1
|
Tsaouli G, Barbarulo A, Vacca A, Screpanti I, Felli MP. Molecular Mechanisms of Notch Signaling in Lymphoid Cell Lineages Development: NF-κB and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:145-164. [PMID: 32072504 DOI: 10.1007/978-3-030-36422-9_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Notch is a ligand-receptor interaction-triggered signaling cascade highly conserved, that influences multiple lineage decisions within the hematopoietic and the immune system. It is a recognized model of intercellular communication that plays an essential role in embryonic as well as in adult immune cell development and homeostasis. Four members belong to the family of Notch receptors (Notch1-4), and each of them plays nonredundant functions at several developmental stages. Canonical and noncanonical pathways of Notch signaling are multifaceted drivers of immune cells biology. In fact, increasing evidence highlighted Notch as an important modulator of immune responses, also in cancer microenvironment. In these contexts, multiple transduction signals, including canonical and alternative NF-κB pathways, play a relevant role. In this chapter, we will first describe the critical role of Notch and NF-κB signals in lymphoid lineages developing in thymus: natural killer T cells, thymocytes, and thymic T regulatory cells. We will address also the role played by ligand expressing cells. Given the importance of Notch/NF-κB cross talk, its role in T-cell leukemia development and progression will be discussed.
Collapse
Affiliation(s)
- G Tsaouli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - A Barbarulo
- Department of Immunology, Institute of Immunity and Transplantation, Royal Free Hospital, London, UK
| | - A Vacca
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - I Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | - M P Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Oliveira ML, Akkapeddi P, Alcobia I, Almeida AR, Cardoso BA, Fragoso R, Serafim TL, Barata JT. From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cell Signal 2017. [PMID: 28645565 DOI: 10.1016/j.cellsig.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from clonal expansion of transformed T-cell precursors. In this review we summarize the current knowledge on the external stimuli and cell-intrinsic lesions that drive aberrant activation of pivotal, pro-tumoral intracellular signaling pathways in T-cell precursors, driving transformation, leukemia expansion, spread or resistance to therapy. In addition to their pathophysiological relevance, receptors and kinases involved in signal transduction are often attractive candidates for targeted drug development. As such, we discuss also the potential of T-ALL signaling players as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Isabel Alcobia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Afonso R Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno A Cardoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Teresa L Serafim
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
3
|
Yu L, Li L, Medeiros LJ, Young KH. NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev 2017; 31:77-92. [PMID: 27773462 PMCID: PMC5382109 DOI: 10.1016/j.blre.2016.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023]
Abstract
The NF-κB pathway, a critical regulator of apoptosis, plays a key role in many normal cellular functions. Genetic alterations and other mechanisms leading to constitutive activation of the NF-κB pathway contribute to cancer development, progression and therapy resistance by activation of downstream anti-apoptotic pathways, unfavorable microenvironment interactions, and gene dysregulation. Not surprisingly, given its importance to normal and cancer cell function, the NF-κB pathway has emerged as a target for therapy. In the review, we present the physiologic role of the NF-κB pathway and recent advances in better understanding of the pathologic roles of the NF-κB pathway in major types of lymphoid neoplasms. We also provide an update of clinical trials that use NF-κB pathway inhibitors. These trials are exploring the clinical efficiency of combining NF-κB pathway inhibitors with various agents that target diverse mechanisms of action with the goal being to optimize novel therapeutic opportunities for targeting oncogenic pathways to eradicate cancer cells.
Collapse
Affiliation(s)
- Li Yu
- Department of Hematopathology, The University of Texas MD, Anderson Cancer Center, 6 Houston, TX, USA
- Department of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD, Anderson Cancer Center, 6 Houston, TX, USA
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD, Anderson Cancer Center, 6 Houston, TX, USA
- The University of Texas Graduate School of Biomedical Science, Houston, TX, USA
| |
Collapse
|
4
|
Abstract
The excitement surrounding checkpoint inhibitors in the treatment of patients with cancer exemplifies a triumph of the long-term value of investing in basic science and fundamental questions of T-cell signaling. The pharmaceutical future actively embraces ways of making more patients’ cancers responsive to these inhibitors. Such a process will be aided by elucidation of signaling and regulation. With thousands of articles spread across almost 30 years, this commentary can touch only on portions of the canonical picture of T-cell signaling and provide a few parables from work on mammalian (or mechanistic) target of rapamycin (mTOR) pathways as they link to early and later phases of lymphocyte activation. The piece will turn a critical eye to some issues with models about these pathways in T cells. Many of the best insights lie in the future despite all that is uncovered already, but a contention is that further therapeutic successes will be fostered by dealing with disparities among findings and attention to the temporal, spatial, and stochastic aspects of T-cell responses. Finally, thoughts on some (though not all) items urgently needed for future progress will be mooted.
Collapse
Affiliation(s)
- Mark Boothby
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Gasparini C, Celeghini C, Monasta L, Zauli G. NF-κB pathways in hematological malignancies. Cell Mol Life Sci 2014; 71:2083-102. [PMID: 24419302 PMCID: PMC11113378 DOI: 10.1007/s00018-013-1545-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/22/2022]
Abstract
The nuclear factor κB or NF-κB transcription factor family plays a key role in several cellular functions, i.e. inflammation, apoptosis, cell survival, proliferation, angiogenesis, and innate and acquired immunity. The constitutive activation of NF-κB is typical of most malignancies and plays a major role in tumorigenesis. In this review, we describe NF-κB and its two pathways: the canonical pathway (RelA/p50) and the non-canonical pathway (RelB/p50 or RelB/p52). We then consider the role of the NF-κB subunits in the development and functional activity of B cells, T cells, macrophages and dendritic cells, which are the targets of hematological malignancies. The relevance of the two pathways is described in normal B and T cells and in hematological malignancies, acute and chronic leukemias (ALL, AML, CLL, CML), B lymphomas (DLBCLs, Hodgkin's lymphoma), T lymphomas (ATLL, ALCL) and multiple myeloma. We describe the interaction of NF-κB with the apoptotic pathways induced by TRAIL and the transcription factor p53. Finally, we discuss therapeutic anti-tumoral approaches as mono-therapies or combination therapies aimed to block NF-κB activity and to induce apoptosis (PARAs and Nutlin-3).
Collapse
Affiliation(s)
- Chiara Gasparini
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy,
| | | | | | | |
Collapse
|
6
|
Eshima K, Okabe M, Kajiura S, Noma H, Shinohara N, Iwabuchi K. Significant involvement of nuclear factor-κB-inducing kinase in proper differentiation of αβ and γδ T cells. Immunology 2014; 141:222-32. [PMID: 24117043 PMCID: PMC3904243 DOI: 10.1111/imm.12186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/07/2023] Open
Abstract
Nuclear factor-κB-inducing kinase (NIK) is known to play a critical role in maintaining proper immune function. This is exemplified in the spontaneous mutant mouse lacking functional NIK, alymphoplasia (aly), which is simultaneously immune-compromised and autoimmune-prone. To investigate the role of NIK in αβ T-cell repertoire formation, we analysed T-cell development in aly/aly mice bearing a transgenic T-cell receptor (TCR). Although there were no apparent abnormalities in the mature αβ T cells of non-transgenic aly/aly mice, the maturation efficiency of idiotype(high+) T cells in the TCR-transgenic mice was lower in aly/aly mice compared with those found in aly/+ mice, suggesting that the mature αβ T-cell repertoire could be altered by the absence of functional NIK. In one strain of TCR-transgenic aly/aly mice with a negatively selecting H-2 background, the proportion of CD8(low+) idiotype(high+) cells, which are thought to potentially represent the γδ lineage of T cells, was markedly decreased. When the γδ T cells in non-transgenic aly/aly mice were investigated, the proportion of γδ T cells in the peripheral organs of aly/aly mice was found to be one-half to one-fifth of those in aly/+ mice. Analyses of bone marrow chimera mice indicated that NIK in host cells, rather than in donor cells was important for generating a normal number of peripheral γδ T cells. Collectively, these results suggest that NIK could be involved in thymic positive selection of some αβ T cells and that NIK in non-haematopoietic cells is important for the optimal development and/or maintenance of γδ T cells.
Collapse
Affiliation(s)
- Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Wang L, Xiong Y, Bosselut R. Tenuous paths in unexplored territory: From T cell receptor signaling to effector gene expression during thymocyte selection. Semin Immunol 2010; 22:294-302. [PMID: 20537906 DOI: 10.1016/j.smim.2010.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/23/2010] [Indexed: 11/17/2022]
Abstract
During the last step of alphabeta T cell development, thymocytes that have rearranged genes encoding TCR chains and express CD4 and CD8 coreceptors are selected on the basis of their TCR reactivity to escape programmed cell death and become mature CD4 or CD8 T cells. This process is triggered by intrathymic TCR signaling, that activates 'sensor' transcription factors 'constitutively' expressed in DP thymocytes. Eventually, TCR-signaled thymocytes evolve effector transcriptional circuits that control basal metabolism, migration, survival and initiation of lineage-specific gene expression. This review examines how components of the 'sensing' transcription apparatus responds to positive selection signals, and highlights important differences with mature T cell responses. In a second part, we evaluate current observations and hypotheses on the connections between sensing transcription factors and effector circuitries.
Collapse
Affiliation(s)
- Lie Wang
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4259, USA
| | | | | |
Collapse
|
8
|
Zhu M, Fu Y. The complicated role of NF-kappaB in T-cell selection. Cell Mol Immunol 2010; 7:89-93. [PMID: 20190822 PMCID: PMC4001888 DOI: 10.1038/cmi.2009.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/02/2009] [Accepted: 12/05/2009] [Indexed: 02/08/2023] Open
Abstract
The nuclear factor (NF)-kappaB transcription factor family plays important roles in the immune system. Aberrant NF-kappaB signaling is frequently associated with inflammation and autoimmune diseases but the underlying mechanisms are not fully understood. Recent studies show that NF-kappaB plays a critical role in T-cell central tolerance. Two NF-kappaB signaling pathways have been identified: the canonical pathway and the alternative pathway. In the establishment of T-cell central tolerance, the alternative pathway appears to be the key signaling component in thymic stromal cells for their development and function, while the canonical pathway exerts its function more in autonomous T-cell selection. This review intends to summarize the current understanding of the role of NF-kappaB in establishing T-cell central tolerance and highlight unsolved intriguing questions for future work.
Collapse
Affiliation(s)
- Mingzhao Zhu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China.
| | | |
Collapse
|
9
|
Tremblay CS, Hoang T, Hoang T. Early T cell differentiation lessons from T-cell acute lymphoblastic leukemia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:121-56. [PMID: 20800819 DOI: 10.1016/s1877-1173(10)92006-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cells develop from bone marrow-derived self-renewing hematopoietic stem cells (HSC). Upon entering the thymus, these cells undergo progressive commitment and differentiation driven by the thymic stroma and the pre-T cell receptor (pre-TCR). These processes are disrupted in T-cell acute lymphoblastic leukemia (T-ALL). More than 70% of recurring chromosomal rearrangements in T-ALL activate the expression of oncogenic transcription factors, belonging mostly to three families, basic helix-loop-helix (bHLH), homeobox (HOX), and c-MYB. This prevalence is indicative of their importance in the T lineage, and their dominant mechanisms of transformation. For example, bHLH oncoproteins inhibit E2A and HEB, revealing their tumor suppressor function in the thymus. The induction of T-ALL, nonetheless, requires collaboration with constitutive NOTCH1 signaling and the pre-TCR, as well as loss-of-function mutations for CDKN2A and PTEN. Significantly, NOTCH1, the pre-TCR pathway, and E2A/HEB proteins control critical checkpoints and branchpoints in early thymocyte development whereas several oncogenic transcription factors, HOXA9, c-MYB, SCL, and LYL-1 control HSC self-renewal. Together, these genetic lesions alter key regulatory processes in the cell, favoring self-renewal and subvert the normal control of thymocyte homeostasis.
Collapse
Affiliation(s)
- Cédric S Tremblay
- Institute of Research in Immunology and Cancer, University of Montreal, Montréal, Québec, Canada
| | | | | |
Collapse
|
10
|
Abstract
This article focuses on the functions of NF-kappaB that vitally impact lymphocytes and thus adaptive immunity. NF-kappaB has long been known to be essential for many of the responses of mature lymphocytes to invading pathogens. In addition, NF-kappaB has important functions in shaping the immune system so it is able to generate adaptive responses to pathogens. In both contexts, NF-kappaB executes critical cell-autonomous functions within lymphocytes as well as within supportive cells, such as antigen-presenting cells or epithelial cells. It is these aspects of NF-kappaB's physiologic impact that we address in this article.
Collapse
|
11
|
Zhao WL. Targeted therapy in T-cell malignancies: dysregulation of the cellular signaling pathways. Leukemia 2009; 24:13-21. [PMID: 19865108 DOI: 10.1038/leu.2009.223] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
T-cell malignancies, mainly known as T-cell acute lymphoblastic leukemia (T-ALL) and T-cell non-Hodgkin's lymphoma (T-NHL), are aggressive tumors. Although the clinical outcome of the patients has improved dramatically with combination chemotherapy, significant challenges remain, including understanding of the factors that contribute to the malignant behavior of these tumor cells and developing subsequently optimal targeted therapy. Aberrant cell signal transduction is generally involved in tumor progression and drug resistance. This review describes the pathogenetic role of multiple cellular signaling pathways in T-cell malignancies and the potential therapeutic strategies based on the modulation of these key signaling networks.
Collapse
Affiliation(s)
- W-L Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China.
| |
Collapse
|
12
|
Altered thymic selection by overexpressing cellular FLICE inhibitory protein in T cells causes lupus-like syndrome in a BALB/c but not C57BL/6 strain. Cell Death Differ 2009; 17:522-33. [PMID: 19816511 PMCID: PMC2822025 DOI: 10.1038/cdd.2009.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cellular FLICE inhibitory protein (c-FLIP) is an endogenous inhibitor of the caspase-8 pro-apoptotic signaling pathway downstream of death receptors. Recent evidence indicates that the long form of c-FLIP (c-FLIPL) is required for proliferation and effector T cell development. However, the role of c-FLIPL in triggering autoimmunity has not been carefully investigated. We now report that c-FLIPL transgenic (Tg) mice develop splenomegaly, lymphadenopathy, multi-organ infiltration, high titers of autoantibodies, and proliferative glomerulonephritis with immune complex deposition in a strain-dependent fashion. The development of autoimmunity requires CD4+ T cells and may result from impaired thymic selection. At the molecular level, c-FLIPL over-expression inhibits the ZAP-70 activation, thus impairing the signaling pathway derived from ZAP-70 required for thymic selection. Therefore, we have identified c-FLIPL as a susceptibility factor under the influence of epistatic modifiers for the development of autoimmunity.
Collapse
|
13
|
Jimi E, Strickland I, Voll RE, Long M, Ghosh S. Differential role of the transcription factor NF-kappaB in selection and survival of CD4+ and CD8+ thymocytes. Immunity 2008; 29:523-37. [PMID: 18957265 DOI: 10.1016/j.immuni.2008.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 03/12/2008] [Accepted: 08/11/2008] [Indexed: 01/30/2023]
Abstract
Inhibition of the transcription factor nuclear factor (NF)-kappaB activity leads to a reduction in numbers of CD8(+) single-positive (SP) thymocytes, suggesting a selective role for NF-kappaB in these cells. To further explore the role of NF-kappaB in SP thymocytes, we utilized transgenic models that allowed either inhibition or activation of NF-kappaB. We showed that activation of NF-kappaB played an important role in the selection of major histocompatibility complex (MHC) class I-restricted CD8(+) T cells. Surprisingly, NF-kappaB was not activated in positively selected CD4(+) thymocytes, and inhibition of NF-kappaB did not perturb positive or negative selection of CD4(+) cells. However, enforced activation of NF-kappaB via a constitutively active inhibitor of kappaB (IkappaB) kinase transgene led to a nearly complete deletion of CD4 cells by pushing positively selecting CD4(+) cells into negative selection. These studies therefore revealed a surprising difference of NF-kappaB activation in CD4(+) and CD8(+) thymocytes and suggested that NF-kappaB contributes to the establishment of thresholds of signaling that determine positive or negative selection of thymocytes.
Collapse
Affiliation(s)
- Eijiro Jimi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
14
|
Brown KD, Claudio E, Siebenlist U. The roles of the classical and alternative nuclear factor-kappaB pathways: potential implications for autoimmunity and rheumatoid arthritis. Arthritis Res Ther 2008; 10:212. [PMID: 18771589 PMCID: PMC2575629 DOI: 10.1186/ar2457] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is an inducible transcription factor controlled by two principal signaling cascades, each activated by a set of signal ligands: the classical/canonical NF-κB activation pathway and the alternative/noncanonical pathway. The former pathway proceeds via phosphorylation and degradation of inhibitor of NF-κB (IκB) and leads most commonly to activation of the heterodimer RelA/NF-κB1(p50). The latter pathway proceeds via phosphorylation and proteolytic processing of NF-κB2 (p100) and leads to activation, most commonly, of the heterodimer RelB/NF-κB2 (p52). Both pathways play critical roles at multiple levels of the immune system in both health and disease, including the autoimmune inflammatory response. These roles include cell cycle progression, cell survival, adhesion, and inhibition of apoptosis. NF-κB is constitutively activated in many autoimmune diseases, including diabetes type 1, systemic lupus erythematosus, and rheumatoid arthritis (RA). In this review we survey recent developments in the involvement of the classical and alternative pathways of NF-κB activation in autoimmunity, focusing particularly on RA. We discuss the involvement of NF-κB in self-reactive T and B lymphocyte development, survival and proliferation, and the maintenance of chronic inflammation due to cytokines such as tumor necrosis factor-α, IL-1, IL-6, and IL-8. We discuss the roles played by IL-17 and T-helper-17 cells in the inflammatory process; in the activation, maturation, and proliferation of RA fibroblast-like synovial cells; and differentiation and activation of osteoclast bone-resorbing activity. The prospects of therapeutic intervention to block activation of the NF-κB signaling pathways in RA are also discussed.
Collapse
Affiliation(s)
- Keith D Brown
- Immune Activation Section, Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1876, USA
| | | | | |
Collapse
|
15
|
Jost PJ, Weiss S, Ferch U, Gross O, Mak TW, Peschel C, Ruland J. Bcl10/Malt1 signaling is essential for TCR-induced NF-kappaB activation in thymocytes but dispensable for positive or negative selection. THE JOURNAL OF IMMUNOLOGY 2007; 178:953-60. [PMID: 17202357 DOI: 10.4049/jimmunol.178.2.953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During T cell development in the thymus, high-affinity/avidity TCR engagement induces negative selection by apoptosis, while lower affinity/avidity TCR interactions lead to positive selection and survival of thymocytes. Yet, the mechanisms that discriminate between positive and negative selection are not fully understood. One major regulator of survival and apoptosis in lymphoid cells is the transcription factor NF-kappaB. Several reports have indicated key roles for NF-kappaB in positive and negative selection. In peripheral T cells, TCR ligation activates NF-kappaB through a selective pathway that involves protein kinase Ctheta, Bcl10, and Malt1. While protein kinase Ctheta is dispensable for thymic TCR signaling, the molecular roles of Bcl10 and Malt1 in thymocytes have not been investigated. In the present study, we show that both Bcl10 and Malt1 are essential for TCR signaling in thymocytes as a genetic disruption of either molecule blocks TCR-induced NF-kappaB activation in these cells. To investigate the function of this pathway in thymic selection, we introduced the Bcl10 or Malt1 mutations into three well-established TCR transgenic mouse models. Surprisingly, using several in vivo or in vitro assays, we were unable to demonstrate a role for TCR-induced NF-kappaB activation in either positive or negative selection. Thus, while TCR signaling to NF-kappaB controls the activation of mature T cells, we suggest that this pathway is not involved in the positive or negative selection of thymocytes.
Collapse
Affiliation(s)
- Philipp J Jost
- Third Medical Department, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
One of the primary physiological roles of nuclear factor-kappa B (NF-kappaB) is in the immune system. In particular, NF-kappaB family members control the transcription of cytokines and antimicrobial effectors as well as genes that regulate cellular differentiation, survival and proliferation, thereby regulating various aspects of innate and adaptive immune responses. In addition, NF-kappaB also contributes to the development and survival of the cells and tissues that carry out immune responses in mammals. This review, therefore, describes the role of the NF-kappaB pathway in the development and functioning of the immune system.
Collapse
Affiliation(s)
- M S Hayden
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
17
|
Claudio E, Brown K, Siebenlist U. NF-kappaB guides the survival and differentiation of developing lymphocytes. Cell Death Differ 2006; 13:697-701. [PMID: 16528380 DOI: 10.1038/sj.cdd.4401894] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
18
|
Laurent J, Paly E, Marche PN, London J. Early thymic T cell development in young transgenic mice overexpressing human Cu/Zn superoxide dismutase, a model of Down syndrome. Free Radic Biol Med 2006; 40:1971-80. [PMID: 16716898 DOI: 10.1016/j.freeradbiomed.2006.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 12/05/2005] [Accepted: 01/24/2006] [Indexed: 12/20/2022]
Abstract
Previous studies have shown that transgenic mice overexpressing Cu/Zn superoxide dismutase, a model of Down syndrome, exhibit premature thymic involution. We have performed a flow cytometry analysis of the developing thymus in these homozygous transgenic mice (hSOD1/hSOD1: Tg-SOD). Longitudinal follow-up analysis from day 3 to day 280 showed an early thymic development in Tg-SOD mice compared with controls. This early thymic development was associated with an increased migration of mature T cells to peripheral lymphoid organs. BrdU labeling showed no difference between Tg-SOD and control mice, confirming that the greater number of peripheral T cells in Tg-SOD mice was not due to extensive proliferation of these cells but rather to a greater pool of emigrant T cells in Tg-SOD.
Collapse
Affiliation(s)
- Julien Laurent
- CePo-Centre Pluridisciplinaire d'Oncology, Avenue PierreDecker, 4CH Lausanne, Switzerland
| | | | | | | |
Collapse
|
19
|
Delfino DV, Agostini M, Spinicelli S, Vacca C, Riccardi C. Inhibited cell death, NF-kappaB activity and increased IL-10 in TCR-triggered thymocytes of transgenic mice overexpressing the glucocorticoid-induced protein GILZ. Int Immunopharmacol 2006; 6:1126-34. [PMID: 16714216 DOI: 10.1016/j.intimp.2006.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/15/2005] [Accepted: 02/02/2006] [Indexed: 11/26/2022]
Abstract
Glucocorticoids promote thymocyte apoptosis and modulate transcription of several genes including GILZ, which is strongly up-regulated in the thymus. We used transgenic mice overexpressing GILZ in the T-cell lineage to investigate TCR-triggered functions of GILZ-overexpressing thymocytes. TCR-triggered apoptosis, but not glucocorticoid-induced apoptosis, was inhibited in transgenic mice compared to their controls. In vivo anti-CD3 administration did not reduce CD4(+)CD8(+) thymocyte number. Analysis of TCR-triggered molecular changes indicated that p65 NF-kappaB nuclear translocation and DNA binding activity was inhibited in transgenic mice, which might be linked with apoptosis inhibition. IL-10 release increased whereas release of IL-2, IFN-gamma, IL-13 and IL-4 remained unchanged. These results support the hypothesis that GILZ regulates, at least in part, T-cell development by influencing thymus function at cellular and molecular levels.
Collapse
Affiliation(s)
- Domenico Vittorio Delfino
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | |
Collapse
|
20
|
Siebenlist U, Brown K, Claudio E. Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol 2005; 5:435-45. [PMID: 15905862 DOI: 10.1038/nri1629] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The evolutionarily conserved nuclear factor-kappaB family of transcription factors is known to have a crucial role in rapid responses to stress and pathogens, inducing transcription of many genes that are essential for host defence. Now, studies of mice that are deficient in nuclear factor-kappaB-family members (or deficient in the activation of these factors) reveal that nuclear factor-kappaB is extensively involved in the development of T cells and B cells. And, as we review here, although these factors have several roles, their primary cell-autonomous function is to ensure lymphocyte survival at various developmental stages. This function is subverted in numerous diseases and can lead, for example, to survival of self-reactive lymphocytes or tumour cells.
Collapse
Affiliation(s)
- Ulrich Siebenlist
- Immune Activation Section, Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1876, USA.
| | | | | |
Collapse
|
21
|
Mora AL, LaVoy J, McKean M, Stecenko A, Brigham KL, Parker R, Rojas M. Prevention of NF-kappaB activation in vivo by a cell-permeable NF-kappaB inhibitor peptide. Am J Physiol Lung Cell Mol Physiol 2005; 289:L536-44. [PMID: 15951331 DOI: 10.1152/ajplung.00164.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The NF-kappaB/Rel transcription factor family plays a central role in coordinating the expression of a variety of genes that regulate stress responses, immune cell activation, apoptosis, proliferation, differentiation, and oncogenic transformation. Interventions that target the NF-kappaB pathway may be therapeutic for a variety of pathologies, especially immune/inflammatory diseases. Using membrane translocating sequence (MTS) technology, we developed a cell-permeable dominant inhibitor of NF-kappaB activation, termed IkappaBalpha-(DeltaN)-MTS. This molecule contains a 12-amino acid MTS motif attached to the COOH-terminal region of a nondegradable inhibitor protein [IkappaBalpha-(DeltaN)]. The recombinant protein enters cells and localizes in the cytoplasm. Delivery of the IkappaBalpha-(DeltaN)-MTS to cell lines and primary cells inhibited nuclear translocation of NF-kappaB proteins induced by cell activation. The protein also effectively inhibited NF-kappaB activation in vivo in two different animal models: NF-kappaB activation in response to skin wounding in mice and NF-kappaB activation in lungs after endotoxin treatment in sheep. Inhibition of NF-kappaB by the IkappaBalpha-(DeltaN)-MTS in the endotoxin model attenuated physiological responses to endotoxemia. These data demonstrate that activation of NF-kappaB can be inhibited using a recombinant protein designed to penetrate into cells. This technology may provide a new approach to NF-kappaB pathway-targeted therapies.
Collapse
Affiliation(s)
- Ana L Mora
- Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Goudeau B, Huetz F, Samson S, Di Santo JP, Cumano A, Beg A, Israël A, Mémet S. IkappaBalpha/IkappaBepsilon deficiency reveals that a critical NF-kappaB dosage is required for lymphocyte survival. Proc Natl Acad Sci U S A 2003; 100:15800-5. [PMID: 14665694 PMCID: PMC307648 DOI: 10.1073/pnas.2535880100] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 10/23/2003] [Indexed: 01/24/2023] Open
Abstract
In most cells, the NF-kappaB transcription factor is sequestered in the cytoplasm by interaction with inhibitory proteins, the IkappaBs. Here, we show that combined IkappaBalpha/IkappaBepsilon deficiency in mice leads to neonatal death, elevated kappaB binding activity, overexpression of NF-kappaB target genes, and disruption of lymphocyte production. In IkappaBalpha/IkappaBepsilon-deficient fetuses, B220+IgM+ B cells and single-positive T cells die by apoptosis. In adults, IkappaBalpha-/-IkappaBepsilon-/- reconstituted chimeras exhibit a nearly complete absence of T and B cells that is not rescued by cotransfer with wild-type bone marrow. These findings demonstrate that IkappaBs tightly control NF-kappaB activity in vivo and that increased NF-kappaB activity intrinsically impairs lymphocyte survival. Because reduction or rise of NF-kappaB activity leads to similar dysfunction, they also reveal that only a narrow window of NF-kappaB activity is tolerated by lymphocytes.
Collapse
Affiliation(s)
- Bertrand Goudeau
- Unité de Biologie Moléculaire de l'Expression Génique, Unité de Recherche Associée, Centre National de la Recherche Scientifique 2582, Unité de Biologie Moléculaire du Gène, Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
A functional immune system requires the selection of T lymphocytes expressing receptors that are major histocompatibility complex restricted but tolerant to self-antigens. This selection occurs predominantly in the thymus, where lymphocyte precursors first assemble a surface receptor. In this review we summarize the current state of the field regarding the natural ligands and molecular factors required for positive and negative selection and discuss a model for how these disparate outcomes can be signaled via the same receptor. We also discuss emerging data on the selection of regulatory T cells. Such cells require a high-affinity interaction with self-antigens, yet differentiate into regulatory cells instead of being eliminated.
Collapse
Affiliation(s)
- Timothy K Starr
- Center for Immunology and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA.
| | | | | |
Collapse
|
25
|
He B, Weber GF. Phosphorylation of NF-kappaB proteins by cyclic GMP-dependent kinase. A noncanonical pathway to NF-kappaB activation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2174-85. [PMID: 12752437 DOI: 10.1046/j.1432-1033.2003.03574.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor NF-kappaB is activated in cellular stress responses. This requires rapid regulation of its function, which is accomplished, in part, by various modes of phosphorylation. Even though diverse DNA binding subunits of NF-kappaB proteins may transactivate from distinct recognition sequences, the differential regulation of transcription from the large number of NF-kappaB responsive sites in various gene promoters and enhancers has been incompletely understood. The cyclic GMP-dependent kinase (PKG) is an important mediator of signal transduction that may induce gene expression through cAMP response element binding protein (CREB) and through other, yet undefined, mechanisms. We have previously characterized a signal transduction pathway that leads to activation-induced cell death in T-lymphocytes and involves the activation of PKG. Here we demonstrate that the NF-kappaB proteins p65, p49 (also called p52), and p50 are specific substrates for this kinase. PKG dose-dependently increases the transactivating activity of p65 from the NF-kappaB consensus sequence. It also mediates dose-dependently an increase in transcriptional activity by p49 or p50 from a unique CCAAT/enhance binding protein (C/EBP)-associated NF-kappaB site, but not from the consensus site. Phosphorylation of p65, p50, or p49 does not alter their subcellular distribution. Because the release of cytosolic p65/p50 heterodimers into the nucleus is by itself insufficient to differentiate all the numerous NF-kappaB promoter sequences, phosphorylation of the DNA-binding subunits reveals a form of differential regulation of NF-kappaB activity and it implies a novel pathway for PKG-induced gene transcription. These observations may bear on mechanisms of programmed cell death in T-lymphocytes. They may also be relevant to ongoing efforts to induce cancer cell apoptosis through activation of PKG.
Collapse
Affiliation(s)
- Bin He
- Department of Radiation Oncology, New England Medical Center, Boston, MA, USA
| | | |
Collapse
|
26
|
Abstract
T cell antigen receptor-induced signals are required for normal T cell development and function. Recent studies have investigated the mechanism(s) by which signals of different strengths are converted into distinct cellular fates during thymocyte development. These studies indicate the importance of the strength and duration of signals activated through PLC and PKC pathways in shaping the mature TCR repertoire.
Collapse
Affiliation(s)
- Paul E Love
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|