1
|
Becher B, Derfuss T, Liblau R. Targeting cytokine networks in neuroinflammatory diseases. Nat Rev Drug Discov 2024; 23:862-879. [PMID: 39261632 DOI: 10.1038/s41573-024-01026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
In neuroinflammatory diseases, systemic (blood-borne) leukocytes invade the central nervous system (CNS) and lead to tissue damage. A causal relationship between neuroinflammatory diseases and dysregulated cytokine networks is well established across several preclinical models. Cytokine dysregulation is also observed as an inadvertent effect of cancer immunotherapy, where it often leads to neuroinflammation. Neuroinflammatory diseases can be separated into those in which a pathogen is at the centre of the immune response and those of largely unknown aetiology. Here, we discuss the pathophysiology, cytokine networks and therapeutic landscape of 'sterile' neuroinflammatory diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), neurosarcoidosis and immune effector cell-associated neurotoxicity syndrome (ICANS) triggered by cancer immunotherapy. Despite successes in targeting cytokine networks in preclinical models of neuroinflammation, the clinical translation of targeting cytokines and their receptors has shown mixed and often paradoxical responses.
Collapse
Affiliation(s)
- Burkhard Becher
- Institute of experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Tobias Derfuss
- Department of Neurology and Biomedicine, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Roland Liblau
- Institute for inflammatory and infectious diseases, INSERM UMR1291 - CNRS UMR505, Toulouse, France.
| |
Collapse
|
2
|
Zehra Okus F, Busra Azizoglu Z, Canatan H, Eken A. S1P analogues SEW2871, BAF312 and FTY720 affect human Th17 and Treg generation ex vivo. Int Immunopharmacol 2022; 107:108665. [DOI: 10.1016/j.intimp.2022.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/05/2022]
|
3
|
Multiple sclerosis and drug discovery: A work of translation. EBioMedicine 2021; 68:103392. [PMID: 34044219 PMCID: PMC8245896 DOI: 10.1016/j.ebiom.2021.103392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is after trauma the most important neurological disease in young adults, affecting 1 per 1000 individuals. With currently available medications, most of these targeting the immune system, satisfactory results have been obtained in patients with relapsing MS, but these can have serious adverse effects. Moreover, despite some promising developments, such as with B cell targeting therapies or sphingosine-1-phosphate modulating drugs, there still is a high unmet need of safe drugs with broad efficacy in patients with progressive MS. Despite substantial investments and intensive preclinical research, the proportion of promising lead compounds that reaches the approved drug status remains disappointingly low. One cause lies in the poor predictive validity of MS animal models used in the translation of pathogenic mechanisms into safe and effective treatments for the patient. This disturbing situation has raised criticism against the relevance of animal models used in preclinical research and calls for improvement of these models. This publication presents a potentially useful strategy to enhance the predictive validity of MS animal models, namely, to analyze the causes of failure in forward translation (lab to clinic) via reverse translation (clinic to lab). Through this strategy new insights can be gained that can help generate more valid MS models.
Collapse
|
4
|
Nitsch L, Petzinna S, Zimmermann J, Schneider L, Krauthausen M, Heneka MT, Getts DR, Becker A, Müller M. Astrocyte-specific expression of interleukin 23 leads to an aggravated phenotype and enhanced inflammatory response with B cell accumulation in the EAE model. J Neuroinflammation 2021; 18:101. [PMID: 33906683 PMCID: PMC8080359 DOI: 10.1186/s12974-021-02140-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Interleukin 23 is a critical cytokine in the pathogenesis of multiple sclerosis. But the local impact of interleukin 23 on the course of neuroinflammation is still not well defined. To further characterize the effect of interleukin 23 on CNS inflammation, we recently described a transgenic mouse model with astrocyte-specific expression of interleukin 23 (GF-IL23 mice). The GF-IL23 mice spontaneously develop a progressive ataxic phenotype with cerebellar tissue destruction and inflammatory infiltrates with high amounts of B cells most prominent in the subarachnoid and perivascular space. METHODS To further elucidate the local impact of the CNS-specific interleukin 23 synthesis in autoimmune neuroinflammation, we induced a MOG35-55 experimental autoimmune encephalomyelitis (EAE) in GF-IL23 mice and WT mice and analyzed the mice by histology, flow cytometry, and transcriptome analysis. RESULTS We were able to demonstrate that local interleukin 23 production in the CNS leads to aggravation and chronification of the EAE course with a severe paraparesis and an ataxic phenotype. Moreover, enhanced multilocular neuroinflammation was present not only in the spinal cord, but also in the forebrain, brainstem, and predominantly in the cerebellum accompanied by persisting demyelination. Thereby, interleukin 23 creates a pronounced proinflammatory response with accumulation of leukocytes, in particular B cells, CD4+ cells, but also γδ T cells and activated microglia/macrophages. Furthermore, transcriptome analysis revealed an enhanced proinflammatory cytokine milieu with upregulation of lymphocyte activation markers, co-stimulatory markers, chemokines, and components of the complement system. CONCLUSION Taken together, the GF-IL23 model allowed a further breakdown of the different mechanisms how IL-23 drives neuroinflammation in the EAE model and proved to be a useful tool to further dissect the impact of interleukin 23 on neuroinflammatory models.
Collapse
Affiliation(s)
- Louisa Nitsch
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany.
| | - Simon Petzinna
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Julian Zimmermann
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Linda Schneider
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany.,Department of Surgery, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Marius Krauthausen
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Albert Becker
- Department of Neuropathology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
| | - Marcus Müller
- Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany.,School of Molecular Bioscience, University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Ifergan I, Miller SD. Potential for Targeting Myeloid Cells in Controlling CNS Inflammation. Front Immunol 2020; 11:571897. [PMID: 33123148 PMCID: PMC7573146 DOI: 10.3389/fimmu.2020.571897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple Sclerosis (MS) is characterized by immune cell infiltration to the central nervous system (CNS) as well as loss of myelin. Characterization of the cells in lesions of MS patients revealed an important accumulation of myeloid cells such as macrophages and dendritic cells (DCs). Data from the experimental autoimmune encephalomyelitis (EAE) model of MS supports the importance of peripheral myeloid cells in the disease pathology. However, the majority of MS therapies focus on lymphocytes. As we will discuss in this review, multiple strategies are now in place to target myeloid cells in clinical trials. These strategies have emerged from data in both human and mouse studies. We discuss strategies targeting myeloid cell migration, growth factors and cytokines, biological functions (with a focus on miRNAs), and immunological activities (with a focus on nanoparticles).
Collapse
Affiliation(s)
- Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
7
|
't Hart BA, Weissert R. We should focus more on finding therapeutic targets for the non-inflammatory damage in MS - No. Mult Scler 2018; 24:1274-1276. [PMID: 29656691 DOI: 10.1177/1352458518761571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands/Department of Neuroscience, University Medical Centre, University of Groningen, Groningen, The Netherlands
| | - Robert Weissert
- Department of Neurology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
't Hart BA, Laman JD, Kap YS. Merits and complexities of modeling multiple sclerosis in non-human primates: implications for drug discovery. Expert Opin Drug Discov 2018; 13:387-397. [PMID: 29465302 DOI: 10.1080/17460441.2018.1443075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The translation of scientific discoveries made in animal models into effective treatments for patients often fails, indicating that currently used disease models in preclinical research are insufficiently predictive for clinical success. An often-used model in the preclinical research of autoimmune neurological diseases, multiple sclerosis in particular, is experimental autoimmune encephalomyelitis (EAE). Most EAE models are based on genetically susceptible inbred/SPF mouse strains used at adolescent age (10-12 weeks), which lack exposure to genetic and microbial factors which shape the human immune system. Areas covered: Herein, the authors ask whether an EAE model in adult non-human primates from an outbred conventionally-housed colony could help bridge the translational gap between rodent EAE models and MS patients. Particularly, the authors discuss a novel and translationally relevant EAE model in common marmosets (Callithrix jacchus) that shares remarkable pathological similarity with MS. Expert opinion: The MS-like pathology in this model is caused by the interaction of effector memory T cells with B cells infected with the γ1-herpesvirus (CalHV3), both present in the pathogen-educated marmoset immune repertoire. The authors postulate that depletion of only the small subset (<0.05%) of CalHV3-infected B cells may be sufficient to limit chronic inflammatory demyelination.
Collapse
Affiliation(s)
- Bert A 't Hart
- a Department of Immunobiology , Biomedical Primate Research Centre , Rijswijk , The Netherlands.,b Department of Neuroscience , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Jon D Laman
- b Department of Neuroscience , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Yolanda S Kap
- a Department of Immunobiology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| |
Collapse
|
9
|
McGinley AM, Edwards SC, Raverdeau M, Mills KHG. Th17 cells, γδ T cells and their interplay in EAE and multiple sclerosis. J Autoimmun 2018; 87:S0896-8411(18)30007-6. [PMID: 29395738 DOI: 10.1016/j.jaut.2018.01.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 01/09/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS) that shares many features with the human disease. This review will focus on the role of IL-17-secreting CD4 and γδ T cells in EAE and MS, the plasticity of Th17 cells in vivo and the application of these findings to the understating of the pathogenesis and the development of new treatments for MS. There is convincing evidence that IL-17-secreting CD4 T cells (Th17 cells) and IL-17-secreting γδ T cells play a critical pathogenic role in central nervous system (CNS) inflammation in EAE and MS. Indeed a significant number of the major discoveries on the pathogenic role of IL-17-secreting T cells in autoimmunity were made in the EAE model. These included the first demonstration that IL-23-activated IL-17-secreting T cells are the key T cells in driving autoimmune disease pathology. Although the early studies on IL-17 focused on Th17 cells, it was later demonstrated that γδ T cells were an important early source of IL-17 and IL-21 that helped amplify IL-17 production by Th17 cells in autoimmune diseases. Furthermore, it emerged that Th1 cells can also have encephalitogenic activity and that there was considerable plasticity in these T cell responses, with Th17 cells reverting to a Th1 phenotype in vivo. This questioned the pathogenic role of IL-17 and suggested that other cytokines, such as IFN-γ, GM-CSF and TNF, may be important. Nevertheless, biological drugs that target the IL-23-IL-17 pathway are highly effective in treating human psoriasis and are showing promise in the treatment of relapsing remitting MS and other T-cell mediated autoimmune diseases.
Collapse
Affiliation(s)
- Aoife M McGinley
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sarah C Edwards
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Mathilde Raverdeau
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
10
|
Hiltensperger M, Korn T. The Interleukin (IL)-23/T helper (Th)17 Axis in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029637. [PMID: 29101111 DOI: 10.1101/cshperspect.a029637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T helper (Th)17 cells are responsible for host defense against fungi and certain extracellular bacteria but have also been reported to play a role in a variety of autoimmune diseases. Th17 cells respond to environmental cues, are very plastic, and might also be involved in tissue homeostasis and regeneration. The imprinting of pathogenic properties in Th17 cells in autoimmunity seems highly dependent on interleukin (IL)-23. Since Th17 cells were first described in experimental autoimmune encephalomyelitis, they have been suggested to also promote tissue damage in multiple sclerosis (MS). Indeed, some studies linked Th17 cells to disease severity in MS, and the efficacy of anti-IL-17A therapy in MS supported this idea. In this review, we will summarize molecular features of Th17 cells and discuss the evidence for their function in experimental models of autoimmune diseases and MS.
Collapse
Affiliation(s)
- Michael Hiltensperger
- Klinikum rechts der Isar, Department of Neurology, Technische Universität München, 81675 Munich, Germany
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Neurology, Technische Universität München, 81675 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
11
|
Monoclonal Antibodies in Preclinical EAE Models of Multiple Sclerosis: A Systematic Review. Int J Mol Sci 2017; 18:ijms18091992. [PMID: 28926943 PMCID: PMC5618641 DOI: 10.3390/ijms18091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023] Open
Abstract
Monoclonal antibodies (mAb) are promising therapeutics in multiple sclerosis and multiple new candidates have been developed, hence increasing the need for some agreement for preclinical mAb studies. We systematically analyzed publications of experimental autoimmune encephalomyelitis (EAE) studies showing effects of monoclonal antibodies. A PubMed search retrieved 570 records, out of which 122 studies with 253 experiments were eligible based on experimental design, number of animals and presentation of time courses of EAE scores. Analysis of EAE models, treatment schedules, single and total doses, routes of administration, and onset of treatment from pre-immunization up to 35 days after immunization revealed high heterogeneity. Total doses ranged from 0.1 to 360 mg/kg for observation times of up to 35 days after immunization. About half of experiments (142/253) used total doses of 10-70 mg/kg. Employing this range, we tested anti-Itga4 as a reference mAb at varying schedules and got no, mild or substantial EAE-score reductions, depending on the mouse strain and onset of the treatment. The result agrees with the range of outcomes achieved in 10 reported anti-Itga4 experiments. Studies comparing low and high doses of various mAbs or early vs. late onset of treatment did not reveal dose-effect or timing-effect associations, with a tendency towards better outcomes with preventive treatments starting within the first week after immunization. The systematic comparison allows for extraction of some "common" design characteristics, which may be helpful to further assess the efficacy of mAbs and role of specific targets in preclinical models of multiple sclerosis.
Collapse
|
12
|
't Hart BA, Laman JD, Kap YS. Reverse Translation for Assessment of Confidence in Animal Models of Multiple Sclerosis for Drug Discovery. Clin Pharmacol Ther 2017; 103:262-270. [DOI: 10.1002/cpt.801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Bert A. 't Hart
- Department Immunobiology; Biomedical Primate Research Centre; Rijswijk The Netherlands
- University of Groningen, University Medical Centre, Dept. Neuroscience; Groningen The Netherlands
- MS Center Noord-Nederland; Groningen The Netherlands
| | - Jon D. Laman
- University of Groningen, University Medical Centre, Dept. Neuroscience; Groningen The Netherlands
- MS Center Noord-Nederland; Groningen The Netherlands
| | - Yolanda S. Kap
- Department Immunobiology; Biomedical Primate Research Centre; Rijswijk The Netherlands
| |
Collapse
|
13
|
't Hart BA, Dunham J, Faber BW, Laman JD, van Horssen J, Bauer J, Kap YS. A B Cell-Driven Autoimmune Pathway Leading to Pathological Hallmarks of Progressive Multiple Sclerosis in the Marmoset Experimental Autoimmune Encephalomyelitis Model. Front Immunol 2017; 8:804. [PMID: 28744286 PMCID: PMC5504154 DOI: 10.3389/fimmu.2017.00804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
The absence of pathological hallmarks of progressive multiple sclerosis (MS) in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE) hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (Callithrix jacchus). The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34–56 from human myelin oligodendrocyte glycoprotein (MOG) formulated with a mineral oil [incomplete Freund’s adjuvant (IFA)]. Pathological aspects include demyelination of cortical gray matter with microglia activation, oxidative stress, and redistribution of iron. When the peptide is formulated in complete Freund’s adjuvant, which contains mycobacteria that relay strong activation signals to myeloid cells, oxidative damage pathways are strongly boosted leading to more intensive pathology. The proven absence of immune potentiating danger signals in the MOG34–56/IFA formulation implies that a narrow population of antigen-experienced T cells present in the monkey’s immune repertoire is activated. This novel pathway involves the interplay of lymphocryptovirus-infected B cells with MHC class Ib/Caja-E restricted CD8+ CD56+ cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Jordon Dunham
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Jon D Laman
- Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands.,MS Center Noord-Nederland, Groningen, Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Jan Bauer
- Department of Neuroimmunology, Brain Research Institute, Medical University Vienna, Vienna, Austria
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
14
|
Stimmer L, Fovet CM, Serguera C. Experimental Models of Autoimmune Demyelinating Diseases in Nonhuman Primates. Vet Pathol 2017; 55:27-41. [DOI: 10.1177/0300985817712794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human idiopathic inflammatory demyelinating diseases (IIDD) are a heterogeneous group of autoimmune inflammatory and demyelinating disorders of the central nervous system (CNS). These include multiple sclerosis (MS), the most common chronic IIDD, but also rarer disorders such as acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica (NMO). Great efforts have been made to understand the pathophysiology of MS, leading to the development of a few effective treatments. Nonetheless, IIDD still require a better understanding of the causes and underlying mechanisms to implement more effective therapies and diagnostic methods. Experimental autoimmune encephalomyelitis (EAE) is a commonly used animal model to study the pathophysiology of IIDD. EAE is principally induced through immunization with myelin antigens combined with immune-activating adjuvants. Nonhuman primates (NHP), the phylogenetically closest relatives of humans, challenged by similar microorganisms as other primates may recapitulate comparable immune responses to that of humans. In this review, the authors describe EAE models in 3 NHP species: rhesus macaques ( Macaca mulatta), cynomolgus macaques ( Macaca fascicularis), and common marmosets ( Callithrix jacchus), evaluating their respective contribution to the understanding of human IIDD. EAE in NHP is a heterogeneous disease, including acute monophasic and chronic polyphasic forms. This diversity makes it a versatile model to use in translational research. This clinical variability also creates an opportunity to explore multiple facets of immune-mediated mechanisms of neuro-inflammation and demyelination as well as intrinsic protective mechanisms. Here, the authors review current insights into the pathogenesis and immunopathological mechanisms implicated in the development of EAE in NHP.
Collapse
Affiliation(s)
- Lev Stimmer
- U1169/US27 Platform for experimental pathology, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| | - Claire-Maëlle Fovet
- U1169/US27 Platform for general surgery, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| | - Ché Serguera
- US27, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| |
Collapse
|
15
|
't Hart BA, Kap YS. An essential role of virus-infected B cells in the marmoset experimental autoimmune encephalomyelitis model. Mult Scler J Exp Transl Clin 2017; 3:2055217317690184. [PMID: 28607749 PMCID: PMC5466146 DOI: 10.1177/2055217317690184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022] Open
Abstract
Infection with Epstein–Barr virus (EBV) has been associated with an enhanced risk of genetically susceptible individuals to develop multiple sclerosis (MS). However, an explanation for the contrast between the high EBV infection prevalence (60–90%) and the low MS prevalence (0.1%) eludes us. Here we propose a new concept for the EBV–MS association developed in the experimental autoimmune encephalomyelitis model in marmoset monkeys, which are naturally infected with the EBV-related γ1-herpesvirus CalHV3. The data indicate that the infection of B cells with a γ1-herpesvirus endows them with the capacity to activate auto-aggressive CD8+ T cells specific for myelin oligodendrocyte glycoprotein.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
16
|
Di Bari M, Reale M, Di Nicola M, Orlando V, Galizia S, Porfilio I, Costantini E, D'Angelo C, Ruggieri S, Biagioni S, Gasperini C, Tata AM. Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients. Int J Mol Sci 2016; 17:ijms17122009. [PMID: 27916909 PMCID: PMC5187809 DOI: 10.3390/ijms17122009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis.
Collapse
Affiliation(s)
- Maria Di Bari
- Department of Biology and Biotechnologies Charles Darwin, Research, Center of Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Marcella Reale
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Viviana Orlando
- Department of Biology and Biotechnologies Charles Darwin, Research, Center of Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Sabrina Galizia
- Department of Biology and Biotechnologies Charles Darwin, Research, Center of Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Italo Porfilio
- School of Hygiene and Preventive Medicine, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Erica Costantini
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Chiara D'Angelo
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | - Serena Ruggieri
- Department of Neurology and Psichiatry, Sapienza University of Rome, 00185 Rome, Italy.
- Department of Neurosciences, San Camillo Forlanini Hospital, 00185 Rome, Italy.
| | - Stefano Biagioni
- Department of Biology and Biotechnologies Charles Darwin, Research, Center of Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00185 Rome, Italy.
| | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Research, Center of Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
17
|
Haanstra KG, Jonker M, 't Hart BA. An Evaluation of 20 Years of EU Framework Programme-Funded Immune-Mediated Inflammatory Translational Research in Non-Human Primates. Front Immunol 2016; 7:462. [PMID: 27872622 PMCID: PMC5098224 DOI: 10.3389/fimmu.2016.00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Aging western societies are facing an increasing prevalence of chronic inflammatory and degenerative diseases for which often no effective treatments exist, resulting in increasing health-care expenditure. Despite high investments in drug development, the number of promising new drug candidates decreases. We propose that preclinical research in non-human primates can help to bridge the gap between drug discovery and drug prescription. Translational research covers various stages of drug development of which preclinical efficacy tests in valid animal models is usually the last stage. Preclinical research in non-human primates may be essential in the evaluation of new drugs or therapies when a relevant rodent model is not available. Non-human primate models for life-threatening or severely debilitating diseases in humans are available at the Biomedical Primate Research Centre (BPRC). These have been instrumental in translational research for several decades. In order to stimulate European health research and innovation from bench to bedside, the European Commission has invested heavily in access to non-human primate research for more than 20 years. BPRC has hosted European users in a series of transnational access programs covering a wide range of research areas with the common theme being immune-mediated inflammatory disorders. We present an overview of the results and give an account of the studies performed as part of European Union Framework Programme (EU FP)-funded translational non-human primate research performed at the BPRC. These data illustrate the value of translational non-human primate research for the development of new therapies and emphasize the importance of EU FP funding in drug development.
Collapse
Affiliation(s)
- Krista G Haanstra
- Department of Immunobiology, Biomedical Primate Research Centre , Rijswijk , Netherlands
| | - Margreet Jonker
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, Netherlands; Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, Netherlands; Department of Neuroscience, University Medical Center, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
'tHart BA, Kap YS, Morandi E, Laman JD, Gran B. EBV Infection and Multiple Sclerosis: Lessons from a Marmoset Model. Trends Mol Med 2016; 22:1012-1024. [PMID: 27836419 DOI: 10.1016/j.molmed.2016.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is thought to be initiated by the interaction of genetic and environmental factors, eliciting an autoimmune attack on the central nervous system. Epstein-Barr virus (EBV) is the strongest infectious risk factor, but an explanation for the paradox between high infection prevalence and low MS incidence remains elusive. We discuss new data using marmosets with experimental autoimmune encephalomyelitis (EAE) - a valid primate model of MS. The findings may help to explain how a common infection can contribute to the pathogenesis of MS. We propose that EBV infection induces citrullination of peptides in conjunction with autophagy during antigen processing, endowing B cells with the capacity to cross-present autoantigen to CD8+CD56+ T cells, thereby leading to MS progression.
Collapse
Affiliation(s)
- Bert A 'tHart
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands; University of Groningen, University Medical Center, Department of Neuroscience, Groningen, The Netherlands.
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Elena Morandi
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK
| | - Jon D Laman
- University of Groningen, University Medical Center, Department of Neuroscience, Groningen, The Netherlands
| | - Bruno Gran
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK; Department of Neurology, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, UK
| |
Collapse
|
19
|
A novel human truncated IL12rβ1-Fc fusion protein ameliorates experimental autoimmune encephalomyelitis via specific binding of p40 to inhibit Th1 and Th17 cell differentiation. Oncotarget 2016; 6:28539-55. [PMID: 26384304 PMCID: PMC4745676 DOI: 10.18632/oncotarget.5164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 08/22/2015] [Indexed: 12/26/2022] Open
Abstract
Interleukin (IL)-12 and IL-23 respectively driving polarization of T helper (Th) 1 and Th17 cells has been strongly implicated in the pathogenesis of both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). In this study, we first constructed, expressed and purified a novel human truncated IL12rβ1-Fc fusion protein (tIL12rβ1/Fc) binding multiple forms of the p40 subunit of human IL-12 and IL-23. tIL12rβ1/Fc was found to effectively ameliorate MOG35–55-induced EAE through reducing the production of Th1- and Th17-polarized pro-inflammatory cytokines and suppressing inflammation and demyelination in the focused parts. Moreover, tIL12rβ1/Fc suppressed Th1 (IFN-γ+ alone) and IFN-γ+ IL-17+ as well as the population of classic Th17 (IL-17+ alone) cells in vivo. Furthermore, tIL12rβ1/Fc ameliorated EAE at the peak of disease via the inhibition of STAT pathway, thereby causing a prominent reduction of RORγt (Th17) and T-bet (Th1) expression. Notably, tIL12rβ1/Fc could increase the relative number of CD4+ Foxp3+ regulatory T cells. These findings indicates that tIL12rβ1/Fc is a novel fusion protein for specific binding multiple forms of p40 subunit to exert potent anti-inflammatory effects and provides a valuable approach for the treatment of MS and other autoimmune diseases.
Collapse
|
20
|
Wootla B, Watzlawik JO, Stavropoulos N, Wittenberg NJ, Dasari H, Abdelrahim MA, Henley JR, Oh SH, Warrington AE, Rodriguez M. Recent Advances in Monoclonal Antibody Therapies for Multiple Sclerosis. Expert Opin Biol Ther 2016; 16:827-839. [PMID: 26914737 DOI: 10.1517/14712598.2016.1158809] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disease of the CNS and results in neurological disability. Existing immunomodulatory and immunosuppressive approaches lower the number of relapses but do not cure or reverse existing deficits nor improve long-term disability in MS patients. AREAS COVERED Monogenic antibodies were described as treatment options for MS, however the immunogenicity of mouse antibodies hampered the efficacy of potential therapeutics in humans. Availability of improved antibody production technologies resulted in a paradigm shift in MS treatment strategies. In this review, an overview of immunotherapies for MS that use conventional monoclonal antibodies reactive to immune system and their properties and mechanisms of action will be discussed, including recent advances in MS therapeutics and highlight natural autoantibodies (NAbs) that directly target CNS cells. EXPERT OPINION Recent challenges for MS therapy are the identification of relevant molecular and cellular targets, time frame of treatment, and antibody toxicity profiles to identify safe treatment options for MS patients. The application of monoclonal antibody therapies with better biological efficacy associated with minimum side effects possesses huge clinical potential. Advances in monoclonal antibody technologies that directly target cells of nervous system may promote the CNS regeneration field from bench to bedside.
Collapse
Affiliation(s)
- Bharath Wootla
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Nikolaos Stavropoulos
- Department of General Medicine, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Simkova 870, Hradec Kralove 1, 500 38, Czech Republic
| | - Nathan J Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall Minneapolis, MN 55455, USA.,Department of Biomedical Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall Minneapolis, MN 55455, USA
| | - Harika Dasari
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Murtada A Abdelrahim
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - John R Henley
- Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall Minneapolis, MN 55455, USA.,Department of Biomedical Engineering, University of Minnesota, 200 Union Street SE, 4-174 Keller Hall Minneapolis, MN 55455, USA
| | - Arthur E Warrington
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
21
|
't Hart BA, Dunham J, Jagessar SA, Kap YS. The common marmoset (<i>Callithrix jacchus</i>): a relevant preclinical model of human (auto)immune-mediated inflammatory disease of the brain. Primate Biol 2016. [DOI: 10.5194/pb-3-9-2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The increasing prevalence of chronic autoimmune-mediated inflammatory disorders (AIMIDs) in aging human populations creates a high unmet need for safe and effective medications. However, thus far the translation of pathogenic concepts developed in animal models into effective treatments for the patient has been notoriously difficult. The main reason is that currently used mouse-based animal models for the pipeline selection of promising new treatments were insufficiently predictive for clinical success. Regarding the high immunological similarity between human and non-human primates (NHPs), AIMID models in NHPs can help to bridge the translational gap between rodent and man. Here we will review the preclinical relevance of the experimental autoimmune encephalomyelitis (EAE) model in common marmosets (Callithrix jacchus), a small-bodied neotropical primate. EAE is a generic AIMID model projected on the human autoimmune neuro-inflammatory disease multiple sclerosis (MS).
Collapse
|
22
|
Bittner S, Wiendl H. Neuroimmunotherapies Targeting T Cells: From Pathophysiology to Therapeutic Applications. Neurotherapeutics 2016; 13:4-19. [PMID: 26563391 PMCID: PMC4720668 DOI: 10.1007/s13311-015-0405-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Therapeutic options for multiple sclerosis (MS) have significantly increased over the last few years. T lymphocytes are considered to play a central role in initiating and perpetuating the pathological immune response. Currently approved therapies for MS target T lymphocytes, either in an unspecific manner or directly by interference with specific T-cell pathways. While the concept of "T-cell-specific therapy" implies specificity and selectivity, currently approved approaches come from a general shaping of the immune system towards anti-inflammatory immune responses by non-T-cell-selective immune suppression or immune modulation (e.g., interferons-immune modulation approach) to a depletion of immune cell populations involving T cells (e.g., anti-CD52, alemtuzumab-immune selective depletion approach), or a selective inhibition of distinct molecular pathways in order to sequester leucocytes (e.g., natalizumab-leukocyte sequestration approach). This review will highlight the rationale and results of different T-cell-directed therapeutic approaches coming from basic animal experiments to clinical trials. We will first discuss the pathophysiological rationale for targeting T lymphocytes in MS leading to currently approved treatments acting on T lymphocytes. Furthermore, we will disuss previous promising concepts that have failed to show efficacy in clinical trials or were halted as a result of unexpected adverse events. Learning from the discrepancies between expectations and failures in practical outcomes helps to optimize future research approaches and clinical study designs. As our current view of MS pathogenesis and patient needs is rapidly evolving, novel therapeutic approaches targeting T lymphocytes will also be discussed, including specific molecular interventions such as cytokine-directed treatments or strategies enhancing immunoregulatory mechanisms. Based on clinical experience and novel pathophysiological approaches, T-cell-based strategies will remain a pillarstone of MS therapy.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany.
| |
Collapse
|
23
|
Jagessar SA, Heijmans N, Blezer ELA, Bauer J, Weissert R, 't Hart BA. Immune profile of an atypical EAE model in marmoset monkeys immunized with recombinant human myelin oligodendrocyte glycoprotein in incomplete Freund's adjuvant. J Neuroinflammation 2015; 12:169. [PMID: 26377397 PMCID: PMC4574133 DOI: 10.1186/s12974-015-0378-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/16/2015] [Indexed: 11/21/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) in the common marmoset monkey (Callithrix jacchus) is a relevant preclinical model for translational research into immunopathogenic mechanisms operating in multiple sclerosis (MS). Prior studies showed a core pathogenic role of T and B cells specific for myelin oligodendrocyte glycoprotein (MOG). However, in those studies, the quality of the response against MOG epitopes was strongly biased by bacterial antigens in the complete Freund’s adjuvant (CFA), in which the immunizing recombinant human (rh) MOG protein had been formulated. In response to the need of a more refined EAE model, we have tested whether disease could also be induced with rhMOG in incomplete Freund’s adjuvant (IFA). Method Marmosets were immunized with rhMOG emulsified in IFA in the dorsal skin. Monkeys that did not develop neurological deficit were given booster immunizations at 28-day interval with the same antigen preparation. In a second experiment, three marmoset twin pairs were sensitized against MOG peptides in IFA to study a possibility for suppressive activity towards pathogenic T cells directed against the encephalitogenic epitope MOG40-48. Results Despite the absence of strong danger signals in the rhMOG/IFA inoculum, all monkeys developed clinically evident EAE symptoms. Moreover, in all monkeys, demyelinated lesions were present in the white matter and in two cases also in the cortical grey matter. Immune profiling at height of the disease showed a dominant T cell response against the overlapping peptides 14–36 and 24–46, but reactivity against the pathogenically most relevant peptide 34–56 was conspicuously absent. In the second experiment, there was an indication for a possible suppressive mechanism. Conclusions Immunization of marmoset monkeys with rhMOG in IFA elicits clinical EAE in all animals. Moreover, rhMOG contains pathogenic and regulatory epitopes, but the pathogenic hierarchy of rhMOG epitopes is strongly influenced by the adjuvant in which the protein is formulated. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0378-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280, GH, Rijswijk, The Netherlands. .,ErasMS Centre, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Nicole Heijmans
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280, GH, Rijswijk, The Netherlands
| | - Erwin L A Blezer
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Robert Weissert
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280, GH, Rijswijk, The Netherlands. .,ErasMS Centre, Erasmus Medical Center, Rotterdam, The Netherlands. .,Department of Neuroscience, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
24
|
׳t Hart BA. Reverse translation of failed treatments can help improving the validity of preclinical animal models. Eur J Pharmacol 2015; 759:14-8. [DOI: 10.1016/j.ejphar.2015.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/16/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
|
25
|
Abstract
The molecular mechanisms governing T helper (Th) cell differentiation and function have revealed a complex network of transcriptional and protein regulators. Cytokines not only initiate the differentiation of CD4 Th cells into subsets but also influence the identity, plasticity and effector function of a T cell. Of the subsets, Th17 cells, named for producing interleukin 17 (IL-17) as their signature cytokine, secrete a cohort of other cytokines, including IL-22, IL-21, IL-10, IL-9, IFNγ, and GM-CSF. In recent years, Th17 cells have emerged as key players in host defense against both extracellular pathogens and fungal infections, but they have also been implicated as one of the main drivers in the pathogenesis of autoimmunity, likely mediated in part by the cytokines that they produce. Advances in high throughput genomic sequencing have revealed unexpected heterogeneity in Th17 cells and, as a consequence, may have tremendous impact on our understanding of their functional diversity. The assortment in gene expression may also identify different functional states of Th17 cells. This review aims to understand the interplay between the cytokine regulators that drive Th17 cell differentiation and functional states in Th17 cells.
Collapse
Affiliation(s)
- Youjin Lee
- Evergrande Center for Immumnologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Vijay Kuchroo
- Evergrande Center for Immumnologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA; Genomic and Biotechnology Section, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
26
|
't Hart BA, van Kooyk Y, Geurts JJG, Gran B. The primate autoimmune encephalomyelitis model; a bridge between mouse and man. Ann Clin Transl Neurol 2015; 2:581-93. [PMID: 26000330 PMCID: PMC4435712 DOI: 10.1002/acn3.194] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Multiple sclerosis (MS) is an enigmatic autoimmune-driven inflammatory/demyelinating disease of the human central nervous system (CNS), affecting brain, spinal cord, and optic nerves. The cause of the disease is not known and the number of effective treatments is limited. Despite some clear successes, translation of immunological discoveries in the mouse experimental autoimmune encephalomyelitis (EAE) model into effective therapies for MS patients has been difficult. This translation gap between MS and its elected EAE animal model reflects the phylogenetic distance between humans and their experimental counterpart, the inbred/specific pathogen free (SPF) laboratory mouse. Objective Here, we discuss that important new insights can be obtained into the mechanistic basis of the therapy paradox from the study of nonhuman primate EAE (NHP-EAE) models, the well-validated EAE model in common marmosets (Callithrix jacchus) in particular. Interpretation Data presented in this review demonstrate that due to a considerable immunological and pathological overlap with mouse EAE on one side and MS on the other, the NHP EAE model can help us bridge the translation gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre Rijswijk, The Netherlands ; Department Neuroscience, University Medical Center, University of Groningen Groningen, The Netherlands
| | - Yvette van Kooyk
- Department of Cell Biology and Immunology, Free University Medical Center Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neuroscience, Free University Medical Center Amsterdam, The Netherlands
| | - Bruno Gran
- Division of Clinical Neuroscience, University of Nottingham School of Medicine Nottingham, United Kingdom
| |
Collapse
|
27
|
Role of the immunogenic and tolerogenic subsets of dendritic cells in multiple sclerosis. Mediators Inflamm 2015; 2015:513295. [PMID: 25705093 PMCID: PMC4325219 DOI: 10.1155/2015/513295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 01/01/2015] [Accepted: 01/01/2015] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder in the central nervous system (CNS) characterized by inflammation and demyelination as well as axonal and neuronal degeneration. So far effective therapies to reverse the disease are still lacking; most therapeutic drugs can only ameliorate the symptoms or reduce the frequency of relapse. Dendritic cells (DCs) are professional antigen presenting cells (APCs) that are key players in both mediating immune responses and inducing immune tolerance. Increasing evidence indicates that DCs contribute to the pathogenesis of MS and might provide an avenue for therapeutic intervention. Here, we summarize the immunogenic and tolerogenic roles of DCs in MS and review medicinal drugs that may affect functions of DCs and have been applied in clinic for MS treatment. We also describe potential therapeutic molecules that can target DCs by inducing anti-inflammatory cytokines and inhibiting proinflammatory cytokines in MS.
Collapse
|
28
|
Dubey D, Kieseier BC, Hartung HP, Hemmer B, Miller-Little WA, Stuve O. Clinical management of multiple sclerosis and neuromyelitis optica with therapeutic monoclonal antibodies: approved therapies and emerging candidates. Expert Rev Clin Immunol 2014; 11:93-108. [PMID: 25495182 DOI: 10.1586/1744666x.2015.992881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) are a relatively novel class of drugs that has substantially advanced immunotherapy for patients with multiple sclerosis. The advantage of these agents is that they bind specifically and exclusively to predetermined proteins or cells. Natalizumab was the first mAb in neurology to obtain approval. It is also considered one of the most potent options for annualized relapse rate reduction among available therapeutic options. Alemtuzumab is currently also approved in several countries. Several mAbs have been tested in clinical studies in multiple sclerosis. Here, we review the history of drug development of therapeutic mAbs and their classification. Furthermore, we outline the putative mechanisms of action, clinical evidence and safety of approved mAbs and those in different stages of clinical development in multiple sclerosis and neuromyelitis optica.
Collapse
|
29
|
Robinson RT. IL12Rβ1: the cytokine receptor that we used to know. Cytokine 2014; 71:348-59. [PMID: 25516297 DOI: 10.1016/j.cyto.2014.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 12/22/2022]
Abstract
Human IL12RB1 encodes IL12Rβ1, a type I transmembrane receptor that is an essential component of the IL12- and IL23-signaling complex. IL12RB1 is well-established as being a promoter of delayed type hypersensitivity (DTH), the immunological reaction that limits tuberculosis. However, recent data demonstrate that in addition to promoting DTH, IL12RB1 also promotes autoimmunity. The contradictory roles of IL12RB1 in human health raises the question, what are the factors governing IL12RB1 function in a given individual, and how is inter-individual variability in IL12RB1 function introduced? Here we review recent data that demonstrate individual variability in IL12RB1 function is introduced at the epigenetic, genomic polymorphism, and mRNA splicing levels. Where and how these differences contribute to disease susceptibility and outcome are also reviewed. Collectively, recent data support a model wherein IL12RB1 sequence variability - whether introduced at the genomic or post-transcriptional level - contributes to disease, and that human IL12RB1 is not as simple a gene as we once believed.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbiology and Molecular Genetics, The Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| |
Collapse
|
30
|
‘t Hart BA, Jagessar SA, Kap YS, Haanstra KG, Philippens IH, Serguera C, Langermans J, Vierboom M. Improvement of preclinical animal models for autoimmune-mediated disorders via reverse translation of failed therapies. Drug Discov Today 2014; 19:1394-401. [DOI: 10.1016/j.drudis.2014.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/10/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022]
|
31
|
Longbrake EE, Parks BJ, Cross AH. Monoclonal antibodies as disease modifying therapy in multiple sclerosis. Curr Neurol Neurosci Rep 2014; 13:390. [PMID: 24027005 DOI: 10.1007/s11910-013-0390-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS), a demyelinating disease of the central nervous system, was untreatable until the mid-1990s when beta-interferons and glatiramer acetate were introduced. These agents, while effective, were relatively nonspecific in action. Over the last 10 years, research has focused toward developing more targeted therapies for the disease. Monoclonal antibodies (mAbs) have been central to these efforts and many of the mAbs studied in MS have been singularly effective. We review here the 6 monoclonal antibodies that have been approved for MS or are in late-stage clinical trials, focusing on the drugs' efficacy and safety. Additionally, we review several monoclonal antibodies that were studied in MS but were found to be ineffective or even deleterious in this patient population.
Collapse
Affiliation(s)
- Erin E Longbrake
- John H. Trotter Multiple Sclerosis Center and Department of Neurology, Washington University, Campus Box 8111, 660 S Euclid Ave, St Louis, MO, 63110, USA,
| | | | | |
Collapse
|
32
|
Longbrake EE, Racke MK. Why did IL-12/IL-23 antibody therapy fail in multiple sclerosis? Expert Rev Neurother 2014; 9:319-21. [DOI: 10.1586/14737175.9.3.319] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Ruggeri RM, Saitta S, Cristani M, Giovinazzo S, Tigano V, Trimarchi F, Benvenga S, Gangemi S. Serum interleukin-23 (IL-23) is increased in Hashimoto's thyroiditis. Endocr J 2014; 61:359-63. [PMID: 24476945 DOI: 10.1507/endocrj.ej13-0484] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent studies have demonstrated that T-helper 17 lymphocytes (Th17), which produce mostly IL-17, play a major role in several autoimmune diseases commonly thought to be Th1-related, including Hashimoto's thyroiditis (HT). IL-23, a member of the IL-12 cytokine family, is known to guide T cells toward the Th17 phenotype and its serum levels are increased in several autoimmune disease. Few data are available in the literature on IL-23 in HT. Using IL-23 Quantikine ELISA Kit (lower limit of detection 2.7 pg/mL) we analyzed the serum levels of IL-23 in 81 HT patients (75 females and 6 males, aged 14-70; mean age 39±17 years), and an age- and sex-matched group of 80 healthy persons. Both patients and controls did not receive any treatment. The positive detection rates of serum IL-23 were significantly higher in patients with HT: 56% of HT patients had detectable IL-23 in serum compared to 36% of healthy subjects (Chi χ² test, p=0.014). Moreover, HT patients had significantly higher serum concentrations of IL-23 (157.38 ± 17.92 pg/mL) in comparison with healthy controls (21.46 ± 5.4 pg/mL; p <0.0001). No significant correlation was found between serum levels of IL-23 and Tg-Ab or TPO-Ab levels, as well as with TSH values, in HT patients. In conclusion, serum IL-23 is increased in euthyroid and untreated HT patients, as compared to healthy subjects. Our data suggest that IL-23 would play a role in the pathogenesis of HT.
Collapse
Affiliation(s)
- Rosaria Maddalena Ruggeri
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Th17 cells in immunity and autoimmunity. Clin Dev Immunol 2013; 2013:986789. [PMID: 24454481 PMCID: PMC3886602 DOI: 10.1155/2013/986789] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
Abstract
Th17 and IL-17 play important roles in the clearance of extracellular bacterial and fungal infections. However, strong evidence also implicates the Th17 lineage in several autoimmune disorders including multiple sclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, and asthma. The Th17 subset has also been connected with type I diabetes, although whether it plays a role in the pathogenicity of or protection from the disease remains a controversial issue. In this review we have provided a comprehensive overview of Th17 pathogenicity and function, including novel evidence for a protective role of Th17 cells in conjunction with the microbiota gut flora in T1D onset and progression.
Collapse
|
35
|
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) represent an emerging and rapidly growing field of therapy in neuroinflammatory diseases. Adhesion molecule blockade by natalizumab represents the first approved mAb therapy in neurology, approved for therapy of highly active multiple sclerosis (MS). Removal of immune cells by anti-CD52 mAb alemtuzumab or anti-CD20 mAb rituximab are other prime examples with existing positive Phase II and Phase III trials. MS clearly represents the neuroinflammatory disease entity with the largest body of evidence. However, some of these approaches are currently investigated or translated for use in other, rare neuroinflammatory diseases, such as neuromyelitis optica (NMO), inflammatory neuropathies and (neuro)-muscular disorders. AREAS COVERED This review will highlight the most relevant therapeutic approaches involving mAbs in the field of neuroinflammatory diseases as published in peer-reviewed journals and presented on international meetings. EXPERT OPINION There is continuously growing evidence on the therapeutic relevance of mAbs in neuroinflammatory disorders. In MS meanwhile several studies have provided evidence for efficacy: In addition to natalizumab, approved in 2006, several other candidates are under development, the most eminent examples with the most advanced study programs being anti-CD52 alemtuzumab, anti-CD20 principles and anti-CD25 daclizumab. Other intriguing candidates are anti-IL-17 strategies, and interference with the complement pathway, partly also developed for other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology, Inflammatory Disorders of the Nervous System and Neurooncology, Clinic for Neurology, Albert-Schweitzer-Campus 1, Building A10, 48149 Münster, Germany
| | | |
Collapse
|
36
|
Anwar Jagessar S, Fagrouch Z, Heijmans N, Bauer J, Laman JD, Oh L, Migone T, Verschoor EJ, ’t Hart BA. The Different Clinical Effects of Anti-BLyS, Anti-APRIL and Anti-CD20 Antibodies Point at a Critical Pathogenic Role of γ-Herpesvirus Infected B Cells in the Marmoset EAE Model. J Neuroimmune Pharmacol 2013; 8:727-38. [DOI: 10.1007/s11481-013-9448-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
|
37
|
't Hart BA, Chalan P, Koopman G, Boots AMH. Chronic autoimmune-mediated inflammation: a senescent immune response to injury. Drug Discov Today 2012. [PMID: 23195330 DOI: 10.1016/j.drudis.2012.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increasing prevalence of chronic autoimmune-mediated inflammatory diseases (AIMIDs) in ageing western societies is a major challenge for the drug development industry. The current high medical need for more-effective treatments is at least in part caused by our limited understanding of the mechanisms that drive chronic inflammation. Here, we postulate a role for immunosenescence in the progression of acute to chronic inflammation via a dysregulated response to primary injury at the level of the damaged target organ. A corollary to this notion is that treatment of acute versus chronic phases of disease might require differential targeting strategies.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Zhang XM, Zhu J. Kainic Acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines. Curr Neuropharmacol 2012; 9:388-98. [PMID: 22131947 PMCID: PMC3131729 DOI: 10.2174/157015911795596540] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 09/28/2010] [Accepted: 10/18/2010] [Indexed: 01/01/2023] Open
Abstract
Glutamate excitotoxicity contributes to a variety of disorders in the central nervous system, which is triggered primarily by excessive Ca2+ influx arising from overstimulation of glutamate receptors, followed by disintegration of the endoplasmic reticulum (ER) membrane and ER stress, the generation and detoxification of reactive oxygen species as well as mitochondrial dysfunction, leading to neuronal apoptosis and necrosis. Kainic acid (KA), a potent agonist to the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate class of glutamate receptors, is 30-fold more potent in neuro-toxicity than glutamate. In rodents, KA injection resulted in recurrent seizures, behavioral changes and subsequent degeneration of selective populations of neurons in the brain, which has been widely used as a model to study the mechanisms of neurodegenerative pathways induced by excitatory neurotransmitter. Microglial activation and astrocytes proliferation are the other characteristics of KA-induced neurodegeneration. The cytokines and other inflammatory molecules secreted by activated glia cells can modify the outcome of disease progression. Thus, anti-oxidant and anti-inflammatory treatment could attenuate or prevent KA-induced neurodegeneration. In this review, we summarized updated experimental data with regard to the KA-induced neurotoxicity in the brain and emphasized glial responses and glia-oriented cytokines, tumor necrosis factor-α, interleukin (IL)-1, IL-12 and IL-18.
Collapse
Affiliation(s)
- Xing-Mei Zhang
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
39
|
Disanto G, Morahan JM, Barnett MH, Giovannoni G, Ramagopalan SV. The evidence for a role of B cells in multiple sclerosis. Neurology 2012; 78:823-32. [PMID: 22411958 DOI: 10.1212/wnl.0b013e318249f6f0] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding the pathogenesis of complex immunologic disorders such as multiple sclerosis (MS) is challenging. Abnormalities in many different cell types are observed in the immune system and CNS of patients with MS and the identification of the primary and secondary events is difficult. Recent studies suggest that the model of MS as a disorder mediated only by T cells is overly simplistic and propose an important role for B cells in the propagation of the disease. B-cell activation in the form of oligoclonal bands (OCB) production is the most consistent immunologic finding in patients with MS. Notably, markers of B-cell activation within the CSF of patients with MS predict conversion from clinically isolated syndrome to clinically definite MS and correlate with MRI activity, onset of relapses, and disability progression. In addition, the main genetic risk factor in MS is associated with OCB production, and environmental agents associated with MS susceptibility (vitamin D and the Epstein-Barr virus) influence B-cell proliferation and function. Finally, the only cell-specific treatments that are effective in patients with MS are monoclonal antibodies targeting the B-cell antigen CD20, suggesting a potentially causative role for B cells. Based on current evidence there is no longer doubt that B cells are relevant to the etiology and pathogenesis of MS. Elucidating the role of B cells in MS will be a fruitful strategy for disease prevention and treatment.
Collapse
Affiliation(s)
- G Disanto
- Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
40
|
Li R, Zheng X, Popov I, Zhang X, Wang H, Suzuki M, Necochea-Campion RD, French PW, Chen D, Siu L, Koos D, Inman RD, Min WP. Gene silencing of IL-12 in dendritic cells inhibits autoimmune arthritis. J Transl Med 2012; 10:19. [PMID: 22289162 PMCID: PMC3293054 DOI: 10.1186/1479-5876-10-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/31/2012] [Indexed: 11/18/2022] Open
Abstract
Background We have previously demonstrated that immune modulation can be accomplished by administration of gene silenced dendritic cells (DC) using siRNA. In this study, we demonstrate the therapeutic utilization of shRNA-modified DC as an antigen-specific tolerogenic vaccine strategy for autoimmune arthritis. Methods A shRNA that specifically targets IL-12 p35 was designed and cloned into a plasmid vectors (IL-12 shRNA). Bone marrow-derived DC from DBA/1 mice were transfected with the IL-12 shRNA construct in vitro. Mice with collagen II (CII)-induced arthritis (CIA) were treated with the modified DCs expressing the shRNA. Recall response and disease progression were assessed. Results After gene silencing of IL-12 in DC, DC were shown to selectively inhibit T cell proliferation on recall responses and in an MLR. In murine CIA, we demonstrated that administration of IL-12 shRNA-expressing DC that were pulsed with CII inhibited progression of arthritis. The therapeutic effects were evidenced by decreased clinical scores, inhibition of inflammatory cell infiltration in the joint, and suppression of T cell and B cell responses to CII. Conclusion We demonstrate a novel tolerance-inducing protocol for the treatment of autoimmune inflammatory joint disease in which the target antigen is known, utilizing DNA-directed RNA interference.
Collapse
Affiliation(s)
- Rong Li
- Institute of Immunomodulation and Immunotherapy, Nanchang University Medical School, Nanchang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gensicke H, Leppert D, Yaldizli Ö, Lindberg RLP, Mehling M, Kappos L, Kuhle J. Monoclonal antibodies and recombinant immunoglobulins for the treatment of multiple sclerosis. CNS Drugs 2012; 26:11-37. [PMID: 22171583 DOI: 10.2165/11596920-000000000-00000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and degenerative disease leading to demyelination and axonal damage in the CNS. Autoimmunity plays a central role in MS pathogenesis. Per definition, monoclonal antibodies are recombinant biological compounds with a well defined target, thus carrying the promise of targeting pathogenic cells or molecules with high specificity, avoiding undesired off-target effects. Natalizumab was the first monoclonal antibody to be approved for the treatment of MS. Several other monoclonal antibodies are in development and have demonstrated promising efficacy in phase II studies. They can be categorized according to their mode of action into compounds targeting (i) leukocyte migration into the CNS (natalizumab); (ii) cytolytic antibodies (rituximab, ocrelizumab, ofatumumab, alemtuzumab); or (iii) antibodies and recombinant proteins targeting cytokines and chemokines and their receptors (daclizumab, ustekinumab, atacicept, tabalumab [Ly-2127399], secukinumab [AIN457]). In this review, we discuss the specific molecular targets, clinical efficacy and safety of these compounds and discuss criteria to anticipate the position of monoclonal antibodies in the diversifying armamentarium of MS therapy in the coming years.
Collapse
Affiliation(s)
- Henrik Gensicke
- Neurology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Discrepant effects of human interferon-gamma on clinical and immunological disease parameters in a novel marmoset model for multiple sclerosis. J Neuroimmune Pharmacol 2011; 7:253-65. [PMID: 22012268 PMCID: PMC3280389 DOI: 10.1007/s11481-011-9320-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/02/2011] [Indexed: 11/18/2022]
Abstract
The core pathogenic process in the common marmoset model of multiple sclerosis (MS) is the activation of memory-like T cells specific for peptide 34 to 56 derived from the extracellular domain of myelin/oligodendrocyte glycoprotein (MOG34-56). Immunization with MOG34-56 in incomplete Freund’s adjuvant is a sufficient stimulus for in vivo activation of these T cells, together with the induction of MS-like disease and CNS pathology. Ex vivo functional characteristics of MOG34-56 specific T cells are specific cytolysis of peptide pulsed target cells and high IL-17A production. To indentify possible functions in this new model of T helper 1 cells, which play a central pathogenic role in MS models induced with complete Freund’s adjuvant, we tested the effect of human interferon-γ (IFNγ) administration during disease initiation of the disease (day 0–25) and around the time of disease expression (psd 56–81). The results show a clear modulatory effect of early IFNγ treatment on humoral and cellular autoimmune parameters, but no generalized mitigating effect on the disease course. These results argue against a prominent pathogenic role of T helper 1 cells in this new marmoset EAE model.
Collapse
|
43
|
Strzępa A, Szczepanik M. IL-17-expressing cells as a potential therapeutic target for treatment of immunological disorders. Pharmacol Rep 2011; 63:30-44. [PMID: 21441609 DOI: 10.1016/s1734-1140(11)70396-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/30/2010] [Indexed: 12/16/2022]
Abstract
IL-17 is a multifunctional cytokine produced by activated CD4+ and CD8+ lymphocytes as well as stimulated unconventional Tγδ and natural killer T cells. IL-17 induces expression of chemokines, proinflammatory cytokines and metalloproteinases, thereby stimulating the inflammation and chemotaxis of neutrophils. Elevation of proinflammatory cytokines is associated with asthma and autoimmune disorders, such as multiple sclerosis, rheumatoid arthritis and psoriasis. Although the role of IL-17 in these disorders is not always easy to define, extensive research has demonstrated an aggravating influence of IL-17 in some animal models. Thus, the development of therapeutics to reduce IL-17 levels is a promising strategy for ameliorating inflammatory diseases. This review briefly summarizes recent knowledge about stimulants and intracellular signaling pathways that induce development and maturation of IL-17-expressing cells. Its positive and negative roles on disease progression and its importance in vaccine-induced memory are also discussed. Finally, recent literature describing potential therapeutic approaches for targeting IL-17 is presented.
Collapse
Affiliation(s)
- Anna Strzępa
- Department of Human Developmental Biology, Jagiellonian University, College of Medicine, Kopernika 7, PL 31-034 Kraków, Poland
| | | |
Collapse
|
44
|
Thakker P, Marusic S, Stedman NL, Lee KL, McKew JC, Wood A, Goldman SJ, Leach MW, Collins M, Kuchroo VK, Wolf SF, Clark JD, Hassan-Zahraee M. Cytosolic phospholipase A2α blockade abrogates disease during the tissue-damage effector phase of experimental autoimmune encephalomyelitis by its action on APCs. THE JOURNAL OF IMMUNOLOGY 2011; 187:1986-97. [PMID: 21746963 DOI: 10.4049/jimmunol.1002789] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytosolic phospholipase A(2)α (cPLA(2)α) is the rate-limiting enzyme for release of arachidonic acid, which is converted primarily to PGs via the cyclooxygenase 1 and 2 pathways and to leukotrienes via the 5-lipoxygenase pathway. We used adoptive transfer and relapsing-remitting forms of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, in two different strains of mice (SJL or C57BL/6) to demonstrate that blockade of cPLA(2)α with a highly specific small-molecule inhibitor during the tissue-damage effector phase abrogates the clinical manifestation of disease. Using the adoptive transfer model in SJL mice, we demonstrated that the blockade of cPLA(2)α during the effector phase of disease was more efficacious in ameliorating the disease pathogenesis than the blockade of each of the downstream enzymes, cyclooxygenase-1/2 and 5-lipooxygenase. Similarly, blockade of cPLA(2)α was highly efficacious in ameliorating disease pathogenesis during the effector phase of EAE in the adoptive transfer model of EAE in C57BL/6 mice. Investigation of the mechanism of action indicates that cPLA(2)α inhibitors act on APCs to diminish their ability to induce Ag-specific effector T cell proliferation and proinflammatory cytokine production. Furthermore, cPLA(2)α inhibitors may prevent activation of CNS-resident microglia and may increase oligodendrocyte survival. Finally, in a relapsing-remitting model of EAE in SJL mice, therapeutic administration of a cPLA(2)α inhibitor, starting from the peak of disease or during remission, completely protected the mice from subsequent relapses.
Collapse
Affiliation(s)
- Paresh Thakker
- Inflammation and Immunology Research Unit, Pfizer Research and Development, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Treatment with interleukin-12/23p40 antibody attenuates acute cardiac allograft rejection. Transplantation 2011; 91:27-34. [PMID: 21452409 DOI: 10.1097/tp.0b013e3181fdd948] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Interleukin (IL)-12 and -23 share the p40 subunit and are crucial for the development of T helper (Th) 1- and Th17-cell responses in acute graft rejection. However, little is known about the impact of treatment with antagonistic anti-p40 antibody in inhibiting rejection of cardiac allografts. METHODS C57BL/6 mice were transplanted with syngeneic or allogeneic (BALB/c) hearts and treated with 100 or 200 μg or 400 μg anti-P40 monoclonal antibody on postoperative days 1 and 3, respectively. The survival of grafts was monitored daily by abdominal palpation until the complete cessation of cardiac contractility (endpoint). The severity of acute rejection was evaluated by histology and immunohistochemistry. The expression of transcription factors within the grafts were measured by quantitative real-time polymerase chain reaction. Systemically, the lymphocytes were characterized by flow cytometry, and the serum levels of cytokines were determined by ELISA. RESULTS In comparison with mice treated with isotype IgG or saline, treatment with anti-p40 significantly alleviated acute phase allograft rejection and resulted in prolonged survival of cardiac allografts (P<0.05). These changes were associated with reduced infiltration of inflammatory cells and down-regulation of Th1- and Th17-specific transcription factors and cytokines. Furthermore, treatment with anti-p40 significantly reduced the percentages of splenic Th1 and Th17 cells, but not Th2 and regulatory T cells (P<0.05), with concomitant reduction of serum interferon-γ and IL-17 levels (P<0.05). CONCLUSION Our data indicated that treatment with anti-p40 inhibited Th1- and Th17-cell responses and prolonged the survival of cardiac allografts in mice.
Collapse
|
46
|
Martin PL, Sachs C, Imai N, Tsusaki H, Oneda S, Jiao Q, Treacy G. Development in the cynomolgus macaque following administration of ustekinumab, a human anti-IL-12/23p40 monoclonal antibody, during pregnancy and lactation. ACTA ACUST UNITED AC 2011; 89:351-63. [PMID: 20540088 DOI: 10.1002/bdrb.20250] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ustekinumab is a human monoclonal antibody that binds to the p40 subunit of interleukin (IL) 12 and IL-23 and inhibits their pharmacological activity. To evaluate potential effects of ustekinumab treatment during pregnancy, developmental studies were conducted in cynomolgus macaques. METHODS Ustekinumab was tested in two embryo/fetal development (EFD) studies and in a combined EFD/pre and postnatal development (PPND) study. In the EFD studies, pregnant macaques (12/group) were dosed with saline or ustekinumab (9 mg/kg IV, 22.5 mg/kg SC, or 45 mg/kg IV or SC during the period of major organogenesis, gestation day [GD] 20-50). Fetuses were harvested on GD100-102 and examined for any effects on development. In the EFD/PPND study, pregnant macaques were injected with saline or ustekinumab (22.5 or 45 mg/kg SC) from GD20 through lactation day 33. Infants were examined from birth through 6 months of age for morphological and functional development. Potential effects on the immune system were evaluated by immunophenotyping of peripheral blood lymphocytes and immunohistopathology of lymphoid tissues in fetuses and infants and by T-dependent antibody response (TDAR) to KLH and TTX and by DTH response in infants. Ustekinumab concentrations were measured in serum from dams, fetus, and infants and in breast milk. RESULTS Ustekinumab treatment produced no maternal toxicity and no toxicity in the fetuses or infants, including no effects on the TDAR or DTH responses. Ustekinumab was present in serum from GD100 fetuses and was present in infant serum through day 120 post-birth. Low levels of ustekinumab were present in breast milk. CONCLUSIONS Exposure of macaque fetuses and infants to ustekinumab had no adverse effects on pre- and postnatal development.
Collapse
Affiliation(s)
- Pauline L Martin
- Centocor Research and Development, Inc., Radnor, Pennsylvania 19087, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
't Hart BA, Gran B, Weissert R. EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 2011; 17:119-25. [PMID: 21251877 DOI: 10.1016/j.molmed.2010.11.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 11/18/2022]
Abstract
The high failure rate of immunotherapies in multiple sclerosis (MS) clinical trials demonstrates problems in translating new treatment concepts from animal models to the patient. One main reason for this 'immunotherapy gap' is the usage of immunologically immature, microbiologically clean and genetically homogeneous rodent strains. Another reason is the artificial nature of the experimental autoimmune encephalomyelitis model, which favors CD4+ T cell driven autoimmune mechanisms, whereas CD8+ T cells are prevalent in MS lesions. In this paper, we discuss preclinical models in humanized rodents and non-human primates that are genetically closer to MS. We also discuss models that best reproduce specific aspects of MS pathology and how these can potentially improve preclinical selection of promising therapies from the discovery pipeline.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Center, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands.
| | | | | |
Collapse
|
48
|
Disanto G, Berlanga AJ, Handel AE, Para AE, Burrell AM, Fries A, Handunnetthi L, De Luca GC, Morahan JM. Heterogeneity in multiple sclerosis: scratching the surface of a complex disease. Autoimmune Dis 2010; 2011:932351. [PMID: 21197462 PMCID: PMC3005811 DOI: 10.4061/2011/932351] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/27/2010] [Indexed: 12/19/2022] Open
Abstract
Multiple Sclerosis (MS) is the most common demyelinating disease of the central nervous system. Although the etiology and the pathogenesis of MS has been extensively investigated, no single pathway, reliable biomarker, diagnostic test, or specific treatment have yet been identified for all MS patients. One of the reasons behind this failure is likely to be the wide heterogeneity observed within the MS population. The clinical course of MS is highly variable and includes several subcategories and variants. Moreover, apart from the well-established association with the HLA-class II DRB1*15:01 allele, other genetic variants have been shown to vary significantly across different populations and individuals. Finally both pathological and immunological studies suggest that different pathways may be active in different MS patients. We conclude that these "MS subtypes" should still be considered as part of the same disease but hypothesize that spatiotemporal effects of genetic and environmental agents differentially influence MS course. These considerations are extremely relevant, as outcome prediction and personalised medicine represent the central aim of modern research.
Collapse
Affiliation(s)
- Giulio Disanto
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vollmer TL, Wynn DR, Alam MS, Valdes J. A phase 2, 24-week, randomized, placebo-controlled, double-blind study examining the efficacy and safety of an anti-interleukin-12 and -23 monoclonal antibody in patients with relapsing-remitting or secondary progressive multiple sclerosis. Mult Scler 2010; 17:181-91. [PMID: 21135022 DOI: 10.1177/1352458510384496] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Interleukins 12 and 23 (IL-12/23) have been implicated in multiple sclerosis (MS) pathogenesis. This study assessed the efficacy and safety of ABT-874, a monoclonal anti-IL-12/23 antibody, in active relapsing-remitting MS (RRMS) or secondary progressive MS (SPMS). METHODS In this 24-week study, patients with RRMS or SPMS received ABT-874 200 mg every other week (EOW), ABT-874 200 mg every week (EW), or placebo. The cumulative number of gadolinium-enhanced lesions, relapse rate, disability progression, and adverse events were measured. RESULTS 215 patients were randomized (ABT-874 200 mg EOW, N = 76; ABT-874 200 mg EW, N = 70; placebo, N = 69). At week 24, gadolinium-enhanced lesions were statistically significantly reduced with ABT-874 200 mg EOW vs. placebo (mean number [SD]: 5.4 [8.1] vs. 7.6 [14.4], p = 0.003), but not with ABT-874 200 mg EW (6.8 [11.3], p = 0.134). Mean relapse rate (relapses/y) was significantly lower for ABT-874 200 mg EW vs. placebo (0.1 [95% CI -0.0, 0.3] vs. 0.5 [0.2, 0.8], p = 0.007). Changes from baseline in disability scores and incidences of adverse events were not significantly different across treatment groups, although a numerically greater percentage of serious adverse events was reported for ABT-874 treatment groups. CONCLUSIONS Although rates of adverse events were not significantly different between ABT-874 treatment groups and placebo, the magnitude of ABT-874 efficacy was less than that observed with other agents currently in development for MS treatment. Anti-IL-12/23 monotherapy does not appear to warrant further testing as monotherapy treatment for MS.
Collapse
Affiliation(s)
- Timothy L Vollmer
- University of Colorado Health Sciences Center, Aurora, Colorado, USA.
| | | | | | | |
Collapse
|
50
|
Ulzheimer JC, Meuth SG, Bittner S, Kleinschnitz C, Kieseier BC, Wiendl H. Therapeutic approaches to multiple sclerosis: an update on failed, interrupted, or inconclusive trials of immunomodulatory treatment strategies. BioDrugs 2010; 24:249-74. [PMID: 20623991 DOI: 10.2165/11537160-000000000-00000] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Multiple sclerosis (MS) continues to be a therapeutic challenge, and much effort is being made to develop new and more effective immune therapies. Particularly in the past decade, neuroimmunologic research has delivered new and highly effective therapeutic options, as seen in the growing number of immunotherapeutic agents and biologics in development. However, numerous promising clinical trials have failed to show efficacy or have had to be halted prematurely because of unexpected adverse events. Some others have shown results that are of unknown significance with regard to a reliable assessment of true efficacy versus safety. For example, studies of the highly innovative monoclonal antibodies that selectively target immunologic effector molecules have not only revealed the impressive efficacy of such treatments, they have also raised serious concerns about the safety profiles of these antibodies. These results add a new dimension to the estimation of risk-benefit ratios regarding acute or long-term adverse effects. Therapeutic approaches that have previously failed in MS have indicated that there are discrepancies between theoretical expectations and practical outcomes of different compounds. Learning from these defeats helps to optimize future study designs and to reduce the risks to patients. This review summarizes trials on MS treatments since 2001 that failed or were interrupted, attempts to analyze the underlying reasons for failure, and discusses the implications for our current view of MS pathogenesis, clinical practice, and design of future studies. In order to maintain clarity, this review focuses on anti-inflammatory therapies and does not include studies on already approved and effective disease-modifying therapies, albeit used in distinct administration routes or under different paradigms. Neuroprotective and alternative treatment strategies are presented elsewhere.
Collapse
|