Leposavić G, Perisić M, Kosec D, Arsenović-Ranin N, Radojević K, Stojić-Vukanić Z, Pilipović I. Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats.
Brain Behav Immun 2009;
23:294-304. [PMID:
19028560 DOI:
10.1016/j.bbi.2008.11.002]
[Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/19/2008] [Accepted: 11/02/2008] [Indexed: 12/27/2022] Open
Abstract
Exposure of female rodents to testosterone in the critical neonatal period produces defeminization/masculinization of the hypothalamo-pituitary-gonadal (HPG) axis, i.e. neonatal androgenization and postpones axis maturation. To address the hypothesis that HPG axis signaling is involved in the programming of thymic maturation/involution and sexual differentiation we studied the impact of neonatal androgenization on thymic cellularity, development of effector and regulatory T cells, and phenotypic characteristics of peripheral blood T lymphocytes in adult rats. A single injection of testosterone on postnatal day 2 postponed thymic maturation/involution as revealed by organ hypercellularity, increased cellularity of the most mature (CD4+CD8- and CD4-CD8+) TCRalphabeta(high) thymocyte and both recent thymic emigrant (RTE) subsets and caused phenotypic defeminization/masculinization of thymic (decreased CD4+CD8-TCRalphabeta(high)/CD4-CD8+TCRalphabeta(high) cell ratio) and peripheral blood T-cell compartments (decreased CD4+RTE/CD8+RTE and CD4+/CD8+ cell ratio). In addition, neonatal androgenization increased the relative and absolute numbers of both CD4+CD25+Foxp3+ and natural killer (NK) regulatory T cells in peripheral blood. These findings, in conjunction with thymocyte overexpression of Thy-1 that is assumed to reduce negative selection affecting self-reactive cell generation, suggest a new relationship between self-reactive and regulatory T cells. In conclusion, our study provides additional evidence for a role of HPG signals (i.e. sex steroids and gonadotropins) in programming the kinetics of thymic maturation/involution and in establishing immunological sexual dimorphism.
Collapse