOI: 10.4062/biomolther.2020.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/17/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue secretes many adipokines which contribute to various metabolic processes, such as blood pressure, glucose homeostasis, inflammation and angiogenesis. The biology of adipose tissue in an obese individual is abnormally altered in a manner that increases the body’s vulnerability to immune diseases, such as psoriasis. Psoriasis is considered a chronic inflammatory skin disease which is closely associated with being overweight and obese. Additionally, secretion of leptin, a type of adipokine, increases dependently on adipose cell size and adipose accumulation. Likewise, high leptin levels also aggravate obesity via development of leptin resistance, suggesting that leptin and obesity are closely related. Leptin induction in psoriatic patients is mainly driven by the interleukin (IL)-23/helper T (Th) 17 axis pathway. Furthermore, leptin can have an effect on various types of immune cells such as T cells and dendritic cells. Here, we discuss the relationship between obesity and leptin expression as well as the linkage between effect of leptin on immune cells and psoriasis progression.
Collapse
Affiliation(s)
- Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ju Ah Yoo
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology & Biocosmetics Research Center, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyungkee Yoon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taekyung Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongchan Yoon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seoljun An
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology & Biocosmetics Research Center, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, Sánchez-Margalet V. Role of Leptin in Inflammation and Vice Versa. Int J Mol Sci 2020; 21:E5887. [PMID: 32824322 PMCID: PMC7460646 DOI: 10.3390/ijms21165887] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is an essential immune response for the maintenance of tissue homeostasis. In a general sense, acute and chronic inflammation are different types of adaptive response that are called into action when other homeostatic mechanisms are insufficient. Although considerable progress has been made in understanding the cellular and molecular events that are involved in the acute inflammatory response to infection and tissue injury, the causes and mechanisms of systemic chronic inflammation are much less known. The pathogenic capacity of this type of inflammation is puzzling and represents a common link of the multifactorial diseases, such as cardiovascular diseases and type 2 diabetes. In recent years, interest has been raised by the discovery of novel mediators of inflammation, such as microRNAs and adipokines, with different effects on target tissues. In the present review, we discuss the data emerged from research of leptin in obesity as an inflammatory mediator sustaining multifactorial diseases and how this knowledge could be instrumental in the design of leptin-based manipulation strategies to help restoration of abnormal immune responses. On the other direction, chronic inflammation, either from autoimmune or infectious diseases, or impaired microbiota (dysbiosis) may impair the leptin response inducing resistance to the weight control, and therefore it may be a cause of obesity. Thus, we are reviewing the published data regarding the role of leptin in inflammation, and the other way around, the role of inflammation on the development of leptin resistance and obesity.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| |
Collapse
|
13
|
Correa-Rodríguez M, Pocovi-Gerardino G, Callejas Rubio JL, Ríos Fernández R, Martín Amada M, Cruz Caparrós M, Ortego-Centeno N, Rueda-Medina B. The impact of obesity on disease activity, damage accrual, inflammation markers and cardiovascular risk factors in systemic lupus erythematosus. Panminerva Med 2020; 62:75-82. [PMID: 32515571 DOI: 10.23736/s0031-0808.19.03748-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND We aimed to evaluate the relationships between obesity metrics including Body Mass Index (BMI), waist to height ratio (WtHR) and fat mass percentage, and disease activity, damage accrual, inflammation markers and traditional cardiovascular risk factors in SLE patients. METHODS A cross-sectional study was conducted on a sample of 275 patients (90.5% females; mean age 46.37±13.85 years). Disease activity was assessed with the SLE disease activity index (SLEDAI-2K), and disease-related organ damage was assessed using the SLICC/ACR damage index (SDI). Biochemical variables of lipids profile, high-sensitivity C-reactive protein (hs-CRP), homocysteine (Hcy), anti-dsDNA titers and complement components C3 and C4 serum levels were measured. Blood pressure and ankle-brachial index (ABI) were also calculated. RESULTS Significant differences were observed between normal-weight, overweight and obese patients in SLEDAI (2.60±2.48 vs. 2.71±2.65 vs. 3.84±3.02; P=0.004), SDI (0.76±1.10 vs. 1.09±1.24 vs. 1.57±1.54; P=0.002), hsCRP (2.15±2.93 vs. 3.24±3.63 vs. 5.30±5.63 mg/dL; P<0.001), complement C3 level (99.92±24.45 vs. 111.38±27.41 vs. 123.16±28.96 mg/dL; P<0.001), triglycerides serum levels (85.99±41.68 vs. 102.35±50.88 vs. 129.12±61.59 mg/dL; P<0.001) and systolic blood pressure (112.28±16.35 vs. 124.25±17.94 vs. 132.78±16.71 mmHg; P=0.001) after adjusting for age and sex. CONCLUSIONS Patients with SLE who are obese have worse disease activity and damage accrual, higher levels of inflammation markers hs-CRP and C3 complement, increased triglycerides serum levels and systolic blood pressure levels in comparison with overweight or normal weight SLE patients, supporting that optimizing weight in SLE patients should be a potential target to improve SLE outcomes.
Collapse
Affiliation(s)
- María Correa-Rodríguez
- Institute of Biomedical Research (IBS), Granada, Spain.,Nursing Department, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Gabriela Pocovi-Gerardino
- Institute of Biomedical Research (IBS), Granada, Spain - .,Faculty of Health Sciences, University of Granada, Granada, Spain
| | - José-Luis Callejas Rubio
- Institute of Biomedical Research (IBS), Granada, Spain.,Systemic Autoimmune Diseases Unit, San Cecilio University Hospital, Granada, Spain
| | - Raquel Ríos Fernández
- Institute of Biomedical Research (IBS), Granada, Spain.,Systemic Autoimmune Diseases Unit, San Cecilio University Hospital, Granada, Spain
| | | | | | - Norberto Ortego-Centeno
- Institute of Biomedical Research (IBS), Granada, Spain.,Systemic Autoimmune Diseases Unit, San Cecilio University Hospital, Granada, Spain
| | - Blanca Rueda-Medina
- Institute of Biomedical Research (IBS), Granada, Spain.,Nursing Department, Faculty of Health Sciences, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Afifi AEMA, Shaat RM, Gharbia OM, Elhanafy M, Hasan ASG. Role of serum leptin levels and leptin receptor gene polymorphisms in systemic lupus erythematosus. Clin Rheumatol 2020; 39:3465-3472. [PMID: 32377995 DOI: 10.1007/s10067-020-05120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/27/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Serum leptin and leptin receptor gene polymorphisms may play a role in the etiopathogenesis of SLE. OBJECTIVE This study was undertaken to explore the relationship between serum leptin levels and leptin receptor (LEPR) gene polymorphisms with susceptibility to SLE in Egyptian population and to study their relationships with clinical, laboratory, radiographic findings, and disease activity of SLE (SLEDAI). MATERIALS AND METHODS A total of 50 unrelated female patients, who met the SLICC classification criteria for SLE and fifty healthy blood donors, matched for age, sex, and BMI with SLE patients, serving as a control group, were included in this study. All participants had completed preliminary questionnaires and clinical, laboratory, and radiographic examinations. Serum leptin levels were measured by ELISA assays. LEPR genotyping was done by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method. We compared serum leptin levels and LEPR gene polymorphisms in SLE patients and controls, and we tested their relationships with clinical, laboratory, and radiographic findings and SLEDAI in SLE patients. RESULTS The present study showed significant differences of serum leptin levels between SLE patients and controls (p < 0.001). Moreover, higher frequencies of variant genotype (AA) and (A) allele were found in SLE patients compared to controls (p = 0.008 and 0.001, respectively). No associations were observed between the serum leptin, various LEPR genotypes, and gene alleles and the development of clinical, laboratory, and radiological manifestations. Furthermore, no associations were observed between the various LEPR genotypes or gene alleles and leptin levels (p = 0.633 and 0.337 respectively) in SLE patients. Additionally, no correlations were observed between leptin levels, various genotypes, and alleles with SLEDAI (p = 0.244, 0.741, and 0.838 respectively) in SLE patients. CONCLUSION Serum leptin and LEPR gene polymorphism increase risk of SLE in Egyptian population; however, they are not associated with the development of clinical, lab, and radiological findings. Disease activity is neither correlated with serum leptin level nor associated with LEPR gene polymorphism. Serum levels of leptin are not associated with LEPR gene polymorphism. Key Points • Serum leptin and LEPR gene polymorphism increase risk of SLE in Egyptian patients. • Serum leptin is not associated with SLE disease activity.
Collapse
Affiliation(s)
- Abd El-Moaty Ali Afifi
- Faculty of Medicine, Department of Rheumatology and Rehabilitation, Mansoura University, El Gomhoria St., Mansoura, Egypt
| | - Reham M Shaat
- Faculty of Medicine, Department of Rheumatology and Rehabilitation, Mansoura University, El Gomhoria St., Mansoura, Egypt.
| | - Ola Mohamed Gharbia
- Faculty of Medicine, Department of Rheumatology and Rehabilitation, Mansoura University, El Gomhoria St., Mansoura, Egypt
| | - M Elhanafy
- Faculty of Medicine, Department of Clinical Pathology, Mansoura University, El Gomhoria St., Mansoura, Egypt
| | - Al Shimaa Goda Hasan
- Faculty of Medicine, Department of Rheumatology and Rehabilitation, Mansoura University, El Gomhoria St., Mansoura, Egypt
| |
Collapse
|
15
|
Teng X, Brown J, Choi SC, Li W, Morel L. Metabolic determinants of lupus pathogenesis. Immunol Rev 2020; 295:167-186. [PMID: 32162304 DOI: 10.1111/imr.12847] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
The metabolism of healthy murine and more recently human immune cells has been investigated with an increasing amount of details. These studies have revealed the challenges presented by immune cells to respond rapidly to a wide variety of triggers by adjusting the amount, type, and utilization of the nutrients they import. A concept has emerged that cellular metabolic programs regulate the size of the immune response and the plasticity of its effector functions. This has generated a lot of enthusiasm with the prediction that cellular metabolism could be manipulated to either enhance or limit an immune response. In support of this hypothesis, studies in animal models as well as human subjects have shown that the dysregulation of the immune system in autoimmune diseases is associated with a skewing of the immunometabolic programs. These studies have been mostly conducted on autoimmune CD4+ T cells, with the metabolism of other immune cells in autoimmune settings still being understudied. Here we discuss systemic metabolism as well as cellular immunometabolism as novel tools to decipher fundamental mechanisms of autoimmunity. We review the contribution of each major metabolic pathway to autoimmune diseases, with a focus on systemic lupus erythematosus (SLE), with the relevant translational opportunities, existing or predicted from results obtained with healthy immune cells. Finally, we review how targeting metabolic programs may present novel therapeutic venues.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Thomas PE, Jensen BW, Sørensen KK, Jacobsen S, Aarestrup J, Baker JL. Early life body size, growth and risks of systemic lupus erythematosus - A large Danish observational cohort study. Semin Arthritis Rheum 2020; 50:1507-1512. [PMID: 32145970 DOI: 10.1016/j.semarthrit.2020.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Adult obesity may increase the risks of systemic lupus erythematosus (SLE), and there are genetic links between adult height and SLE. Thus, it is plausible that size earlier in life may be important in the aetiology of SLE as well. We investigated whether birthweight, childhood body mass index (BMI; [kg/m2]), height and growth are associated with risks of adult SLE. METHODS The study included 346,627 children from the Copenhagen School Health Records Register, born 1930-1996 with measured weights and heights from 7-13 years. Birthweight information was available from 1936. Linkages were made to the Danish National Patient Register for information on registrations of SLE. During follow-up, 435 individuals (366 women) were registered with SLE. Cox proportional hazards regressions were performed to estimate hazard ratios (HR) and 95% confidence intervals (CI). RESULTS No differences by sex were detected in any of the associations. Birthweight was not associated with SLE risks. Childhood BMI and height were positively and linearly associated with SLE risks. For BMI at age 7, the HR was 1.11 (95% CI: 1.01-1.23) per z-score. For height at age 7, the HR was 1.13 (95% CI: 1.02-1.24) per z-score. The estimates were similar in magnitude across all childhood ages for BMI and height. There were limited indications that change in BMI or growth in height during childhood influence the risks of SLE in adulthood. CONCLUSIONS Childhood body size is associated with risks of adult SLE, which supports the hypothesis that early life factors are important in SLE aetiology.
Collapse
Affiliation(s)
- Peter E Thomas
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Britt W Jensen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Kathrine K Sørensen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Rigshospitalet, The Capital Region, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Julie Aarestrup
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Jennifer L Baker
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
17
|
Packer M. Link Between Synovial and Myocardial Inflammation: Conceptual Framework to Explain the Pathogenesis of Heart Failure with Preserved Ejection Fraction in Patients with Systemic Rheumatic Diseases. Card Fail Rev 2020; 6:e10. [PMID: 40191105 PMCID: PMC11969686 DOI: 10.15420/cfr.2019.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/07/2020] [Indexed: 11/04/2022] Open
Abstract
Patients with a broad range of systemic rheumatic diseases are at increased risk of heart failure (HF), an event that is not related to traditional cardiovascular risk factors or underlying ischaemic heart disease. The magnitude of risk is linked to the severity of arthritic activity, and HF is typically accompanied by a preserved ejection fraction. Subclinical evidence for myocardial fibrosis, microcirculatory dysfunction and elevated cardiac filling pressures is present in a large proportion of patients with rheumatic diseases, particularly those with meaningful systemic inflammation. Drugs that act to attenuate pro-inflammatory pathways (methotrexate and antagonists of tumour necrosis factor and interleukin-1) may ameliorate myocardial inflammation and cardiac structural abnormalities and reduce the risk of HF events.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, US and Imperial College London, UK
| |
Collapse
|
18
|
Yu Y, Fu S, Zhang X, Wang L, Zhao L, Wan W, Xue Y, Lv L. Leptin facilitates the differentiation of Th17 cells from MRL/Mp-Fas lpr lupus mice by activating NLRP3 inflammasome. Innate Immun 2019; 26:294-300. [PMID: 31752571 PMCID: PMC7251789 DOI: 10.1177/1753425919886643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Both NLRP3 inflammasome and Th17 cells play important roles in the pathogenesis
of systemic lupus erythematosus (SLE). Here we tried to investigate whether
leptin promotes the differentiation of Th17 cells from lupus mice by activating
the NLRP3 inflammasome. Th17 cells induced from MRL/Mp-Fas lpr mice splenocytes
under Th17 polarizing condition were treated with leptin at scalar doses during
the last 18 h of culture. The mRNA levels of IL-17A, IL-17F, RORγt, IL-1β,
IL-18, NLRP3, ASC, and IL-1R1 were detected by quantitative PCR. IL-17A, IL-17F,
IL-1β, and IL-18 were tested by ELISA, while the activity of caspase-1 and
number of Th17 cells were counted by flow cytometry before/after inhibition of
the NLRP3 inflammasome. We found that leptin pushed up the expression of IL-17A,
IL-17F, NLRP3, and IL-1β and increased the number of Th17 cells in lupus mice,
while the expression of IL-17A, RORγt, and IL-1β and the number of Th17 cells
were decreased after inhibition of the NLRP3 inflammasome. Leptin promoted the
differentiation of Th17 cells from lupus mice by activating the NLRP3
inflammasome.
Collapse
Affiliation(s)
- Yiyun Yu
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Sisi Fu
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Xianglin Zhang
- Division of Endocrinology, Renhe Hospital, Shanghai, China
| | - Lingbiao Wang
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Li Zhao
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Weiguo Wan
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Yu Xue
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | - Ling Lv
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| |
Collapse
|
19
|
Relationship of Excess Weight with Clinical Activity and Dietary Intake Deficiencies in Systemic Lupus Erythematosus Patients. Nutrients 2019; 11:nu11112683. [PMID: 31698711 PMCID: PMC6893805 DOI: 10.3390/nu11112683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity and nutrients intake deficiencies may contribute to the clinical manifestations and inflammatory processes in systemic lupus erythematosus (SLE). The aim of this study was to assess the relationship between nutritional status and dietary intake with clinical variables in Mexican-mestizo SLE patients. A cross-sectional study was conducted in 130 female SLE patients, classified by the 1997 SLE American College of Rheumatology (ACR) criteria; the clinical activity was evaluated by the Mexican-Systemic Lupus Erythematosus-Disease Activity Index (Mex-SLEDAI); body mass index (BMI) by the World Health Organization (WHO) criteria; the energy calculation and nutritional intake were performed by Nutritionist Pro Diet software. SLE patients with excess weight (BMI > 25 kg/m2) showed a higher score of clinical activity (Mex-SLEDAI = 2; p = 0.003), higher clinical activity prevalence (40.9%; p = 0.039) and a significant association for high clinical activity (odds ratio (OR) = 2.52; 95% confidence interval (CI) = 1.08-5.9; p = 0.033), in comparison with patients without excess weight (BMI < 25 kg/m2). In particular, the excess weight increased the Mex-SLEDAI score (β coefficient = 1.82; R2 = 0.05; p = 0.005). Also, the SLE patients presented a high prevalence (%) of deficient consumption (cut-off point: <67% of dietary adequacy) of vitamin E (100%), iodine (96%), omega 3 (93.44%), biotin (78%), vitamin K (73.33%), iron (67%), vitamin D (63.3%), potassium (59%), folic acid (56.67%), pantothenic acid (43.3%), vitamin A (41.67%) and zinc (32%). In conclusion, in SLE patients the excess weight was associated with increased clinical activity and to the presence of deficiencies in some essential nutrients ingested.
Collapse
|
20
|
The impact of obesity on SLE disease activity: findings from the Southern California Lupus Registry (SCOLR). Clin Rheumatol 2018; 38:597-600. [DOI: 10.1007/s10067-018-4336-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/18/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022]
|
21
|
Francisco V, Pino J, Campos-Cabaleiro V, Ruiz-Fernández C, Mera A, Gonzalez-Gay MA, Gómez R, Gualillo O. Obesity, Fat Mass and Immune System: Role for Leptin. Front Physiol 2018; 9:640. [PMID: 29910742 PMCID: PMC5992476 DOI: 10.3389/fphys.2018.00640] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity is an epidemic disease characterized by chronic low-grade inflammation associated with a dysfunctional fat mass. Adipose tissue is now considered an extremely active endocrine organ that secretes cytokine-like hormones, called adipokines, either pro- or anti-inflammatory factors bridging metabolism to the immune system. Leptin is historically one of most relevant adipokines, with important physiological roles in the central control of energy metabolism and in the regulation of metabolism-immune system interplay, being a cornerstone of the emerging field of immunometabolism. Indeed, leptin receptor is expressed throughout the immune system and leptin has been shown to regulate both innate and adaptive immune responses. This review discusses the latest data regarding the role of leptin as a mediator of immune system and metabolism, with particular emphasis on its effects on obesity-associated metabolic disorders and autoimmune and/or inflammatory rheumatic diseases.
Collapse
Affiliation(s)
- Vera Francisco
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jesús Pino
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Victor Campos-Cabaleiro
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Antonio Mera
- Servizo Galego de Saude, Division of Rheumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Miguel A Gonzalez-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
22
|
Stanescu II, Calenic B, Dima A, Gugoasa LA, Balanescu E, Stefan-van Staden RI, Baicus C, Badita DG, Greabu M. Salivary biomarkers of inflammation in systemic lupus erythematosus. Ann Anat 2018; 219:89-93. [PMID: 29621567 DOI: 10.1016/j.aanat.2018.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/12/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022]
Abstract
Saliva is currently used as a reliable diagnostic fluid in a wide range of local and systemic diseases. However, the link between salivary diagnosis and the inflammatory process in autoimmune diseases has not yet been explored. The aim of our study is to assess possible correlations between salivary inflammatory markers and systemic lupus erythematosus (SLE). Patients fulfilling the Systemic Lupus International Collaborating Clinics (SLICC) diagnosis criteria were included. Salivary and serum levels of interleukin-6 (IL-6), leptin, monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1) were determined using stochastic sensors. Serum leptin and IL-6 had significantly higher levels in SLE patients compared to non-SLE. Also, salivary IL-6 levels highly correlated with the serum IL-6 levels. A positive correlation was found between salivary and serum levels of IL-6, signaling salivary IL-6 as a reliable marker for assessing the inflammation process in SLE.
Collapse
Affiliation(s)
- Iulia-Ioana Stanescu
- Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Blvd, 050474, Bucharest, Romania
| | - Bogdan Calenic
- Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Blvd, 050474, Bucharest, Romania.
| | - Alina Dima
- Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Blvd, 050474, Bucharest, Romania
| | - Livia Alexandra Gugoasa
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Eugenia Balanescu
- Colentina Clinical Hospital, Colentina Research Center, 19-21 Stefan cel Mare Street, 020125, Bucharest, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Cristian Baicus
- Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Blvd, 050474, Bucharest, Romania; Colentina Clinical Hospital, Colentina Research Center, 19-21 Stefan cel Mare Street, 020125, Bucharest, Romania
| | - Daniela Gabriela Badita
- Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Blvd, 050474, Bucharest, Romania
| | - Maria Greabu
- Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Blvd, 050474, Bucharest, Romania
| |
Collapse
|
23
|
Mohammed SF, Abdalla MA, Ismaeil WM, Sheta MM. Serum leptin in systemic lupus erythematosus patients: Its correlation with disease activity and some disease parameters. EGYPTIAN RHEUMATOLOGIST 2018. [DOI: 10.1016/j.ejr.2017.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Li HM, Zhang TP, Leng RX, Li XP, Li XM, Liu HR, Ye DQ, Pan HF. Emerging role of adipokines in systemic lupus erythematosus. Immunol Res 2017; 64:820-30. [PMID: 27314594 DOI: 10.1007/s12026-016-8808-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by multisystem organ involvement and unclear pathogenesis. Several adipokines synthesized in the adipose tissue, including leptin, adiponectin, resistin, and chemerin, have been explored in autoimmune rheumatic diseases, especially SLE, and results suggest that these mediators may be implicated in the pathogenesis of SLE. However, the current results are controversial. In this review, we will briefly discuss the expression and possible pathogenic role of several important adipokines, including leptin, adiponectin, resistin, and chemerin in SLE.
Collapse
Affiliation(s)
- Hong-Miao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Hefei, People's Republic of China
| | - Tian-Ping Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Hefei, People's Republic of China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Hefei, People's Republic of China
| | - Xiang-Pei Li
- Department of Rheumatology, Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Xiao-Mei Li
- Department of Rheumatology, Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Hai-Rong Liu
- Graduate School, Wannan Medical College, West of Wenchang Road, University Park, Wuhu, 241002, Anhui, People's Republic of China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Hefei, People's Republic of China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China. .,Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Hefei, People's Republic of China.
| |
Collapse
|
25
|
Li W, Sivakumar R, Titov AA, Choi SC, Morel L. Metabolic Factors that Contribute to Lupus Pathogenesis. Crit Rev Immunol 2017; 36:75-98. [PMID: 27480903 DOI: 10.1615/critrevimmunol.2016017164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which organ damage is mediated by pathogenic autoantibodies directed against nucleic acids and protein complexes. Studies in SLE patients and in mouse models of lupus have implicated virtually every cell type in the immune system in the induction or amplification of the autoimmune response as well as the promotion of an inflammatory environment that aggravates tissue injury. Here, we review the contribution of CD4+ T cells, B cells, and myeloid cells to lupus pathogenesis and then discuss alterations in the metabolism of these cells that may contribute to disease, given the recent advances in the field of immunometabolism.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610; Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology, Beijing Key Laboratory, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ramya Sivakumar
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Anton A Titov
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
26
|
Versini M, Tiosano S, Comaneshter D, Shoenfeld Y, Cohen AD, Amital H. Smoking and obesity in systemic lupus erythematosus: a cross-sectional study. Eur J Clin Invest 2017; 47:422-427. [PMID: 28382625 DOI: 10.1111/eci.12757] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/02/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Both smoking and obesity have been demonstrated as risk factors in several autoimmune diseases. Little is known about the relationship between systemic lupus erythematosus (SLE) and both smoking and obesity. OBJECTIVES To investigate the association between SLE, tobacco consumption and body mass index (BMI). MATERIALS AND METHODS Using data from the largest Health Maintenance Organization (HMO) in Israel, the Clalit Health Services, we searched for an association between SLE, smoking and obesity. Chi-square and t-test were used for univariate analysis, and a logistic regression model was used for multivariate analysis. Data available from Clalit Health Services database included age, sex, BMI, smoking status, socioeconomic status (SES) and diagnoses of chronic diseases. RESULTS The study included 5018 patients with SLE and 25 090 age- and sex-matched controls. In multivariate analysis, we found a significant association between smoking and SLE (OR = 1·91). Conversely, there was no association between BMI and SLE. CONCLUSION In this study, we have shown that smoking is independently associated with SLE, whereas BMI scores were not.
Collapse
Affiliation(s)
- Mathilde Versini
- Department of Internal Medicine, Archet Hospital, University of Nice-Sophia-Antipolis, Nice, France
| | - Shmuel Tiosano
- Department of Medicine 'B', Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Yehuda Shoenfeld
- Department of Medicine 'B', Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Arnon D Cohen
- Chief Physician's Office, Clalit Health Services, Tel-Aviv, Israel.,Siaal Research Center for Family Medicine and Primary Care, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Howard Amital
- Department of Medicine 'B', Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
27
|
Luo XM, Edwards MR, Reilly CM, Mu Q, Ahmed SA. Diet and Microbes in the Pathogenesis of Lupus. Lupus 2017. [DOI: 10.5772/68110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Abella V, Scotece M, Conde J, Pino J, Gonzalez-Gay MA, Gómez-Reino JJ, Mera A, Lago F, Gómez R, Gualillo O. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol 2017; 13:100-109. [PMID: 28053336 DOI: 10.1038/nrrheum.2016.209] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leptin is one of the most relevant factors secreted by adipose tissue and the forerunner of a class of molecules collectively called adipokines. Initially discovered in 1994, its crucial role as a central regulator in energy homeostasis has been largely described during the past 20 years. Once secreted into the circulation, leptin reaches the central and peripheral nervous systems and acts by binding and activating the long form of leptin receptor (LEPR), regulating appetite and food intake, bone mass, basal metabolism, reproductive function and insulin secretion, among other processes. Research on the regulation of different adipose tissues has provided important insights into the intricate network that links nutrition, metabolism and immune homeostasis. The neuroendocrine and immune systems communicate bi-directionally through common ligands and receptors during stress responses and inflammation, and control cellular immune responses in several pathological situations including immune-inflammatory rheumatic diseases. This Review discusses the latest findings regarding the role of leptin in the immune system and metabolism, with particular emphasis on its effect on autoimmune and/or inflammatory rheumatic diseases, such as rheumatoid arthritis and osteoarthritis.
Collapse
Affiliation(s)
- Vanessa Abella
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela 15706, Spain
| | - Morena Scotece
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela 15706, Spain
| | - Javier Conde
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela 15706, Spain
| | - Jesús Pino
- SERGAS (Servizo Galego de Saude), Santiago University Clinical Hospital, Division of Orthopaedic Surgery and Traumatology, Travesía da Choupana S/N, Santiago de Compostela 15706, Spain
| | - Miguel Angel Gonzalez-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Universidad de Cantabria and IDIVAL, Hospital Universitario Marqués de Valdecilla, Av. Valdecilla, Santander 39008, Spain
| | - Juan J Gómez-Reino
- SERGAS (Servizo Galego de Saude), Santiago University Clinical Hospital, Division of Rheumatology, Travesía da Choupana S/N, Santiago de Compostela 15706, Spain
| | - Antonio Mera
- SERGAS (Servizo Galego de Saude), Santiago University Clinical Hospital, Division of Rheumatology, Travesía da Choupana S/N, Santiago de Compostela 15706, Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Department of Cellular and Molecular Cardiology, CIBERCV (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares), Building C, Travesía da Choupana S/N, Santiago de Compostela 15706, Spain
| | - Rodolfo Gómez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela 15706, Spain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela 15706, Spain
| |
Collapse
|
29
|
Oxidative Stress and Treg and Th17 Dysfunction in Systemic Lupus Erythematosus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2526174. [PMID: 27597882 PMCID: PMC4997077 DOI: 10.1155/2016/2526174] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organ systems. The pathogenic mechanisms that cause SLE remain unclear; however, it is well recognized that the immune balance is disturbed and that this imbalance contributes to the autoimmune symptoms of SLE. Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and the ability of the biological system to readily detoxify the reactive intermediates or to repair the resulting damage. In humans, oxidative stress is involved in many diseases, including atherosclerosis, myocardial infarction, and autoimmune diseases. Numerous studies have confirmed that oxidative stress plays an important role in the pathogenesis of SLE. This review mainly focuses on the recent research advances with respect to oxidative stress and regulatory T (Treg)/helper T 17 (Th17) cell dysfunction in the pathogenesis of SLE.
Collapse
|
30
|
Gerriets VA, Danzaki K, Kishton RJ, Eisner W, Nichols AG, Saucillo DC, Shinohara ML, MacIver NJ. Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. Eur J Immunol 2016; 46:1970-83. [PMID: 27222115 DOI: 10.1002/eji.201545861] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 04/18/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
Abstract
Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg-cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff-cell number, function, and glucose metabolism, but did not alter Treg-cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff-cell, but not Treg-cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff-cell glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells.
Collapse
Affiliation(s)
- Valerie A Gerriets
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Keiko Danzaki
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Rigel J Kishton
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - William Eisner
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Amanda G Nichols
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Donte C Saucillo
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical Center, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Nancie J MacIver
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA.,Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
31
|
Chen H, Shi B, Feng X, Kong W, Chen W, Geng L, Chen J, Liu R, Li X, Chen W, Gao X, Sun L. Leptin and Neutrophil-Activating Peptide 2 Promote Mesenchymal Stem Cell Senescence Through Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol 2015; 67:2383-93. [PMID: 25989537 DOI: 10.1002/art.39196] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 05/07/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) derived from patients with systemic lupus erythematosus (SLE) exhibit enhanced senescence. Cellular senescence has been reported to be induced by several inflammatory cytokines, including interferon-α (IFNα) and IFNγ, that are involved in the pathogenesis of SLE. We undertook this study to investigate whether the inflammatory environment in SLE could affect MSC senescence. METHODS Cellular senescence was measured by staining of senescence-associated β-galactosidase and by expression of the cell cycle inhibitors p53 and p21. Eighty cytokines and chemokines in serum from healthy controls and patients with SLE were identified by cytokine antibody array. RESULTS SLE serum promoted senescence of MSCs, which was reversed by the phosphatidylinositol 3-kinase (PI3K)/Akt signaling inhibitor LY294002 but not by the JAK/STAT inhibitor AG490 and not by the MEK/ERK inhibitor PD98059. Cytokine antibody array analysis revealed that leptin and neutrophil-activating peptide 2 (NAP-2) were the 2 factors most significantly elevated in SLE serum compared with normal serum. Blockade of leptin or NAP-2 in MSC cultures abolished SLE serum-induced senescence, while direct addition of these 2 factors could promote senescence in cultures of normal MSCs. Inhibition of PI3K/Akt signaling with LY294002 reduced leptin- and NAP-2-induced senescence in MSCs. CONCLUSION Taken together, our data show that leptin and NAP-2 act synergistically to promote MSC senescence through enhancement of the PI3K/Akt signaling pathway in SLE patients.
Collapse
Affiliation(s)
- Haifeng Chen
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bingyu Shi
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuebing Feng
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Kong
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Weiwei Chen
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Linyu Geng
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jinyun Chen
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Liu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xia Li
- Dalian Medical University, Dalian, China
| | - WanJun Chen
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | | | - Lingyun Sun
- Nanjing University and The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
32
|
Goto K, Kaneko Y, Sato Y, Otsuka T, Yamamoto S, Goto S, Yamamoto K, Yamamoto T, Kawachi H, Madaio MP, Narita I. Leptin deficiency down-regulates IL-23 production in glomerular podocytes resulting in an attenuated immune response in nephrotoxic serum nephritis. Int Immunol 2015; 28:197-208. [PMID: 26567290 DOI: 10.1093/intimm/dxv067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 11/04/2015] [Indexed: 12/27/2022] Open
Abstract
Leptin, one of the typical adipokines, is reported to promote Th17 cell responses and to enhance production of proinflammatory cytokines. To clarify the role of leptin in the regulation of the IL-23/IL-17 axis and the development of kidney disease, we used a murine model of nephrotoxic serum (NTS) nephritis (NTN). Sheep NTS was administered in wild-type C57BL/6J mice and food-restricted, leptin-deficient C57BL/6J-ob/ob(FR-ob/ob) mice after preimmunization with sheep IgG. The profile of mRNA expression relevant to T helper lymphocytes in the kidneys was analyzed by quantitative real-time PCR (qRT-PCR). Cultured murine glomerular podocytes and peritoneal exudate macrophages (PEMs) were used to investigate the direct effect of leptin on IL-23 or MCP-1 production by qRT-PCR. Kidney injury and macrophage infiltration were significantly attenuated in FR-ob/obmice 7 days after NTS injection. The Th17-dependent secondary immune response against deposited NTS in the glomeruli was totally impaired in FR-ob/obmice because of deteriorated IL-17 and proinflammatory cytokine production including IL-23 and MCP-1 in the kidney. IL-23 was produced in glomerular podocytes in NTN mice and cultured murine glomerular podocytes produced IL-23 under leptin stimulation. MCP-1 production in PEMs was also promoted by leptin. Induction of MCP-1 expression was observed in PEMs regardless of Ob-Rb, and the leptin signal was transduced without STAT3 phosphorylation in PEMs. Leptin deficiency impairs the secondary immune response against NTS and down-regulates IL-23 production and Th17 responses in the NTN kidney, which is accompanied by decreased MCP-1 production and macrophage infiltration in the NTN kidney.
Collapse
Affiliation(s)
- Kei Goto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 Niigata, Japan
| | - Yoshikatsu Kaneko
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 Niigata, Japan
| | - Yuya Sato
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 Niigata, Japan
| | - Tadashi Otsuka
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 Niigata, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 Niigata, Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 Niigata, Japan
| | - Keiko Yamamoto
- Department of Structural Pathology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 Niigata, Japan
| | - Tadashi Yamamoto
- Department of Structural Pathology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 Niigata, Japan
| | - Hiroshi Kawachi
- Department of Cell Biology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 Niigata, Japan
| | - Michael P Madaio
- Department of Medicine, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 Niigata, Japan
| |
Collapse
|
33
|
Li HM, Zhang TP, Leng RX, Li XP, Li XM, Pan HF. Plasma/Serum Leptin Levels in Patients with Systemic Lupus Erythematosus: A Meta-analysis. Arch Med Res 2015; 46:551-6. [DOI: 10.1016/j.arcmed.2015.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022]
|
34
|
Adipokines influence the inflammatory balance in autoimmunity. Cytokine 2015; 75:272-9. [PMID: 26044595 DOI: 10.1016/j.cyto.2015.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/16/2015] [Accepted: 04/12/2015] [Indexed: 01/04/2023]
Abstract
Over the past few decades, our understanding of the role of adipose tissue has changed dramatically. Far from simply being a site of energy storage or a modulator of the endocrine system, adipose tissue has emerged as an important regulator of multiple important processes including inflammation. Adipokines are a diverse family of soluble mediators with a range of specific actions on the immune response. Autoimmune diseases are perpetuated by chronic inflammatory responses but the exact etiology of these diseases remains elusive. While researchers continue to investigate these causes, millions of people continue to suffer from chronic diseases. To this end, an increased interest has developed in the connection between adipose tissue-secreted proteins that influence inflammation and the onset and perpetuation of autoimmunity. This review will focus on recent advances in adipokine research with specific attention on a subset of adipokines that have been associated with autoimmune diseases.
Collapse
|
35
|
Procaccini C, Pucino V, Mantzoros CS, Matarese G. Leptin in autoimmune diseases. Metabolism 2015; 64:92-104. [PMID: 25467840 DOI: 10.1016/j.metabol.2014.10.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
Abstract
The past twenty years of research on leptin has provided crucial information on the link between metabolic state and immune system function. Adipocytes influence not only the endocrine system but also the immune response, through several cytokine-like mediators known as adipokines, which include leptin. Initially described as an antiobesity hormone, leptin has subsequently been shown also to influence hematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect thymic homeostasis and the secretion of acute-phase reactants such as interleukin-1 (IL-1) and tumor-necrosis factor-alpha (TNF-α). Leptin links nutritional status and proinflammatory T helper 1 (Th1) immune responses and the decrease in leptin plasma concentration during food deprivation leads to impaired immune function. Conversely, elevated circulating leptin levels in obesity appear to contribute to the low-grade inflammatory background which makes obese individuals more susceptible to increased risk of developing cardiovascular diseases, diabetes, or degenerative disease including autoimmunity and cancer. In this review, we provide an overview of recent advances on the role of leptin in the pathogenesis of several autoimmune disorders that may be of particular relevance in the modulation of the autoimmune attack through metabolic-based therapeutic approaches.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Valentina Pucino
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Christos S Mantzoros
- Section of Endocrinology, Boston VA Healthcare System, Jamaica Plain, MA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine, Boston Medical Center, Boston University, 72 Evans Street, Boston, MA 02217, USA
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Facoltà di Medicina e Chirurgia, Università di Salerno, Baronissi Campus, 84081 Baronissi, Salerno, Italy; IRCCS-MultiMedica, 20138 Milano, Italy.
| |
Collapse
|
36
|
Andrade-Oliveira V, Câmara NOS, Moraes-Vieira PM. Adipokines as drug targets in diabetes and underlying disturbances. J Diabetes Res 2015; 2015:681612. [PMID: 25918733 PMCID: PMC4397001 DOI: 10.1155/2015/681612] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/19/2015] [Indexed: 12/14/2022] Open
Abstract
Diabetes and obesity are worldwide health problems. White fat dynamically participates in hormonal and inflammatory regulation. White adipose tissue is recognized as a multifactorial organ that secretes several adipose-derived factors that have been collectively termed "adipokines." Adipokines are pleiotropic molecules that gather factors such as leptin, adiponectin, visfatin, apelin, vaspin, hepcidin, RBP4, and inflammatory cytokines, including TNF and IL-1β, among others. Multiple roles in metabolic and inflammatory responses have been assigned to these molecules. Several adipokines contribute to the self-styled "low-grade inflammatory state" of obese and insulin-resistant subjects, inducing the accumulation of metabolic anomalies within these individuals, including autoimmune and inflammatory diseases. Thus, adipokines are an interesting drug target to treat autoimmune diseases, obesity, insulin resistance, and adipose tissue inflammation. The aim of this review is to present an overview of the roles of adipokines in different immune and nonimmune cells, which will contribute to diabetes as well as to adipose tissue inflammation and insulin resistance development. We describe how adipokines regulate inflammation in these diseases and their therapeutic implications. We also survey current attempts to exploit adipokines for clinical applications, which hold potential as novel approaches to drug development in several immune-mediated diseases.
Collapse
Affiliation(s)
- Vinícius Andrade-Oliveira
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, SP, Brazil
| | - Niels O. S. Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, SP, Brazil
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, SP, Brazil
| | - Pedro M. Moraes-Vieira
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, USA
- *Pedro M. Moraes-Vieira:
| |
Collapse
|
37
|
Obesity in autoimmune diseases: Not a passive bystander. Autoimmun Rev 2014; 13:981-1000. [DOI: 10.1016/j.autrev.2014.07.001] [Citation(s) in RCA: 451] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/20/2014] [Indexed: 02/06/2023]
|
38
|
|
39
|
Conde J, Scotece M, Abella V, López V, Pino J, Gómez-Reino JJ, Gualillo O. An update on leptin as immunomodulator. Expert Rev Clin Immunol 2014; 10:1165-70. [DOI: 10.1586/1744666x.2014.942289] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|