1
|
Naik K, Kowshik M. The silver lining: towards the responsible and limited usage of silver. J Appl Microbiol 2017. [DOI: 10.1111/jam.13525] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- K. Naik
- Department of Biological Sciences; BITS Pilani K K Birla Goa Campus; Zuarinagar Goa India
| | - M. Kowshik
- Department of Biological Sciences; BITS Pilani K K Birla Goa Campus; Zuarinagar Goa India
| |
Collapse
|
2
|
Alsaleh NB, Persaud I, Brown JM. Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor. PLoS One 2016; 11:e0167366. [PMID: 27907088 PMCID: PMC5131952 DOI: 10.1371/journal.pone.0167366] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/13/2016] [Indexed: 12/20/2022] Open
Abstract
Engineered nanomaterial (ENM)-mediated toxicity often involves triggering immune responses. Mast cells can regulate both innate and adaptive immune responses and are key effectors in allergic diseases and inflammation. Silver nanoparticles (AgNPs) are one of the most prevalent nanomaterials used in consumer products due to their antimicrobial properties. We have previously shown that AgNPs induce mast cell degranulation that was dependent on nanoparticle physicochemical properties. Furthermore, we identified a role for scavenger receptor B1 (SR-B1) in AgNP-mediated mast cell degranulation. However, it is completely unknown how SR-B1 mediates mast cell degranulation and the intracellular signaling pathways involved. In the current study, we hypothesized that SR-B1 interaction with AgNPs directs mast cell degranulation through activation of signal transduction pathways that culminate in an increase in intracellular calcium signal leading to mast cell degranulation. For these studies, we utilized bone marrow-derived mast cells (BMMC) isolated from C57Bl/6 mice and RBL-2H3 cells (rat basophilic leukemia cell line). Our data support our hypothesis and show that AgNP-directed mast cell degranulation involves activation of PI3K, PLCγ and an increase in intracellular calcium levels. Moreover, we found that influx of extracellular calcium is required for the cells to degranulate in response to AgNP exposure and is mediated at least partially via the CRAC channels. Taken together, our results provide new insights into AgNP-induced mast cell activation that are key for designing novel ENMs that are devoid of immune system activation.
Collapse
Affiliation(s)
- Nasser B. Alsaleh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Indushekhar Persaud
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jared M. Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
3
|
Inoue T, Suzuki Y, Ra C. Epigallocatechin-3-gallate induces cytokine production in mast cells by stimulating an extracellular superoxide-mediated calcium influx. Biochem Pharmacol 2011; 82:1930-9. [PMID: 21945989 DOI: 10.1016/j.bcp.2011.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 11/28/2022]
Abstract
The green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) has various biological activities, including anti-inflammatory, anti-neoplastic, anti- and pro-apoptotic, and neuroprotective effects. Although these are often associated with increased intracellular reactive oxygen species (ROS) and Ca(2+) levels, their involvement in biological effects is poorly understood. Here we report that EGCG induces cytokine production in mast cells via Ca(2+) influx and ROS generation. EGCG at concentrations of ≥50 μM induced interleukin-13 and tumor necrosis factor-α production in RBL-2H3 and bone marrow-derived mast cells. The effects were dependent on extracellular Ca(2+), and EGCG induced Ca(2+) release from intracellular stores and Ca(2+) influx. Ca(2+) influx was suppressed by 2-aminoethoxydiphenyl borate, an inhibitor of store-operated Ca(2+) (SOC) channels, including Ca(2+) release-activated Ca(2+) channels and transient receptor potential canonical channels. EGCG failed to induce Ca(2+) influx through SOC channels. EGCG-activated Ca(2+) channels were genetically and pharmacologically distinct from Ca(v)1.2 L-type Ca(2+) channels, another route of Ca(2+) influx into mast cells. EGCG evoked release of superoxide (O(2)(·-)) into the extracellular space. Exogenous superoxide dismutase, but not catalase, inhibited EGCG-evoked Ca(2+) influx and cytokine production, indicating that extracellular O(2)(·-) regulates these events. EGCG can serve as a powerful tool for studying O(2)(·-)-regulated Ca(2+) channels, which may be selectively involved in the regulation of cytokine production but have yet to be elucidated.
Collapse
Affiliation(s)
- Toshio Inoue
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | | | | |
Collapse
|
4
|
Hayama K, Suzuki Y, Inoue T, Ochiai T, Terui T, Ra C. Gold activates mast cells via calcium influx through multiple H2O2-sensitive pathways including L-type calcium channels. Free Radic Biol Med 2011; 50:1417-28. [PMID: 21376117 DOI: 10.1016/j.freeradbiomed.2011.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 11/23/2022]
Abstract
Heavy metals, including gold, induce severe contact hypersensitivity and autoimmune disorders, which develop through an initial Th2-independent process followed by a Th2-dependent process. It has been shown that mast cell activation plays a role in the Th2-independent process and that gold stimulates histamine release in vitro. However, the mechanisms of the gold-induced mast cell activation remain largely unclear. Here we report that gold directly activates mast cells in a Ca2+-dependent manner. HAuCl4 [Au(III)] at nontoxic concentrations (≤50 μM) induced substantial degranulation and leukotriene C4 secretion in an extracellular Ca2+-dependent manner. Au(III) induced a robust Ca2+ influx but not Ca2+ mobilization from internal stores. Au(III) also stimulated intracellular production of reactive oxygen species, including H2O2, and blockade of the production abolished the mediator release and Ca2+ influx. Au(III) induced Ca2+ influx through multiple store-independent Ca2+ channels, including Cav1.2 L-type Ca2+ channels (LTCCs) and 2-aminoethoxydiphenyl borate (2-APB)-sensitive Ca2+ channels. The 2-APB-sensitive channel seemed to mediate Au(III)-induced degranulation. Our results indicate that gold stimulates Ca2+ influx and mediator release in mast cells through multiple H2O2-sensitive Ca2+ channels including LTCCs and 2-APB-sensitive Ca2+ channels. These findings provide insight into the roles of these Ca2+ channels in the Th2-independent process of gold-induced immunological disorders.
Collapse
Affiliation(s)
- Koremasa Hayama
- Division of Molecular Cell Immunology and Allergology, Graduate School of Medical Science, Nihon University, and Department of Dermatology, Nihon University Surugadai Hospital, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Yang W, Lee S, Lee J, Bae Y, Kim D. Silver nanoparticle-induced degranulation observed with quantitative phase microscopy. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:045005. [PMID: 20799800 DOI: 10.1117/1.3470104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Monitoring a degranulation process in a live mast cell is a quite important issue in immunology and pharmacology. Because the size of a granule is normally much smaller than the resolution limit of an optical microscope system, there is no direct real-time live cell imaging technique for observing degranulation processes except for fluorescence imaging techniques. In this research, we propose optical quantitative phase microscopy (QPM) as a new observation tool to study degranulation processes in a live mast cell without any fluorescence labeling. We measure the cell volumes and the cross sectional profiles (x-z plane) of an RBL-2H3 cell and a HeLa cell, before and after they are exposed to calcium ionophore A23187 and silver nanoparticles (AgNPs). We verify that the volume and the cross sectional line profile of the RBL-2H3 cell were changed significantly when it was exposed to A23187. When 50 microg/mL of AgNP is used instead of A23187, the measurements of cell volume and cross sectional profiles indicate that RBL-2H3 cells also follow degranulation processes. Degranulation processes for these cells are verified by monitoring the increase of intracellular calcium ([Ca(2+)](i)) and histamine with fluorescent methods.
Collapse
Affiliation(s)
- Wenzhong Yang
- Department of Information and Communications, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, Republic of Korea.
| | | | | | | | | |
Collapse
|
6
|
Inoue T, Suzuki Y, Yoshimaru T, Ra C. Nitric oxide positively regulates Ag (I)-induced Ca2+
influx and mast cell activation: role of a nitric oxide synthase-independent pathway. J Leukoc Biol 2009; 86:1365-75. [DOI: 10.1189/jlb.0609387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Inoue T, Suzuki Y, Yoshimaru T, Ra C. Ca2+-dependent mast cell death induced by Ag (I) via cardiolipin oxidation and ATP depletion. J Leukoc Biol 2009; 86:167-79. [PMID: 19401388 DOI: 10.1189/jlb.1108691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In genetically susceptible humans and/or experimental animals, ions of heavy metals, Hg (II), Au (III), and Ag (I) have been shown to strongly induce autoimmunity, in which mast cells have been implicated to play a role. Here, we demonstrate that Ag (I) application results in mast cell death through a unique Ca(2+)- and mitochondria-dependent pathway. As cellular susceptibilities to Ag (I) cytotoxicity varied considerably, we analyzed the cell death pathway in the low and high responding cells. In the low responding cells, long application (e.g., 20 h) of Ag (I) at concentrations (>or=30 microM) induced cell death, which was accompanied by mitochondrial membrane depolarization, cyt c release, and caspase-3/7 activation but was not prevented by selective inhibitors of caspase-3/7 and the mitochondrial permeability transition. The cell death was preceded by elevations in the cytoplasmic and mitochondrial Ca(2+) levels, and Ca(2+) responses and cell death were prevented by thiol reagents, including DTT, N-acetylcysteine, and reduced glutathione monoethyl ester. In the high responding cells, Ag (I) evoked considerable cell death by necrosis within 1 h, without inducing caspase activation, and this cell death was reduced significantly by depleting extracellular but not intracellular Ca(2+). Moreover, Ag (I) strongly induced Ca(2+)-dependent CL oxidation and intracellular ATP depletion, both of which were blocked by thiol reagents. These results suggest that Ag (I) activates thiol-dependent Ca(2+) channels, thereby promoting Ca(2+)-dependent CL oxidation, cyt c release, and ATP depletion. This necrotic cell death may play roles in Ag-induced inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Toshio Inoue
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | | | | | | |
Collapse
|
8
|
Inoue T, Suzuki Y, Yoshimaru T, Ra C. Reactive oxygen species produced up- or downstream of calcium influx regulate proinflammatory mediator release from mast cells: role of NADPH oxidase and mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:789-802. [PMID: 18178162 DOI: 10.1016/j.bbamcr.2007.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 11/20/2022]
Abstract
Earlier studies have demonstrated that mast cells produce reactive oxygen species (ROS), which play a role in regulating Ca(2+) influx, while in other cell types ROS are produced in a Ca(2+)-dependent manner. We sought to determine whether ROS are produced downstream of the extracellular Ca(2+) entry in mast cells. Thapsigargin (TG), a receptor-independent agonist, could evoke a robust burst of intracellular ROS. However, this response was distinct from the antigen-induced burst of ROS with respect to time course and dependence on Ca(2+) and phosphatidylinositol-3-kinase (PI3K). The antigen-induced ROS generation occurred immediately, while the TG-induced ROS generation occurred with a significant lag time (~2 min). Antigen but not TG caused extracellular release of superoxide (O(2)(*-))/hydrogen peroxide (H(2)O(2)), which was blocked by diphenyleneiodonium, apocynin, and wortmannin. A capacitative Ca(2+) entry resulted in the generation of O(2)(*-) in the mitochondria in a PI3K-independent manner. Blockade of ROS generation inhibited TG-induced mediator release. Finally, when used together, antigen and TG evoked the release of leukotriene C(4), tumor necrosis factor-alpha, and interleukin-13 as well as ROS generation synergistically. These results suggest that ROS produced upstream of Ca(2+) influx by NADPH oxidase and downstream of Ca(2+) influx by the mitochondria regulate the proinflammatory response of mast cells.
Collapse
Affiliation(s)
- Toshio Inoue
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|
9
|
Yamaki K, Taneda S, Yanagisawa R, Inoue KI, Takano H, Yoshino S. Enhancement of allergic responses in vivo and in vitro by butylated hydroxytoluene. Toxicol Appl Pharmacol 2007; 223:164-72. [PMID: 17604070 DOI: 10.1016/j.taap.2007.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/25/2007] [Accepted: 05/14/2007] [Indexed: 11/20/2022]
Abstract
The effect of butylated hydroxytoluene (BHT), which is used widely as an antioxidant, on IgE-dependent allergic responses in vivo and in vitro was investigated. For in vivo study, passive cutaneous anaphylaxis (PCA) was elicited in rats by i.d. injection of anti-DNP IgE and 48 h later by i.v. injection of DNP-HSA. BHT was i.p. given immediately after anti-DNP IgE injection. For in vitro studies, the rat mast cell line RBL2H3 sensitized with monoclonal anti-dinitrophenol (DNP) IgE was challenged with the multivalent antigen DNP-human serum albumin (DNP-HSA) in the presence or absence of BHT. beta-Hexosaminidase and histamine released from RBL2H3 cells, as indicators of degranulation of the cells, the concentration of intracellular Ca2+, the level of phosphorylated-Akt, and global tyrosine phosphorylation as indicators of mast cell activation, were measured. The results showed that BHT given to anti-DNP IgE-sensitized rats augmented DNP-specific PCA in a dose-dependent manner. In the presence of BHT, IgE-induced releases of beta-hexosaminidase and histamine from RBL2H3 cells were increased. BHT also further elevated IgE-mediated increased concentrations of intracellular Ca2+ and the levels of phosphorylated-Akt, but did not affect global tyrosine phosphorylation, in RBL2H3 cells. Moreover, the PI3K inhibitor LY294002 inhibited IgE-dependent degranulation and its enhancement by BHT. These findings indicate that BHT may upregulate PCA by enhancing mast cell degranulation associated with enhancements of intracellular Ca2+ concentration and PI3K activation, suggesting that BHT might affect allergic diseases such as allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Kouya Yamaki
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Yoshimaru T, Suzuki Y, Inoue T, Niide O, Ra C. Silver activates mast cells through reactive oxygen species production and a thiol-sensitive store-independent Ca2+ influx. Free Radic Biol Med 2006; 40:1949-59. [PMID: 16716896 DOI: 10.1016/j.freeradbiomed.2006.01.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 01/18/2006] [Accepted: 01/23/2006] [Indexed: 11/29/2022]
Abstract
In genetically susceptible human and/or experimental animals, heavy metals such as mercury, gold, and silver have been shown to highly induce adverse immunological reactions such as allergy and autoimmunity, in which mast cell degranulation is implicated as playing a role. We previously reported that silver activates mast cells and induces Ca2+ influx without stimulating intracellular signaling events required for activation of store-operated Ca2+ channels (SOCs). The purpose of the present study was to elucidate the possible involvement of reactive oxygen species (ROS) in the biological effects of silver. Analysis using oxidant-sensitive fluorescent probes such as dichlorodihydrofluorescein and scopoletin, as well as MCLA-amplified chemiluminescence, showed that silver induced intracellular production and/or extracellular release of ROS. Silver induced mast cell degranulation in a Ca2+ -dependent manner. Unlike IgE antigen, silver-induced Ca2+ influx was not affected by depletion of internal Ca2+ stores. Instead, the metal-induced Ca2+ influx was abolished and reversed by the cell-impermeant thiol-reducing agent dithiothreitol, indicating the regulation by oxidation of vicinal thiols on the cell surface. Consistent with this view, Ca2+ influx was blocked by the glutathione peroxidase mimetic ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the superoxide dismutase mimetic manganese(III) tetrakis 4-(benzoic acid)porphyrin, but not by exogenously added catalase or superoxide dismutase. These findings indicate that silver evokes the release of ROS and oxidation of thiols critical for the activation of a Ca2+ channel other than SOC. Such a novel ROS-dependent pathway might play a role in mast cell degranulation in metal-induced allergic and autoimmune reactions.
Collapse
Affiliation(s)
- Tetsuro Yoshimaru
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Sciences, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | |
Collapse
|
11
|
Suzuki Y, Yoshimaru T, Inoue T, Ra C. Mitochondrial Ca2+ flux is a critical determinant of the Ca2+ dependence of mast cell degranulation. J Leukoc Biol 2005; 79:508-18. [PMID: 16365155 DOI: 10.1189/jlb.0705412] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An increase in intracellular Ca2+ ([Ca2+]i) is necessary for mast cell exocytosis, but there is controversy over the requirement for Ca2+ in the extracellular medium. Here, we demonstrate that mitochondrial function is a critical determinant of Ca2+ dependence. In the presence of extracellular Ca2+, mitochondrial metabolic inhibitors, including rotenone, antimycin A, and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), significantly reduced degranulation induced by immunoglobulin E (IgE) antigen or by thapsigargin, as measured by beta-hexosaminidase release. In the absence of extracellular Ca2+; however, antimycin A and FCCP, but not rotenone, enhanced, rather than reduced, degranulation to a maximum of 76% of that observed in the presence of extracellular Ca2+. This enhancement of extracellular, Ca2+-independent degranulation was concomitant with a rapid collapse of the mitochondrial transmembrane potential. Mitochondrial depolarization did not enhance degranulation induced by thapsigargin, irrespective of the presence or absence of extracellular Ca2+. IgE antigen was more effective than thapsigargin as an inducer of [Ca2+]i release, and mitochondrial depolarization augmented IgE-mediated but not thapsigargin-induced Ca2+ store release and mitochondrial Ca2+ ([Ca2+]m) release. Finally, atractyloside and bongkrekic acid [an agonist and an antagonist, respectively, of the mitochondrial permeability transition pore (mPTP)], respectively, augmented and reduced IgE-mediated Ca2+ store release, [Ca2+]m release, and/or degranulation, whereas they had no effects on thapsigargin-induced Ca2+ store release. These data suggest that the mPTP is involved in the regulation of Ca2+ signaling, thereby affecting the mode of mast cell degranulation. This finding may shed light on a new role for mitochondria in the regulation of mast cell activation.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Divisionof Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Sciences, 30-1 Oyaguchikami-cho Itabashi-ku, Tokyo 173-8610, Japan.
| | | | | | | |
Collapse
|
12
|
Niide O, Suzuki Y, Yoshimaru T, Inoue T, Takayama T, Ra C. Fungal metabolite gliotoxin blocks mast cell activation by a calcium- and superoxide-dependent mechanism: implications for immunosuppressive activities. Clin Immunol 2005; 118:108-16. [PMID: 16213796 DOI: 10.1016/j.clim.2005.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/18/2005] [Accepted: 08/18/2005] [Indexed: 11/23/2022]
Abstract
Fungal secondary metabolites such as gliotoxin, an epipolythiodioxopiperazine toxin produced by pathogenic fungi like Candida and Aspergillus, possess immunosuppressive activities and have been thought to contribute to pathology of fungal infections in animals and humans. Since recent studies show that mast cell plays a crucial role in the front of host defense, we examined whether fungal secondary metabolites affected mast cell activation. We found that gliotoxin had suppressive effects on FcepsilonRI-dependent or -independent mast cell activation, including degranulation, leukotriene C4 secretion, and TNF-alpha and IL-13 production. Gliotoxin also suppressed intracellular Ca2+ rise through store-operated Ca2+ channels with a minimal effect on depletion of internal Ca2+ stores. Finally, gliotoxin induced intracellular production of superoxide possibly through a thiol redox cycling, which appeared to mediate suppressive effects on mast cell activation. These findings suggest that suppression of mast cell activation might contribute to the establishment of infections with gliotoxin-producing fungi.
Collapse
Affiliation(s)
- Osamu Niide
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Sciences, 30-1 Oyaguchikami-cho Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Suda T, Suzuki Y, Matsui T, Inoue T, Niide O, Yoshimaru T, Suzuki H, Ra C, Ochiai T. Dapsone suppresses human neutrophil superoxide production and elastase release in a calcium-dependent manner. Br J Dermatol 2005; 152:887-95. [PMID: 15888142 DOI: 10.1111/j.1365-2133.2005.06559.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Dapsone (4,4'-diaminodiphenyl sulphone) is a powerful therapeutic tool in many skin diseases including neutrophilic dermatoses. The drug has an outstanding therapeutic efficacy against many skin diseases characterized by neutrophil-rich infiltrates; however, mechanisms of its action are poorly understood. OBJECTIVES We investigated the effects of dapsone on respiratory and secretory functions of human neutrophils triggered by the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), the physiological agonist C5a, and phorbol myristate acetate (PMA). METHODS Human neutrophils were isolated from venous blood obtained from healthy donors. We detected extracellular production of superoxide (O(2) (-)) by cytochrome C reduction assay, and intracellular production of O(2) (-) by flow cytometry. Neutrophil elastase release was measured by the cleavage of the specific elastase substrate N-methoxysuccinyl-Ala-Ala-Pro-Val-p-nitroanilide. Measurement of cytosolic free calcium concentration was performed using the calcium-reactive fluorescence probe, Fluo-3. RESULTS Dapsone suppressed intra- and extracellular production of O(2) (-) and elastase release triggered by fMLP and C5a, but not by PMA. Both fMLP and C5a signalled the above pathways by inducing calcium influx, but PMA functions bypassed calcium influx. Dapsone was capable of antagonizing the induction of calcium influx. CONCLUSIONS These findings suggest that one mechanism of the anti-inflammatory action of dapsone is inhibition of calcium-dependent functions of neutrophils including release of tissue-damaging oxidants and proteases in the affected skin.
Collapse
Affiliation(s)
- T Suda
- Department of Dermatology, Nihon University School of Medicine, 30-1 Oyaguchi-kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Suzuki Y, Yoshimaru T, Matsui T, Inoue T, Niide O, Nunomura S, Ra C. Fc epsilon RI signaling of mast cells activates intracellular production of hydrogen peroxide: role in the regulation of calcium signals. THE JOURNAL OF IMMUNOLOGY 2004; 171:6119-27. [PMID: 14634127 DOI: 10.4049/jimmunol.171.11.6119] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Earlier studies, including our own, revealed that activation of mast cells is accompanied by production of reactive oxygen species (ROS) that help to mediate the release of the inflammatory mediators, including histamine and eicosanoids. However, little is known about the mechanisms of ROS production, including the species of oxidants produced. In this study we show that in both the RBL-2H3 mast cell line and bone marrow-derived mast cells, FcepsilonRI cross-linking stimulates intracellular oxidative burst, including hydrogen peroxide (H(2)O(2)) production, as defined with the oxidant-sensitive dyes dichlorofluorescein and scopoletin and the selective scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one). The oxidative burst was observed immediately after stimulation and was most likely due to an NAD(P)H oxidase. Experiments using selective pharmacological inhibitors demonstrated that activation of tyrosine kinases and phosphatidylinositol-3-kinase is required for induction of the oxidative burst. Blockade of the oxidative burst by diphenyleneiodonium impaired the release of preformed granular mediators, such as histamine and beta-hexosaminidase, and the secretion of newly synthesized leukotriene C(4), whereas selective scavenging H(2)O(2) by ebselen impaired leukotriene C(4) secretion, but not degranulation. Sustained elevation of cytosolic calcium through store-operated calcium entry was totally abolished when ROS production was blocked. In contrast, selective depletion of H(2)O(2) caused a considerable decrease and delay of the calcium response. Finally, tyrosine phosphorylation of phospholipase Cgamma and the linker for activation of T cells, an event required for calcium influx, was suppressed by diphenyleneiodonium and ebselen. These studies demonstrate that activation of the intracellular oxidative burst is an important regulatory mechanism of mast cell responses.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Sciences, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Frossi B, De Carli M, Pucillo C. The mast cell: an antenna of the microenvironment that directs the immune response. J Leukoc Biol 2004; 75:579-85. [PMID: 14726495 DOI: 10.1189/jlb.0603275] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mast cells (MCs) have long been considered as critical effector cells during immunoglobulin (Ig)E-mediated allergic disease and immune response to parasites. Recent studies, however, suggest that this understanding of MC function is incomplete and does not consider the complex roles that MCs play in adaptive and innate immunity. The added function gives an innovative vision of regulation of immune responses and the development of autoimmune diseases. It had been assumed that the aggregation of Fc epsilon receptor I with IgE and specific antigen is the main stimulus able to induce the MC activation, degranulation, release, and generation of mediators of the allergic reaction. However, MCs exhibit an array of molecules involved in cell-cell and cell-extracellular matrix adhesion, mediating delivery of costimulatory signals that empower those cells with an ability to react to multiple nonspecific and specific stimuli. Their tissue distribution and their capability to release many cytokines after stimulation indicate MCs as potential regulatory linkers between innate and acquired immunity. In this review, we will summarize some findings on the roles of MCs in innate and acquired immunity, on the molecular mechanism and signaling pathways, and on selective signals that induce discrete MC response and its ability to polarize adaptive-immune response.
Collapse
Affiliation(s)
- Barbara Frossi
- Dipartimento di Scienze e Tecnologie Biomediche, Università delgi Studi di Udine, Italy
| | | | | |
Collapse
|