1
|
Li Z, Yang Y, Zong J, Zhang B, Li X, Qi H, Yu T, Li Y. Dendritic cells immunotargeted therapy for atherosclerosis. Acta Pharm Sin B 2025; 15:792-808. [PMID: 40177571 PMCID: PMC11959979 DOI: 10.1016/j.apsb.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/15/2024] [Accepted: 11/20/2024] [Indexed: 04/05/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease, is markedly influenced by both immune and inflammatory reactions throughout its progression. Dendritic cells, as pivotal antigen-presenting entities, play a crucial role in the initiation of immune responses and the preservation of immunological homeostasis. Accumulating data indicates that dendritic cells are present in healthy arteries and accumulate significantly in atherosclerotic plaques. Novel immunotherapeutic approaches and vaccination protocols have yielded substantial clinical advancements in managing chronic inflammatory diseases, with dendritic cell-centric modalities emerging for atherosclerotic management. In this review, we delineate the essential functions and underlying mechanisms of dendritic cells and their subsets in the modulation of atherosclerotic inflammation and immune responses. We underscore the immense promise of dendritic cell-based immunotherapeutic strategies, including vaccines and innovative combinations with nanotechnological drug delivery platforms for atherosclerosis treatment. We also discuss the challenges associated with dendritic cell immunotherapy and provide perspectives on the future direction of this field.
Collapse
Affiliation(s)
- Zhaohui Li
- Department of Vascular Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266400, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hongzhao Qi
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Tao Yu
- Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Yongxin Li
- Department of Vascular Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266400, China
| |
Collapse
|
2
|
Wang F, Liu M, Ma D, Cai Z, Liu L, Wang J, Zhang W, Zhao L, Zhai C, Xu Y. Dendritic cell-expressed IDO alleviates atherosclerosis by expanding CD4 +CD25 +Foxp3 +Tregs through IDO-Kyn-AHR axis. Int Immunopharmacol 2023; 116:109758. [PMID: 36706593 DOI: 10.1016/j.intimp.2023.109758] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease, in which immune disorders constitute an essential part of vascular pathogenesis. Accumulating evidence indicates that dendritic cells (DCs) and their tryptophan metabolisms regulate host immune responses. However, the mechanistic involvement of metabolic products from DCs in dysregulating vascular immunity during the development of atherosclerosis is far from clear. Flow cytometry examination showed immune cells were accumulated and gradually increased in the atherosclerotic lesions during the atherosclerosis progression, in which IDO+DCs were enriched. To study the role of DC-expressed IDO in the development of atherosclerosis, we made a stable IDO-overexpressing DC line (IDOoeDCs) by lentiviral infection for adoptive transfer into pro-atherosclerotic mice. Compared with DCs containing empty vector (VectorCtrlDC)-treated group, treatment of IDOoeDCs led to a significant reduction of atherosclerotic lesions in the aorta, with decreased aortic infiltration of Th1 immune cells and reduced vascular inflammation. Importantly, IDOoeDCs increased aortic kynurenine (Kyn) concentration and aryl hydrocarbon receptor (AHR) expression, concomitant with CD4+CD25+Foxp3+Treg expansion in the aortic tissues, which were abrogated by AHR antagonist treatment. These results indicate that DC-expressed IDO reduces atherosclerotic lesions by inducing aortic CD4+CD25+Foxp3+Treg expansion through IDO-Kyn-AHR axis, which may represent a novel possibility for treatment or prevention of atherosclerosis.
Collapse
Affiliation(s)
- Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China; Anhui Province Key Laboratory of Active Biological Macro-molecules, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, Anhui 241000, China
| | - Meng Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Dan Ma
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zecheng Cai
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Juncheng Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Chengfeng Zhai
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, Anhui 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
3
|
Interleukin-27 Ameliorates Atherosclerosis in ApoE-/- Mice through Regulatory T Cell Augmentation and Dendritic Cell Tolerance. Mediators Inflamm 2022; 2022:2054879. [PMID: 36405994 PMCID: PMC9674420 DOI: 10.1155/2022/2054879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis, which is characterized by chronic inflammation in the arterial wall, is driven by immune cells and cytokines. Recent evidence indicated that interleukin (IL)-27 showed pleiotropic properties in immune diseases. However, precise mechanisms of IL-27, especially in atherosclerosis remains unknown. In our research, we examined the influence of the administration of IL-27 and an anti-IL-27p28 antibody (anti-IL-27p28-Ab) on both the initiation and the progression of atherosclerosis. In the groups (both the initiation and the progression) receiving recombinant IL-27 administration, the formation of atherosclerotic plaques was suspended, and the percentage of regulatory T cells (LAP+ or Foxp3+) in the spleen and peripheral blood was increased. Meanwhile, the number of T helper 1 (Th1) and T helper 17 (Th17) cells was decreased. In the peripheral blood plasma, TGF-β and IL-10 expression were increased, while the levels of IFN-γ and IL-17 were reduced. As for lesions, the mRNA expression of Foxp3, TGF-β, and IL-10 was increased, while that of IFN-γ and IL-17 was reduced. In the anti-IL-27p28 antibody groups, we obtained opposite results. We also observed that DCs treated with IL-27 display a tolerogenic phenotype and that IL-27–treated tolerogenic DCs (tDCs) are likely to play a protective role during atherosclerosis. Our study indicates that IL-27 or adoptive transfer of IL-27 loaded tDCs may be a new therapeutic approach in atherosclerosis.
Collapse
|
4
|
Tabares-Guevara JH, Villa-Pulgarin JA, Hernandez JC. Atherosclerosis: immunopathogenesis and strategies for immunotherapy. Immunotherapy 2021; 13:1231-1244. [PMID: 34382409 DOI: 10.2217/imt-2021-0009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory condition in which atheroma accumulates within the intima of the arterial wall, is a life-threatening manifestation of cardiovascular disease, due to atheroma rupture, chronic luminal narrowing and thrombosis. Current knowledge of the role of a protective immune response in atherosclerotic lesions has provided promising opportunities to develop new immunotherapeutic strategies. In particular, Tregs exert an atheroprotective role by releasing anti-inflammatory cytokines (IL-10/TGF-β) and suppressing autoreactive T lymphocytes. In vivo animal experiments have shown that this can be achieved by developing vaccines that stimulate immunological tolerance to atheroma antigens. Here, we present an overview of the current knowledge of the proatherogenic immune response, and we discuss the strategies currently used as immunoregulatory therapy.
Collapse
Affiliation(s)
| | - Janny A Villa-Pulgarin
- Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
5
|
Cai Y, Zeng Q, Liu Y, Zhu R, Yu K, Xu W, Wang Y, Ding Y, Yu J, Pan C, Peng Y, Mao Y, Cheng P, Huang L, Mao X, Zhong Y. GARP and GARP-Treated tDC Prevented the Formation of Atherosclerotic Plaques in ApoE -/- Mice. J Inflamm Res 2021; 14:3465-3479. [PMID: 34326655 PMCID: PMC8314935 DOI: 10.2147/jir.s308963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aims to clarify the specific mechanism by which GARP affects the atherosclerotic plaques in ApoE−/- mice and the effect of GARP-tDC on atherosclerosis. Methods The mice were randomly divided into three groups: the control group, the GARP-overexpressed group and the GARP-inhibited group. After 12 weeks, all the mice were euthanized, and the specimens were collected. In vitro, experiments were conducted to observe the effect of GARP on DC phenotype and the changes of the proportion of CD4+CD25+Foxp3+ Treg cells when GARP-tDCs were co-cultured with CD4+ T cells. Furthermore, adoptive transmission of GARP-tDCs was used to observe the effect on atherosclerotic plaque in mice. Results The GARP-overexpressed group enhanced the biological activity of Foxp3+ CD4+CD25+ Tregs and resulted in increased expression of LAP in T cells. In addition, the GARP-overexpressed group significantly suppressed the function of Th1 and Th17, and decreased the secretion of INF-γ and IL-17A. Thus, GARP had a protective effect on atherosclerosis. In vitro, we found that GARP-tDC had a tolerance-inducing phenotype, and GARP-tDC also had the ability to induce tolerance when co-cultured with CD4+ T cells. More importantly, adoptive transmission of GARP-tDCs reduced the size of atherosclerotic plaques. Conclusion GARP and the GARP-tDC play protective roles in atherosclerosis. The protective effect of GARP on atherosclerosis is achieved by increasing CD4+CD25+Foxp3+ Treg cells and inhibiting the production of IFN-γ and IL-17A.
Collapse
Affiliation(s)
- Yifan Cai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yuzhou Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Ruirui Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Wenbin Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yue Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yan Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Chengliang Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yudong Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yi Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Peng Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Lun Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaobo Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yucheng Zhong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
6
|
Sun Y, Zhou L, Chen W, Zhang L, Zeng H, Sun Y, Long J, Yuan D. Immune metabolism: a bridge of dendritic cells function. Int Rev Immunol 2021; 41:313-325. [PMID: 33792460 DOI: 10.1080/08830185.2021.1897124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An increasing number of researches have shown that cell metabolism regulates cell function. Dendritic cells (DCs), a professional antigen presenting cells, connect innate and adaptive immune responses. The preference of DCs for sugar or lipid affects its phenotypes and functions. In many diseases such as atherosclerosis (AS), diabetes mellitus and tumor, altered glucose or lipid level in microenvironment makes DCs exert ineffective or opposite immune roles, which accelerates the development of these diseases. In this article, we review the metabolism pathways of glucose and cholesterol in DCs, and the effects of metabolic changes on the phenotype and function of DCs. In addition, we discuss the effects of changes in glucose and lipid levels on DCs in the context of different diseases for better understanding the relationship between DCs and diseases. The immune metabolism of DCs may be a potential intervention link to treat metabolic-related immune diseases.
Collapse
Affiliation(s)
- Yuting Sun
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Weikai Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Linhui Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Hongbo Zeng
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yunxia Sun
- Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Yu J, Ruan Q, Nie X, Yu L, Huang B. Synthetic CD47 antibody-chitosan/hyaluronic acid polyelectrolyte complex mediates targeted inhibition of atherosclerotic plaques by exogenous foam-like cells via the NLRP3 pathway. J Biomater Appl 2020; 34:1381-1394. [PMID: 32063073 DOI: 10.1177/0885328220905181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jun Yu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiurong Ruan
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bangxing Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
9
|
Çoner A, Aydınalp A, Müderrisoğlu H. Evaluation of hs-CRP and sLOX-1 Levels in Moderate-to-High Risk Acute Coronary Syndromes. Endocr Metab Immune Disord Drug Targets 2019; 20:96-103. [PMID: 30961517 DOI: 10.2174/1871530319666190408145905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Risk stratification and prompt treatment are essential for the management of acute coronary syndromes (ACS) and prediction of future prognosis. Subclinical vascular inflammation and novel biomarkers play an important role in the clinical evaluation of ACS patients. METHODS We enrolled patients who were admitted to emergency service with unstable angina or non- ST segment elevated ACS (NSTE-ACS) in the study population. Coronary artery disease (CAD) complexity was determined via evaluation of angiographical views and peripheral venous blood samples were collected to measure highly sensitive C-reactive protein (hs-CRP) and soluble form of Lectin-like OxLDL receptor-1 (sLOX-1) levels. RESULTS A total of 40 patients were enrolled in the study population, mean age was 65.1±13.8 years and male gender percentage was 52.5%. Twenty-nine of patients had NSTE-ACS and 11 patients had unstable angina presentation. The modified Gensini scores were higher for patients with elevated hs- CRP and sLOX-1 levels. CONCLUSION Vascular inflammation displays the onset of ACS and it is related to more complex CAD in these patients. An increase in sLOX-1 expression is closely related to anatomical complexity of CAD in ACS.
Collapse
Affiliation(s)
- Ali Çoner
- Department of Cardiology, Başkent University Hospital Alanya Application and Research Center, Alanya/Antalya, Turkey
| | - Alp Aydınalp
- Department of Cardiology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Haldun Müderrisoğlu
- Department of Cardiology, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
10
|
Wang F, Zhang Z, Fang A, Jin Q, Fang D, Liu Y, Wu J, Tan X, Wei Y, Jiang C, Song X. Macrophage Foam Cell-Targeting Immunization Attenuates Atherosclerosis. Front Immunol 2019; 9:3127. [PMID: 30687328 PMCID: PMC6335275 DOI: 10.3389/fimmu.2018.03127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023] Open
Abstract
Background: Macrophage foam cells (FCs) play a crucial role in the initiation and progression of atherosclerosis. Reducing the formation or inducing the removal of FCs could ameliorate atherosclerosis. The present study examined whether the whole-cell vaccination using FCs could be used as novel prevention and treatment strategies to battle atherosclerosis. Methods: ApoE−/− mice with initial or established atherosclerosis were subcutaneously immunized three times with FCs in Freund's adjuvant. Results: Immunization with FCs resulted in an overt reduction of atherosclerotic lesion in the whole aorta and the aortic root with enhanced lesion stability. Subsequent study in mechanism showed that FCs vaccination dramatically increased CD4+ T cell and CD8+ T cell populations. Immunization with FCs significantly raised the plasma FCs-specific IgG antibodies. Of note, the FCs immune plasma could selectively recognize and bind to FC. FCs immune plasma significantly blocked the process of FCs formation, finally reduced the accumulation of FCs in plaque. Additionally, it was observed that FCs immunization down-regulated the expression level of atherosclerosis related pro-inflammatory cytokines, including IFN-γ, MCP-1, and IL-6 and enhanced the lesion stability with a significant increase in TGF-β1 level and collagen content. Conclusions: These findings demonstrate that the whole-cell vaccination using FCs significantly decreased lesion development and positively modulated lesion progression and stability by targeting FCs. The whole-cell FCs vaccine might represent a potential novel strategy for development of new antibodies and vaccines to the prevention or treatment of atherosclerosis.
Collapse
Affiliation(s)
- Fazhan Wang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Zhi Zhang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.,School of Chemical and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Aiping Fang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.,West China School of Public Health, Sichuan University, Chengdu, China
| | - Quansheng Jin
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Dailong Fang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yongmei Liu
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Jinhui Wu
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoyue Tan
- Department of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Chunling Jiang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
12
|
Ye ZS, Huang RC. Selectins modify dendritic cells during atherosclerosis. Chronic Dis Transl Med 2018; 4:205-210. [PMID: 30603739 PMCID: PMC6308906 DOI: 10.1016/j.cdtm.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 01/13/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APC) that facilitate the development and progression of atherosclerosis. However, DCs also function as novel "switches" between immune activation and immune tolerance and represent a heterogeneous hematopoietic lineage, with cell subsets in different tissues that show a differential morphology, phenotype, and function. Regulatory DCs, depending on their immature state, can be induced by immunosuppressive modulation, which plays an important part in the maintenance of immunologic tolerance via suppression of the immune response. In this review, we describe the current understanding of the generation of regulatory DCs. The novel role of selectins in the modification of DCs in atherosclerosis is also discussed.
Collapse
Affiliation(s)
| | - Rong-Chong Huang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
13
|
Benne N, van Duijn J, Lozano Vigario F, Leboux RJT, van Veelen P, Kuiper J, Jiskoot W, Slütter B. Anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) liposomes induce antigen-specific regulatory T cells and prevent atherosclerosis in mice. J Control Release 2018; 291:135-146. [PMID: 30365993 DOI: 10.1016/j.jconrel.2018.10.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023]
Abstract
Atherosclerosis is the predominant underlying pathology of many types of cardiovascular disease and is one of the leading causes of death worldwide. It is characterized by the retention of oxidized low-density lipoprotein (ox-LDL) in lipid-rich macrophages (foam cells) in the intima of arteries. Autoantigens derived from oxLDL can be used to vaccinate against atherosclerosis. However, a major challenge is the induction of antigen-specific Tregs in a safe and effective way. Here we report that liposomes containing the anionic phospholipid 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) induce Tregs that are specific for the liposomes' cargo. Mechanistically, we show a crucial role for the protein corona that forms on the liposomes in the circulation, as uptake of DSPG-liposomes by antigen-presenting cells is mediated via complement component 1q (C1q) and scavenger receptors (SRs). Vaccination of atherosclerotic mice on a western-type diet with DSPG-liposomes encapsulating an LDL-derived peptide antigen significantly reduced plaque formation by 50% and stabilized the plaques, and reduced serum cholesterol concentrations. These results indicate that DSPG-liposomes have potential as a delivery system in vaccination against atherosclerosis.
Collapse
Affiliation(s)
- Naomi Benne
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Janine van Duijn
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Fernando Lozano Vigario
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Romain J T Leboux
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Peter van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Kuiper
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Wim Jiskoot
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Bram Slütter
- Divison of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, The Netherlands.
| |
Collapse
|
14
|
Forteza MJ, Polyzos KA, Baumgartner R, Suur BE, Mussbacher M, Johansson DK, Hermansson A, Hansson GK, Ketelhuth DFJ. Activation of the Regulatory T-Cell/Indoleamine 2,3-Dioxygenase Axis Reduces Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice. Front Immunol 2018; 9:950. [PMID: 29867939 PMCID: PMC5949314 DOI: 10.3389/fimmu.2018.00950] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
T-cell activation is characteristic during the development of atherosclerosis. While overall T-cell responses have been implicated in disease acceleration, regulatory T cells (Tregs) exhibit atheroprotective effects. The expression of the enzyme indoleamine 2,3-dioxygenase-1 (IDO1), which catalyzes the degradation of tryptophan (Trp) along the kynurenine pathway, has been implicated in the induction and expansion of Treg populations. Hence, Tregs can reciprocally promote IDO1 expression in dendritic cells (DCs) via reverse signaling mechanisms during antigen presentation. In this study, we hypothesize that triggering the "Treg/IDO axis" in the artery wall is atheroprotective. We show that apolipoprotein B100-pulsed tumor growth factor beta 2-treated tolerogenic DCs promote de novo FoxP3+ Treg expansion in vivo. This local increase in Treg numbers is associated with increased vascular IDO1 expression and a robust reduction in the atherosclerotic burden. Using human primary cell cultures, we show for the first time that IDO1 expression and activity can be regulated by cytotoxic T-lymphocyte associated protein-4, which is a constitutive molecule expressed and secreted by Tregs, in smooth muscle cells, endothelial cells, and macrophages. Altogether, our data suggest that Tregs and IDO1-mediated Trp metabolism can mutually regulate one another in the vessel wall to promote vascular tolerance mechanisms that limit inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Maria J Forteza
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Konstantinos A Polyzos
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Roland Baumgartner
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca E Suur
- Center for Molecular Medicine, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Marion Mussbacher
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Daniel K Johansson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Hermansson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Göran K Hansson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Nagenborg J, Goossens P, Biessen EAL, Donners MMPC. Heterogeneity of atherosclerotic plaque macrophage origin, phenotype and functions: Implications for treatment. Eur J Pharmacol 2017; 816:14-24. [PMID: 28989084 DOI: 10.1016/j.ejphar.2017.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/01/2023]
Abstract
Macrophages are key players in atherosclerotic lesions, regulating the local inflammatory milieu and plaque stability by the secretion of many inflammatory molecules, growth factors and cytokines. Monocytes have long been considered to be the main source of plaque macrophages. However, recent findings provide evidence for proliferation of local macrophages or transdifferentiation from other vascular cells as alternative sources. Recent years of research focused on the further identification and characterisation of macrophage phenotypes and functions. In this review we describe the advances in our understanding of monocyte and macrophage heterogeneity and its implications for specific therapeutic interventions, aiming to reduce the ever growing significant risk of cardiovascular events without any detrimental side effects on the patient's immune response.
Collapse
Affiliation(s)
- Jan Nagenborg
- Department of Pathology, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Pieter Goossens
- Department of Pathology, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Erik A L Biessen
- Department of Pathology, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Marjo M P C Donners
- Department of Pathology, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
16
|
Xiao Y, Deng T, Shang Z, Wang D. Adiponectin inhibits oxidization-induced differentiation of T helper cells through inhibiting costimulatory CD40 and CD80. ACTA ACUST UNITED AC 2017; 50:e6227. [PMID: 28513775 PMCID: PMC5479391 DOI: 10.1590/1414-431x20176227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/27/2017] [Indexed: 12/19/2022]
Abstract
Adiponectin is a multifunctional adipokine that has several oligomeric forms in the blood stream, which broadly regulates innate and acquired immunity. Therefore, in this study, we aimed to observe the differentiation of T helper (Th) cells and expression of costimulatory signaling molecules affected by adiponectin. The mRNA and protein expression levels of adiponectin and its receptors in oxidized low density lipoprotein cholesterol-treated endothelial cells were assayed by real time PCR and immunofluorescence. The endothelial cells were then treated with adiponectin with or without adipoR1 or adipoR2 siRNA and co-cultured with T lymphocytes. The distribution of Th1, Th2 and Th17 subsets were assayed by flow cytometry. The effects of adiponectin on costimulatory signaling molecules HLA-DR, CD80, CD86 and CD 40 was also assayed by flow cytometry. The results showed that endothelial cells expressed adiponectin and its receptor adipoR1 and adipoR2, but not T-cadherin. Adiponectin suppressed Th1 and Th17 differentiation through adipoR1 receptor, contributed to the inhibition of CD80 and CD40, and inhibited differentiation of Th1 and Th17 by inhibiting antigen presenting action.
Collapse
Affiliation(s)
- Y Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - T Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z Shang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - D Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Moreno-Gordaliza E, van der Lee SJ, Demirkan A, van Duijn CM, Kuiper J, Lindenburg PW, Hankemeier T. A novel method for serum lipoprotein profiling using high performance capillary isotachophoresis. Anal Chim Acta 2016; 944:57-69. [DOI: 10.1016/j.aca.2016.09.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/22/2023]
|