1
|
Okoreeh MK, Kennedy DE, Emmanuel AO, Veselits M, Moshin A, Ladd RH, Erickson S, McLean KC, Madrigal B, Nemazee D, Maienschein-Cline M, Mandal M, Clark MR. Asymmetrical forward and reverse developmental trajectories determine molecular programs of B cell antigen receptor editing. Sci Immunol 2022; 7:eabm1664. [PMID: 35930652 PMCID: PMC9636592 DOI: 10.1126/sciimmunol.abm1664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During B lymphopoiesis, B cell progenitors progress through alternating and mutually exclusive stages of clonal expansion and immunoglobulin (Ig) gene rearrangements. Great diversity is generated through the stochastic recombination of Ig gene segments encoding heavy and light chain variable domains. However, this commonly generates autoreactivity. Receptor editing is the predominant tolerance mechanism for self-reactive B cells in the bone marrow (BM). B cell receptor editing rescues autoreactive B cells from negative selection through renewed light chain recombination first at Igκ then Igλ loci. Receptor editing depends on BM microenvironment cues and key transcription factors such as NF-κB, FOXO, and E2A. The specific BM factor required for receptor editing is unknown. Furthermore, how transcription factors coordinate these developmental programs to promote usage of the λ chain remains poorly defined. Therefore, we used two mouse models that recapitulate pathways by which Igλ light chain-positive B cells develop. The first has deleted J kappa (Jκ) genes and hence models Igλ expression resulting from failed Igκ recombination (Igκdel). The second models autoreactivity by ubiquitous expression of a single-chain chimeric anti-Igκ antibody (κ-mac). Here, we demonstrated that autoreactive B cells transit asymmetric forward and reverse developmental trajectories. This imparted a unique epigenetic landscape on small pre-B cells, which opened chromatin to transcription factors essential for Igλ recombination. The consequences of this asymmetric developmental path were both amplified and complemented by CXCR4 signaling. These findings reveal how intrinsic molecular programs integrate with extrinsic signals to drive receptor editing.
Collapse
Affiliation(s)
- Michael K. Okoreeh
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
- Growth, Development, Disabilities Training program (GDDTP), Pritzker School of Medicine, University of Chicago, IL, 60637, USA
| | - Domenick E. Kennedy
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
- Present Address: Drug Discovery Science and Technology, Discovery Platform Technologies, Chemical Biology and Emerging Therapeutics, AbbVie, North Chicago, IL, United States
| | - Akinola Olumide Emmanuel
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Veselits
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Azam Moshin
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Robert H. Ladd
- Cytometry and Antibody Technologies Facility, University of Chicago, Chicago, IL, 60637, USA
| | - Steven Erickson
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Kaitlin C. McLean
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Brianna Madrigal
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Malay Mandal
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Marcus R. Clark
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
2
|
Zhang Q, Liang Z, Zhang J, Lei T, Dong X, Su H, Chen Y, Zhang Z, Tan L, Zhao Y. Sirt6 Regulates the Development of Medullary Thymic Epithelial Cells and Contributes to the Establishment of Central Immune Tolerance. Front Cell Dev Biol 2021; 9:655552. [PMID: 33869219 PMCID: PMC8044826 DOI: 10.3389/fcell.2021.655552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Although some advances have been made in understanding the molecular regulation of mTEC development, the role of epigenetic regulators in the development and maturation of mTEC is poorly understood. Here, using the TEC-specific Sirt6 knockout mice, we found the deacetylase Sirtuin 6 (Sirt6) is essential for the development of functionally competent mTECs. First of all, TEC-specific Sirt6 deletion dramatically reduces the mTEC compartment, which is caused by reduced DNA replication and subsequent impaired proliferation ability of Sirt6-deficient mTECs. Secondly, Sirt6 deficiency specifically accelerates the differentiation of mTECs from CD80–Aire– immature population to CD80+Aire– intermediate mature population by promoting the expression of Spib. Finally, Sirt6 ablation in TECs markedly interferes the proper expression of tissue-restricted antigens (TRAs) and impairs the development of thymocytes and nTreg cells. In addition, TEC conditional knockout of Sirt6 results in severe autoimmune disease manifested by reduced body weight, the infiltration of lymphocytes and the presence of autoantibodies. Collectively, this study reveals that the expression of epigenetic regulator Sirt6 in TECs is crucial for the development and differentiation of mTECs, which highlights the importance of Sirt6 in the establishment of central immune tolerance.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tong Lei
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huiting Su
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yifang Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Center of Organ Transplantation, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Janus Kinase Mutations in Mice Lacking PU.1 and Spi-B Drive B Cell Leukemia through Reactive Oxygen Species-Induced DNA Damage. Mol Cell Biol 2020; 40:MCB.00189-20. [PMID: 32631903 DOI: 10.1128/mcb.00189-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022] Open
Abstract
Precursor B cell acute lymphoblastic leukemia (B-ALL) is caused by genetic lesions in developing B cells that function as drivers for the accumulation of additional mutations in an evolutionary selection process. We investigated secondary drivers of leukemogenesis in a mouse model of B-ALL driven by PU.1/Spi-B deletion (Mb1-CreΔPB). Whole-exome-sequencing analysis revealed recurrent mutations in Jak3 (encoding Janus kinase 3), Jak1, and Ikzf3 (encoding Aiolos). Mutations with a high variant-allele frequency (VAF) were dominated by C→T transition mutations that were compatible with activation-induced cytidine deaminase, whereas the majority of mutations, with a low VAF, were dominated by C→A transversions associated with 8-oxoguanine DNA damage caused by reactive oxygen species (ROS). The Janus kinase (JAK) inhibitor ruxolitinib delayed leukemia onset, reduced ROS and ROS-induced gene expression signatures, and altered ROS-induced mutational signatures. These results reveal that JAK mutations can alter the course of leukemia clonal evolution through ROS-induced DNA damage.
Collapse
|
4
|
Laramée AS, Raczkowski H, Shao P, Batista C, Shukla D, Xu L, Haeryfar SMM, Tesfagiorgis Y, Kerfoot S, DeKoter R. Opposing Roles for the Related ETS-Family Transcription Factors Spi-B and Spi-C in Regulating B Cell Differentiation and Function. Front Immunol 2020; 11:841. [PMID: 32457757 PMCID: PMC7225353 DOI: 10.3389/fimmu.2020.00841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Generation of specific antibodies during an immune response to infection or vaccination depends on the ability to rapidly and accurately select clones of antibody-secreting B lymphocytes for expansion. Antigen-specific B cell clones undergo the cell fate decision to differentiate into antibody-secreting plasma cells, memory B cells, or germinal center B cells. The E26-transformation-specific (ETS) transcription factors Spi-B and Spi-C are important regulators of B cell development and function. Spi-B is expressed throughout B cell development and is downregulated upon plasma cell differentiation. Spi-C is highly related to Spi-B and has similar DNA-binding specificity. Heterozygosity for Spic rescues B cell development and B cell proliferation defects observed in Spi-B knockout mice. In this study, we show that heterozygosity for Spic rescued defective IgG1 secondary antibody responses in Spib–/– mice. Plasma cell differentiation was accelerated in Spib–/– B cells. Gene expression, ChIP-seq, and reporter gene analysis showed that Spi-B and Spi-C differentially regulated Bach2, encoding a key regulator of plasma cell and memory B cell differentiation. These results suggest that Spi-B and Spi-C oppose the function of one another to regulate B cell differentiation and function.
Collapse
Affiliation(s)
- Anne-Sophie Laramée
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Hannah Raczkowski
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Peng Shao
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Carolina Batista
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Devanshi Shukla
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Li Xu
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON, Canada
| | - Yodit Tesfagiorgis
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Steven Kerfoot
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Rodney DeKoter
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| |
Collapse
|
5
|
Driver mutations in Janus kinases in a mouse model of B-cell leukemia induced by deletion of PU.1 and Spi-B. Blood Adv 2019; 2:2798-2810. [PMID: 30355579 DOI: 10.1182/bloodadvances.2018019950] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/02/2018] [Indexed: 01/13/2023] Open
Abstract
Precursor B-cell acute lymphoblastic leukemia (B-ALL) is associated with recurrent mutations that occur in cancer-initiating cells. There is a need to understand how driver mutations influence clonal evolution of leukemia. The E26-transformation-specific (ETS) transcription factors PU.1 and Spi-B (encoded by Spi1 and Spib) execute a critical role in B-cell development and serve as complementary tumor suppressors. Here, we used a mouse model to conditionally delete Spi1 and Spib genes in developing B cells. These mice developed B-ALL with a median time to euthanasia of 18 weeks. We performed RNA and whole-exome sequencing (WES) on leukemias isolated from Mb1-CreΔPB mice and identified single nucleotide variants (SNVs) in Jak1, Jak3, and Ikzf3 genes, resulting in amino acid sequence changes. Jak3 mutations resulted in amino acid substitutions located in the pseudo-kinase (R653H, V670A) and in the kinase (T844M) domains. Introduction of Jak3 T844M into Spi1/Spib-deficient precursor B cells was sufficient to promote proliferation in response to low IL-7 concentrations in culture, and to promote proliferation and leukemia-like disease in transplanted mice. We conclude that mutations in Janus kinases represent secondary drivers of leukemogenesis that cooperate with Spi1/Spib deletion. This mouse model represents a useful tool to study clonal evolution in B-ALL.
Collapse
|
6
|
Xu LS, Francis A, Turkistany S, Shukla D, Wong A, Batista CR, DeKoter RP. ETV6-RUNX1 interacts with a region in SPIB intron 1 to regulate gene expression in pre-B-cell acute lymphoblastic leukemia. Exp Hematol 2019; 73:50-63.e2. [PMID: 30986496 DOI: 10.1016/j.exphem.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 11/19/2022]
Abstract
The most frequently occurring genetic abnormality in pediatric B-lymphocyte-lineage acute lymphoblastic leukemia is the t(12;21) chromosomal translocation that results in a ETV6-RUNX1 (also known as TEL-AML1) fusion gene. Expression of ETV6-RUNX1 induces a preleukemic condition leading to acquisition of secondary driver mutations, but the mechanism is poorly understood. SPI-B (encoded by SPIB) is an important transcriptional activator of B-cell development and differentiation. We hypothesized that SPIB is directly transcriptionally repressed by ETV6-RUNX1. Using chromatin immunoprecipitation, we identified a regulatory region in the first intron of SPIB that interacts with ETV6-RUNX1. Mutation of the RUNX1 binding site in SPIB intron 1 prevented transcriptional repression in transient transfection assays. Next, we sought to determine to what extent gene expression in REH cells can be altered by ectopic SPI-B expression. SPI-B expression was forced using CRISPR-mediated gene activation and also using a retroviral vector. Forced expression of SPI-B resulted in altered gene expression and, at high levels, impaired cell proliferation and induced apoptosis. Finally, we identified CARD11 and CDKN1A (encoding p21) as transcriptional targets of SPI-B involved in regulation of proliferation and apoptosis. Taken together, this study identifies SPIB as an important target of ETV6-RUNX1 in regulation of B-cell gene expression in t(12;21) leukemia.
Collapse
MESH Headings
- Apoptosis/genetics
- CARD Signaling Adaptor Proteins/biosynthesis
- CARD Signaling Adaptor Proteins/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 12/metabolism
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Leukemic
- Guanylate Cyclase/biosynthesis
- Guanylate Cyclase/genetics
- Humans
- Introns
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Response Elements
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Li S Xu
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Alyssa Francis
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | | | - Devanshi Shukla
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Alison Wong
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Carolina R Batista
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada.
| |
Collapse
|
7
|
Fernández-Calleja V, Fernández-Nestosa MJ, Hernández P, Schvartzman JB, Krimer DB. CRISPR/Cas9-mediated deletion of the Wiskott-Aldrich syndrome locus causes actin cytoskeleton disorganization in murine erythroleukemia cells. PeerJ 2019; 7:e6284. [PMID: 30671311 PMCID: PMC6339507 DOI: 10.7717/peerj.6284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 01/18/2023] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is a recessive X-linked inmmunodeficiency caused by loss-of-function mutations in the gene encoding the WAS protein (WASp). WASp plays an important role in the polymerization of the actin cytoskeleton in hematopoietic cells through activation of the Arp2/3 complex. In a previous study, we found that actin cytoskeleton proteins, including WASp, were silenced in murine erythroleukemia cells defective in differentiation. Here, we designed a CRISPR/Cas9 strategy to delete a 9.5-kb genomic region encompassing the Was gene in the X chromosome of murine erythroleukemia (MEL) cells. We show that Was-deficient MEL cells have a poor organization of the actin cytoskeleton that can be recovered by restoring Was expression. We found that whereas the total amount of actin protein was similar between wild-type and Was knockout MEL cells, the latter exhibited an altered ratio of monomeric G-actin to polymeric F-actin. We also demonstrate that Was overexpression can mediate the activation of Bruton’s tyrosine kinase. Overall, these findings support the role of WASp as a key regulator of F-actin in erythroid cells.
Collapse
Affiliation(s)
- Vanessa Fernández-Calleja
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | | | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Jorge B Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Dora B Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Solomon LA, Batista CR, DeKoter RP. Lenalidomide modulates gene expression in human ABC-DLBCL cells by regulating IKAROS interaction with an intronic control region of SPIB. Exp Hematol 2017; 56:46-57.e1. [DOI: 10.1016/j.exphem.2017.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 11/16/2022]
|
9
|
Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB. Nat Commun 2017; 8:1426. [PMID: 29127283 PMCID: PMC5681560 DOI: 10.1038/s41467-017-01605-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
Humoral immunity requires B cells to respond to multiple stimuli, including antigen, membrane and soluble ligands, and microbial products. Ets family transcription factors regulate many aspects of haematopoiesis, although their functions in humoral immunity are difficult to decipher as a result of redundancy between the family members. Here we show that mice lacking both PU.1 and SpiB in mature B cells do not generate germinal centers and high-affinity antibody after protein immunization. PU.1 and SpiB double-deficient B cells have a survival defect after engagement of CD40 or Toll-like receptors (TLR), despite paradoxically enhanced plasma cell differentiation. PU.1 and SpiB regulate the expression of many components of the B cell receptor signaling pathway and the receptors for CD40L, BAFF and TLR ligands. Thus, PU.1 and SpiB enable B cells to appropriately respond to environmental cues.
Collapse
|
10
|
Fernández-Calleja V, Hernández P, Schvartzman JB, García de Lacoba M, Krimer DB. Differential gene expression analysis by RNA-seq reveals the importance of actin cytoskeletal proteins in erythroleukemia cells. PeerJ 2017; 5:e3432. [PMID: 28663935 PMCID: PMC5490462 DOI: 10.7717/peerj.3432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022] Open
Abstract
Development of drug resistance limits the effectiveness of anticancer treatments. Understanding the molecular mechanisms triggering this event in tumor cells may lead to improved therapeutic strategies. Here we used RNA-seq to compare the transcriptomes of a murine erythroleukemia cell line (MEL) and a derived cell line with induced resistance to differentiation (MEL-R). RNA-seq analysis identified a total of 596 genes (Benjamini–Hochberg adjusted p-value < 0.05) that were differentially expressed by more than two-fold, of which 81.5% (486/596) of genes were up-regulated in MEL cells and 110 up-regulated in MEL-R cells. These observations revealed that for some genes the relative expression of mRNA amount in the MEL cell line has decreased as the cells acquired the resistant phenotype. Clustering analysis of a group of genes showing the highest differential expression allowed identification of a sub-group among genes up-regulated in MEL cells. These genes are related to the organization of the actin cytoskeleton network. Moreover, the majority of these genes are preferentially expressed in the hematopoietic lineage and at least three of them, Was (Wiskott Aldrich syndrome), Btk (Bruton’s tyrosine kinase) and Rac2, when mutated in humans, give rise to severe hematopoietic deficiencies. Among the group of genes that were up-regulated in MEL-R cells, 16% of genes code for histone proteins, both canonical and variants. A potential implication of these results on the blockade of differentiation in resistant cells is discussed.
Collapse
Affiliation(s)
- Vanessa Fernández-Calleja
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Jorge B Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Mario García de Lacoba
- Bioinformatics and Biostatistics Service, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Dora B Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
11
|
Batista CR, Li SKH, Xu LS, Solomon LA, DeKoter RP. PU.1 Regulates Ig Light Chain Transcription and Rearrangement in Pre-B Cells during B Cell Development. THE JOURNAL OF IMMUNOLOGY 2017; 198:1565-1574. [PMID: 28062693 DOI: 10.4049/jimmunol.1601709] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022]
Abstract
B cell development and Ig rearrangement are governed by cell type- and developmental stage-specific transcription factors. PU.1 and Spi-B are E26-transformation-specific transcription factors that are critical for B cell differentiation. To determine whether PU.1 and Spi-B are required for B cell development in the bone marrow, Spi1 (encoding PU.1) was conditionally deleted in B cells by Cre recombinase under control of the Mb1 gene in Spib (encoding Spi-B)-deficient mice. Combined deletion of Spi1 and Spib resulted in a lack of mature B cells in the spleen and a block in B cell development in the bone marrow at the small pre-B cell stage. To determine target genes of PU.1 that could explain this block, we applied a gain-of-function approach using a PU.1/Spi-B-deficient pro-B cell line in which PU.1 can be induced by doxycycline. PU.1-induced genes were identified by integration of chromatin immunoprecipitation-sequencing and RNA-sequencing data. We found that PU.1 interacted with multiple sites in the Igκ locus, including Vκ promoters and regions located downstream of Vκ second exons. Induction of PU.1 induced Igκ transcription and rearrangement. Upregulation of Igκ transcription was impaired in small pre-B cells from PU.1/Spi-B-deficient bone marrow. These studies reveal an important role for PU.1 in the regulation of Igκ transcription and rearrangement and a requirement for PU.1 and Spi-B in B cell development.
Collapse
Affiliation(s)
- Carolina R Batista
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Stephen K H Li
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and
| | - Li S Xu
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Lauren A Solomon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Rodney P DeKoter
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; .,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| |
Collapse
|
12
|
Pang SHM, Minnich M, Gangatirkar P, Zheng Z, Ebert A, Song G, Dickins RA, Corcoran LM, Mullighan CG, Busslinger M, Huntington ND, Nutt SL, Carotta S. PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia. Leukemia 2016; 30:1375-87. [PMID: 26932576 PMCID: PMC5179358 DOI: 10.1038/leu.2016.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 11/14/2015] [Accepted: 01/08/2016] [Indexed: 12/22/2022]
Abstract
The Ets family transcription factor PU.1 and the interferon regulatory factor (IRF)4 and IRF8 regulate gene expression by binding to composite DNA sequences known as Ets/interferon consensus elements. Although all three factors are expressed from the onset of B-cell development, single deficiency of these factors in B-cell progenitors only mildly impacts on bone marrow B lymphopoiesis. Here we tested whether PU.1 cooperates with IRF factors in regulating early B-cell development. Lack of PU.1 and IRF4 resulted in a partial block in development the pre-B-cell stage. The combined deletion of PU.1 and IRF8 reduced recirculating B-cell numbers. Strikingly, all PU.1/IRF4 and ~50% of PU.1/IRF8 double deficient mice developed pre-B-cell acute lymphoblastic leukemia (B-ALL) associated with reduced expression of the established B-lineage tumor suppressor genes, Ikaros and Spi-B. These genes are directly regulated by PU.1/IRF4/IRF8, and restoration of Ikaros or Spi-B expression inhibited leukemic cell growth. In summary, we demonstrate that PU.1, IRF4 and IRF8 cooperate to regulate early B-cell development and to prevent pre-B-ALL formation.
Collapse
Affiliation(s)
- Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martina Minnich
- The Institute of Molecular Pathology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Pradnya Gangatirkar
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiqiang Zheng
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Anja Ebert
- The Institute of Molecular Pathology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Ross A Dickins
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Meinrad Busslinger
- The Institute of Molecular Pathology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
13
|
Song LJ, Zhang WJ, Chang ZW, Pan YF, Zong H, Fan QX, Wang LX. PU.1 Is Identified as a Novel Metastasis Suppressor in Hepatocellular Carcinoma Regulating the miR-615-5p/IGF2 Axis. Asian Pac J Cancer Prev 2016; 16:3667-71. [PMID: 25987019 DOI: 10.7314/apjcp.2015.16.9.3667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Invasion and metastasis is the major cause of tumor recurrence, difficulty for cure and low survival rate. Excavating key transcription factors, which can regulate tumor invasion and metastasis, are crucial to the development of therapeutic strategies for cancers. PU.1 is a master hematopoietic transcription factor and a vital regulator in life. Here, we report that, compared to adjacent non-cancerous tissues, expression of PU.1 mRNA in metastatic hepatocellular carcinoma (HCC), but not primary HCC, was significantly down-regulated. In addition, levels of PU.1 mRNA in metastatic hepatoma cell lines MHCC97L and MHCC97H were much lower than in non-metastatic Hep3B cells. Transwell invasion assays after PU.1 siRNA transfection showed that the invasion of hepatoma cell lines was increased markedly by PU.1 knockdown. Oppositely, overexpression of PU.1 suppressed the invasion of these cells. However, knockdown and overexpression of PU.1 did not influence proliferation. Finally, we tried to explore the potential mechanism of PU.1 suppressing hepatoma cell invasion. ChIP-qPCR analysis showed that PU.1 exhibited a high binding capacity with miR-615-5p promoter sequence. Overexpression of PU.1 caused a dramatic increase of pri-, pre- and mature miR-615-5p, as well as a marked decrease of miR-615-5p target gene IGF2. These data indicate that PU.1 inhibits invasion of human HCC through promoting miR-615-5p and suppressing IGF2. These findings improve our understanding of PU.1 regulatory roles and provided a potential target for metastatic HCC diagnosis and therapy.
Collapse
Affiliation(s)
- Li-Jie Song
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
14
|
Solomon LA, Li SKH, Piskorz J, Xu LS, DeKoter RP. Genome-wide comparison of PU.1 and Spi-B binding sites in a mouse B lymphoma cell line. BMC Genomics 2015; 16:76. [PMID: 25765478 PMCID: PMC4334403 DOI: 10.1186/s12864-015-1303-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/29/2015] [Indexed: 01/01/2023] Open
Abstract
Background Spi-B and PU.1 are highly related members of the E26-transformation-specific (ETS) family of transcription factors that have similar, but not identical, roles in B cell development. PU.1 and Spi-B are both expressed in B cells, and have been demonstrated to redundantly activate transcription of genes required for B cell differentiation and function. It was hypothesized that Spi-B and PU.1 occupy a similar set of regions within the genome of a B lymphoma cell line. Results To compare binding regions of Spi-B and PU.1, murine WEHI-279 lymphoma cells were infected with retroviral vectors encoding 3XFLAG-tagged PU.1 or Spi-B. Anti-FLAG chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) was performed. Analysis for high-stringency enriched genomic regions demonstrated that PU.1 occupied 4528 regions and Spi-B occupied 3360 regions. The majority of regions occupied by Spi-B were also occupied by PU.1. Regions bound by Spi-B and PU.1 were frequently located immediately upstream of genes associated with immune response and activation of B cells. Motif-finding revealed that both transcription factors were predominantly located at the ETS core domain (GGAA), however, other unique motifs were identified when examining regions associated with only one of the two factors. Motifs associated with unique PU.1 binding included POU2F2, while unique motifs in the Spi-B regions contained a combined ETS-IRF motif. Conclusions Our results suggest that complementary biological functions of PU.1 and Spi-B may be explained by their interaction with a similar set of regions in the genome of B cells. However, sites uniquely occupied by PU.1 or Spi-B provide insight into their unique functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1303-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren A Solomon
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada.
| | - Stephen K H Li
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada.
| | - Jan Piskorz
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada.
| | - Li S Xu
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada.
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada. .,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Canada. .,Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|