1
|
Zhang J, Wang Y, Liu H, Lei Z, Cheng S, Cao H. The association between eight complete blood count-derived inflammatory markers and muscle health. Front Nutr 2025; 12:1498757. [PMID: 39963665 PMCID: PMC11830586 DOI: 10.3389/fnut.2025.1498757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Background Most studies have evaluated sarcopenia and muscle health solely based on muscle mass. This study comprehensively examined the associations between eight inflammatory indicators and muscle mass and strength, with the aim of identifying an indicator capable of evaluating muscle health across multiple dimensions. Methods This study included 10,440 participants from the National Health and Nutrition Examination Survey (NHANES, 2011-2018) and 5,384 participants from NHANES (2011-2014). Multivariate logistic regression, smooth curve fitting, restricted cubic spline (RCS) analysis, subgroup analysis, and Spearman's correlation were used to comprehensively assess the associations between the eight inflammatory indicators and muscle mass and strength. Receiver operating characteristic (ROC) curves were used to compare the predictive abilities of the different indices for low muscle mass and muscle strength. Additionally, NHANES data were cross-validated with data from 554 patients at our hospital to evaluate the ability of the systemic immune inflammatory index (SII) to distinguish between low muscle mass and strength. Results After controlling for all potential confounding factors, multiple logistic regression analysis revealed that apart from the platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and derived NLR (dNLR), the neutrophil-to-monocyte-plus-lymphocyte ratio (NMLR), neutrophil-to-lymphocyte ratio (NLR), SII, systemic inflammation response index (SIRI), and pan-immune-inflammation value (PIV) were significantly negatively correlated with muscle mass and strength. However, NMLR and NLR were significantly associated with changes in muscle mass only in Q4 (P < 0.05). In the stratified analysis by body mass index (BMI), only the SII, NLR, and NMLR were unaffected by BMI. In the cross-validation, the predictive performance of the SII for low muscle mass [area under the curve (AUC) = 0.699, 0.677, and 0.685] and low muscle strength (AUC = 0.857, 0.849, and 0.840) demonstrated a good reference value. RCS and smooth curve fitting analyses indicated that most inflammatory markers were linearly correlated with muscle health (P < 0.05). Conclusion Compared with other inflammatory markers (e.g., PIV and dNLR), the SII demonstrated a more robust predictive ability, was less influence by covariates, and exhibited high generalization performance in internal and external validation. SII may be crucial in identifying "hidden sarcopenia" and the early stages of muscle functional decline.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuqi Wang
- Department of Traumatic Orthopedics, Weifang Yidu Central Hospital, Shiyan, China
| | - Heng Liu
- Department of Urology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhuolin Lei
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Shouquan Cheng
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Hong Cao
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
2
|
Li Z, Bao X, Liu X, Wang Y, Zhu X, Zhang Y, Wang Z, Maslennikov S, Whiteside M, Wang W, Xu X, Li B, Luo Q, Li Y, Wang S, Hu B, Yang J. Transcriptome analysis provides preliminary insights into the response of Sepia esculenta to high salinity stress. AGRICULTURE COMMUNICATIONS 2024; 2:100064. [DOI: 10.1016/j.agrcom.2024.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Rudraprasad D, Joseph J. Proteomic landscape of extracellular vesicles in human retinal cells infected with Staphylococcus aureus and Pseudomonas aeruginosa: Role in endophthalmitis. Exp Cell Res 2023; 427:113604. [PMID: 37075825 DOI: 10.1016/j.yexcr.2023.113604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Extracellular Vesicles (EVs) have evolved as a promising entity for developing diagnostic and therapeutic biomarkers. We profiled global EV proteome of EVs from Human retinal cells (ARPE-19) infected with S. aureus and P. aeruginosa. EVs were isolated by ultracentrifugation and subjected to LC-MS/MS for proteome analysis. In S. aureus infection, sequest identified 864 proteins, of which 81 were differentially expressed in comparison to control. Similarly, in P. aeruginosa infection, of 516 proteins identified, 86 were differentially expressed. Additionally, 38 proteins were exclusive to infected sets. KEGG and Gene Ontology revealed crucial dysregulated pathways involving proteins such as complement cascades, annexins and calpain-2, all playing major role in the pathogenesis of the disease. This study provides insight into the global EV proteome of S. aureus and P. aeruginosa endophthalmitis with their functional correlation and distinctive pattern of expression. Calpain-2 and C8a are attractive biomarkers for bacterial endophthalmitis.
Collapse
Affiliation(s)
- Dhanwini Rudraprasad
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India; Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India; Ramoji Foundation Centre of Ocular Infections, L.V. Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Guenther C. β2-Integrins - Regulatory and Executive Bridges in the Signaling Network Controlling Leukocyte Trafficking and Migration. Front Immunol 2022; 13:809590. [PMID: 35529883 PMCID: PMC9072638 DOI: 10.3389/fimmu.2022.809590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Leukocyte trafficking is an essential process of immunity, occurring as leukocytes travel within the bloodstream and as leukocyte migration within tissues. While it is now established that leukocytes can utilize the mesenchymal migration mode or amoeboid migration mode, differences in the migratory behavior of leukocyte subclasses and how these are realized on a molecular level in each subclass is not fully understood. To outline these differences, first migration modes and their dependence on parameters of the extracellular environments will be explained, as well as the intracellular molecular machinery that powers migration in general. Extracellular parameters are detected by adhesion receptors such as integrins. β2-integrins are surface receptors exclusively expressed on leukocytes and are essential for leukocytes exiting the bloodstream, as well as in mesenchymal migration modes, however, integrins are dispensable for the amoeboid migration mode. Additionally, the balance of different RhoGTPases - which are downstream of surface receptor signaling, including integrins - mediate formation of membrane structures as well as actin dynamics. Individual leukocyte subpopulations have been shown to express distinct RhoGTPase profiles along with their differences in migration behavior, which will be outlined. Emerging aspects of leukocyte migration include signal transduction from integrins via actin to the nucleus that regulates DNA status, gene expression profiles and ultimately leukocyte migratory phenotypes, as well as altered leukocyte migration in tumors, which will be touched upon.
Collapse
Affiliation(s)
- Carla Guenther
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Formation of neutrophil extracellular traps requires actin cytoskeleton rearrangements. Blood 2022; 139:3166-3180. [PMID: 35030250 DOI: 10.1182/blood.2021013565] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022] Open
Abstract
Neutrophils are important effector cells in the host defense against invading micro-organisms. One of the mechanisms they employ to eliminate pathogens is the release of neutrophil extracellular traps (NETs). Although NET release and subsequent cell death known as NETosis have been intensively studied, the cellular components and factors determining or facilitating the formation of NETs remain incompletely understood. Using various actin polymerization and myosin II modulators on neutrophils from healthy individuals, we show that intact F-actin dynamics and myosin II function are essential for NET formation when induced by different stimuli, i.e. phorbol 12-myristate 13-acetate, monosodium urate crystals and Candida albicans. The role of actin polymerization in NET formation could not be explained by the lack of reactive oxygen species production or granule release, which were normal or enhanced under the given conditions. Neutrophils from patients with very rare inherited actin polymerization defects by either ARPC1B- or MKL1-deficiency also failed to show NETosis. We found that upon inhibition of actin dynamics there is a lack of translocation of NE to the nucleus, which may well explain the impaired NET formation. Collectively, our data illustrate the essential requirement of an intact and active actin polymerization process, as well as active myosin II to enable the release of nuclear DNA by neutrophils during NET formation.
Collapse
|
6
|
Zhiping LL, Ong LT, Chatterjee D, Tan SM, Bhattacharjya S. Binary and ternary complexes of FLNa-Ig21 with cytosolic tails of αMß2 integrin reveal dual role of filamin mediated regulation. Biochim Biophys Acta Gen Subj 2021; 1865:130005. [PMID: 34509570 DOI: 10.1016/j.bbagen.2021.130005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cytoskeletal protein filamin A is critical for the outside-in signaling of integrins. Although molecular mechanisms of filamin-integrin interactions are not fully understood. Mostly, the membrane distal (MD) part of the cytosolic tail (CT) of β subunit of integrin is known to interact with filamin A domain 21 (FLNa-Ig2). However, binary and ternary complexes of full-length CTs of leucocyte specific ß2 integrins with FLNa-Ig21 are yet to be elucidated. METHODS Binding interactions of the CTs of integrin αMß2 with FLNa-Ig21 are extensively investigated by NMR, ITC, cell-based functional assays and computational docking. RESULTS The αM CT demonstrates interactions with FLNa-Ig21 forming a binary complex. Filamin/αM interface is mediated by sidechain-sidechain interactions among non-polar and aromatic residues involving MP helix of αM and the canonical CD face of FLNa-Ig21. Functional assays delineated an interfacial residue Y1137 of αM CT is critical for in-cell binding to FLNa-Ig2. In addition, full-length ß2 CT occupies two distinct binding sites in complex with FLNa-Ig21. A ternary complex of FLNa-Ig21 with CTs has been characterized. In the ternary complex, αM CT moves away to a distal site of FLNa-Ig21 with fewer interactions. CONCLUSION Our findings demonstrate a plausible dual role of filamin in integrin regulation. The molecular interactions of the ternary complex are critical for the resting state of integrins whereas stable FLNa-Ig21/αM CT binary complex perhaps be required for the activated state. GENERAL SIGNIFICANCE Filamin binding to both α and β CTs of other integrins could be essential in regulating bidirectional signaling mechanisms.
Collapse
Affiliation(s)
- Lewis Lu Zhiping
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Li-Teng Ong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Deepak Chatterjee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
7
|
Tatsiy O, de Carvalho Oliveira V, Mosha HT, McDonald PP. Early and Late Processes Driving NET Formation, and the Autocrine/Paracrine Role of Endogenous RAGE Ligands. Front Immunol 2021; 12:675315. [PMID: 34616390 PMCID: PMC8488397 DOI: 10.3389/fimmu.2021.675315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophil extracellular trap (NET) formation has emerged as an important response against various pathogens; it also plays a role in chronic inflammation, autoimmunity, and cancer. Despite a growing understanding of the mechanisms underlying NET formation, much remains to be elucidated. We previously showed that in human neutrophils activated with different classes of physiological stimuli, NET formation features both early and late events that are controlled by discrete signaling pathways. However, the nature of these events has remained elusive. We now report that PAD4 inhibition only affects the early phase of NET generation, as do distinct signaling intermediates (TAK1, MEK, p38 MAPK). Accordingly, the inducible citrullination of residue R2 on histone H3 is an early neutrophil response that is regulated by these kinases; other arginine residues on histones H3 and H4 do not seem to be citrullinated. Conversely, elastase blockade did not affect NET formation by several physiological stimuli, though it did so in PMA-activated cells. Among belated events in NET formation, we found that chromatin decondensation is impaired by the inhibition of signaling pathways controlling both early and late stages of the phenomenon. In addition to chromatin decondensation, other late processes were uncovered. For instance, unstimulated neutrophils can condition themselves to be poised for rapid NET induction. Similarly, activated neutrophils release endogenous proteic factors that promote and largely mediate NET generation. Several such factors are known RAGE ligands and accordingly, RAGE inbibition largely prevents both NET formation and the conditioning of neutrophils to rapidly generate NETs upon stimulation. Our data shed new light on the cellular processes underlying NET formation, and unveil unsuspected facets of the phenomenon that could serve as therapeutic targets. In view of the involvement of NETs in both homeostasis and several pathologies, our findings are of broad relevance.
Collapse
Affiliation(s)
- Olga Tatsiy
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada
| | - Vanessa de Carvalho Oliveira
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada.,Department of Immunology and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Tshivuadi Mosha
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada.,Department of Immunology and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Patrick P McDonald
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Bouti P, Webbers SDS, Fagerholm SC, Alon R, Moser M, Matlung HL, Kuijpers TW. β2 Integrin Signaling Cascade in Neutrophils: More Than a Single Function. Front Immunol 2021; 11:619925. [PMID: 33679708 PMCID: PMC7930317 DOI: 10.3389/fimmu.2020.619925] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of β2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of β2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two β2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting β2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.
Collapse
Affiliation(s)
- Panagiota Bouti
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Steven D S Webbers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
10
|
Lamsoul I, Dupré L, Lutz PG. Molecular Tuning of Filamin A Activities in the Context of Adhesion and Migration. Front Cell Dev Biol 2020; 8:591323. [PMID: 33330471 PMCID: PMC7714767 DOI: 10.3389/fcell.2020.591323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
The dynamic organization of actin cytoskeleton meshworks relies on multiple actin-binding proteins endowed with distinct actin-remodeling activities. Filamin A is a large multi-domain scaffolding protein that cross-links actin filaments with orthogonal orientation in response to various stimuli. As such it plays key roles in the modulation of cell shape, cell motility, and differentiation throughout development and adult life. The essentiality and complexity of Filamin A is highlighted by mutations that lead to a variety of severe human disorders affecting multiple organs. One of the most conserved activity of Filamin A is to bridge the actin cytoskeleton to integrins, thereby maintaining the later in an inactive state. We here review the numerous mechanisms cells have developed to adjust Filamin A content and activity and focus on the function of Filamin A as a gatekeeper to integrin activation and associated adhesion and motility.
Collapse
Affiliation(s)
- Isabelle Lamsoul
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Loïc Dupré
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Pierre G Lutz
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
11
|
Pineau F, Caimmi D, Magalhães M, Fremy E, Mohamed A, Mely L, Leroy S, Murris M, Claustres M, Chiron R, De Sario A. Blood co-expression modules identify potential modifier genes of diabetes and lung function in cystic fibrosis. PLoS One 2020; 15:e0231285. [PMID: 32302349 PMCID: PMC7164665 DOI: 10.1371/journal.pone.0231285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/19/2020] [Indexed: 01/11/2023] Open
Abstract
Cystic fibrosis (CF) is a rare genetic disease that affects the respiratory and digestive systems. Lung disease is variable among CF patients and associated with the development of comorbidities and chronic infections. The rate of lung function deterioration depends not only on the type of mutations in CFTR, the disease-causing gene, but also on modifier genes. In the present study, we aimed to identify genes and pathways that (i) contribute to the pathogenesis of cystic fibrosis and (ii) modulate the associated comorbidities. We profiled blood samples in CF patients and healthy controls and analyzed RNA-seq data with Weighted Gene Correlation Network Analysis (WGCNA). Interestingly, lung function, body mass index, the presence of diabetes, and chronic P. aeruginosa infections correlated with four modules of co-expressed genes. Detailed inspection of networks and hub genes pointed to cell adhesion, leukocyte trafficking and production of reactive oxygen species as central mechanisms in lung function decline and cystic fibrosis-related diabetes. Of note, we showed that blood is an informative surrogate tissue to study the contribution of inflammation to lung disease and diabetes in CF patients. Finally, we provided evidence that WGCNA is useful to analyze–omic datasets in rare genetic diseases as patient cohorts are inevitably small.
Collapse
Affiliation(s)
- Fanny Pineau
- EA7402, Laboratoire de Génétique de Maladies Rares (LGMR), University of Montpellier, Montpellier, France
| | - Davide Caimmi
- CRCM, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Milena Magalhães
- EA7402, Laboratoire de Génétique de Maladies Rares (LGMR), University of Montpellier, Montpellier, France
| | - Enora Fremy
- EA7402, Laboratoire de Génétique de Maladies Rares (LGMR), University of Montpellier, Montpellier, France
| | - Abdillah Mohamed
- EA7402, Laboratoire de Génétique de Maladies Rares (LGMR), University of Montpellier, Montpellier, France
| | | | | | | | - Mireille Claustres
- EA7402, Laboratoire de Génétique de Maladies Rares (LGMR), University of Montpellier, Montpellier, France
- CHU Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France
| | - Raphael Chiron
- CRCM, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Albertina De Sario
- EA7402, Laboratoire de Génétique de Maladies Rares (LGMR), University of Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
12
|
Yonker LM, Hawley MH, Kinane TB. Do mesenchymal stromal cell infusions advance the understanding and treatment options of FLNA-associated pulmonary disease? Pediatr Pulmonol 2020; 55:270-271. [PMID: 31746552 DOI: 10.1002/ppul.24570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/26/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Lael M Yonker
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Megan H Hawley
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - T Bernard Kinane
- Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Activation and suppression of hematopoietic integrins in hemostasis and immunity. Blood 2020; 135:7-16. [DOI: 10.1182/blood.2019003336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Nolte and Margadant review the current understanding of the activation and inactivation of integrin receptors expressed by hematopoietic cells and the role of these conformational changes in modulating platelet and leukocyte function.
Collapse
|
14
|
Gupta S, Gangenahalli G. Analysis of molecular switch between leukocyte and substrate adhesion in bone marrow endothelial cells. Life Sci 2019; 238:116981. [DOI: 10.1016/j.lfs.2019.116981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 01/26/2023]
|
15
|
Proteomic, metabolic and immunological changes in Biomphalaria glabrata infected with Schistosoma mansoni. Int J Parasitol 2019; 49:1049-1060. [PMID: 31726057 DOI: 10.1016/j.ijpara.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022]
Abstract
Mansonic schistosomiasis is a neglected disease transmitted by Biomphalaria spp. snails. Understanding what happens inside the intermediate host is important to develop more efficient ways of reducing schistosomiasis prevalence. Our purpose was to characterize metabolic and immunological changes in Biomphalaria glabrata 24 h after exposure to Schistosoma mansoni. For this purpose, proteins were extracted from snails' whole tissue with Tris-Urea buffer and digested with tripsin. Mass spectrometry was performed and analyzed with MaxQuant and Perseus software. Also, the hemolymph of five snails 24 h post exposure was collected, and the numbers of hemocytes, levels of urea, uric acid, nitric oxide, calcium, glycogen and alanine and aspartate aminotransferases activities were assessed. Snails were also dissected for measurement of glycogen content in the cephalopodal region and gonoda-digestive gland complex. Globin domain proteins were found to be up-regulated; also the number of circulating hemocytes was significantly higher after 24 h of exposure to the parasite. NO levels were higher 24 h post exposure. Several proteins associated with energy metabolism were found to be up-regulated. Glycogen analysis showed a significant decrease in the gonad-digestive gland complex glycogen content. We found several proteins which seem to be associated with the host immune response, most of which were up-regulated, however some were down-regulated, which may represent an important clue in understanding B. glabrata - S. mansoni compatibility.
Collapse
|
16
|
Dong H, Li Y, Liu Y, Wen Y, Zou Z, Yang T, Cui Z, Shi D, Li Y. A nano-immunotraining strategy to enhance the tumor targeting of neutrophils via in vivo pathogen-mimicking stimulation. Biomater Sci 2019; 7:5238-5246. [PMID: 31602440 DOI: 10.1039/c9bm01278h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to unsatisfactory tumor-targeting efficiency, hitch-hiking nanomedicines with tumor "smelling" immune cells have rapidly evolved to achieve a more precision delivery. However, the current research tends to default to the smelling capacity of neutrophils and largely overlooks the capacity of those immune cells that are heavily dependent on the pathogen exposure history of individuals. By avoiding risky strategies, such as altering the housing environment of mice for the improved activity of immune cells, we propose a new concept of nano-immunotraining strategy to quickly activate neutrophil tumor tropism and thereby give an enhanced tumor-targeting capacity. Such a strategy involves a facile construction of a vaccine-like nano-CpG adjuvant, followed by pre-immunizing on mice periodically to mimic the pathogen exposure. The results demonstrated that a significantly enhanced tumor-targeting accumulation of neutrophils harvested from nano-immunotrained mice could be achieved, either by intraperitoneal or intravenous injection. This easily accessed, reproducible, and biosafe nano-immunotraining strategy holds a great promise for more precision delivery of nanomedicines.
Collapse
Affiliation(s)
- Haiqing Dong
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Yan Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Yiqiong Liu
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Ya Wen
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Zui Zou
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P.R. China.
| | - Tianshu Yang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Zheng Cui
- Department of Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27103, USA
| | - Donglu Shi
- The Materials Science and Engineering Program, Dept. of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Yongyong Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai 200092, P.R. China.
| |
Collapse
|
17
|
Li XC, Huang CX, Wu SK, Yu L, Zhou GJ, Chen LJ. Biological roles of filamin a in prostate cancer cells. Int Braz J Urol 2019; 45:916-924. [PMID: 31268639 PMCID: PMC6844337 DOI: 10.1590/s1677-5538.ibju.2018.0535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/14/2019] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE This study aims to investigate the association of filamin A with the function and morphology of prostate cancer (PCa) cells, and explore the role of filamin A in the development of PCa, in order to analyze its significance in the evolvement of PCa. MATERIALS AND METHODS A stably transfected cell line, in which filamin A expression was suppressed by RNA interference, was first established. Then, the effects of the suppression of filamin A gene expression on the biological characteristics of human PCa LNCaP cells were observed through cell morphology, in vitro cell growth curve, soft agar cloning assay, and scratch test. RESULTS A cell line model with a low expression of filamin A was successfully constructed on the basis of LNCaP cells. The morphology of cells transfected with plasmid pSilencer-filamin A was the following: Cells were loosely arranged, had less connection with each other, had fewer tentacles, and presented a fibrous look. The growth rate of LNCap cells was faster than cells transfected with plasmid pSilencer-filamin A (P<0.05). The clones of LNCap cells in the soft agar cloning assay was significantly fewer than that of cells stably transfected with plasmid pSilencer-filamin A (P<0.05). Cells stably transfected with plasmid pSilencer-filamin A presented with a stronger healing and migration ability compared to LNCap cells (healing rate was 32.2% and 12.1%, respectively; P<0.05). CONCLUSION The expression of the filamin A gene inhibited the malignant development of LNCap cells. Therefore, the filamin A gene may be a tumor suppressor gene.
Collapse
Affiliation(s)
- Xue-Chao Li
- Department of Urologythe Fifth Medical CenterChinese PLA General HospitalBeijingChinaDepartment of Urology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China;
| | - Chuan-Xi Huang
- College of Life ScienceHebei UniversityHebeiChinaCollege of Life Science, Hebei University, Hebei, China;
| | - Shi-Kui Wu
- Department of Urologythe Fifth Medical CenterChinese PLA General HospitalBeijingChinaDepartment of Urology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China;
| | - Lan Yu
- Laboratory of Medical Molecular BiologyBeijing Institute of BiotechnologyBeijingChinaLaboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Guang-Jian Zhou
- Laboratory of Medical Molecular BiologyBeijing Institute of BiotechnologyBeijingChinaLaboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Li-Jun Chen
- Department of Urologythe Fifth Medical CenterChinese PLA General HospitalBeijingChinaDepartment of Urology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China;
| |
Collapse
|
18
|
Fagerholm SC, Guenther C, Llort Asens M, Savinko T, Uotila LM. Beta2-Integrins and Interacting Proteins in Leukocyte Trafficking, Immune Suppression, and Immunodeficiency Disease. Front Immunol 2019; 10:254. [PMID: 30837997 PMCID: PMC6389632 DOI: 10.3389/fimmu.2019.00254] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Beta2-integrins are complex leukocyte-specific adhesion molecules that are essential for leukocyte (e.g., neutrophil, lymphocyte) trafficking, as well as for other immunological processes such as neutrophil phagocytosis and ROS production, and T cell activation. Intriguingly, however, they have also been found to negatively regulate cytokine responses, maturation, and migratory responses in myeloid cells such as macrophages and dendritic cells, revealing new, and unexpected roles of these molecules in immunity. Because of their essential role in leukocyte function, a lack of expression or function of beta2-integrins causes rare immunodeficiency syndromes, Leukocyte adhesion deficiency type I, and type III (LAD-I and LAD-III). LAD-I is caused by reduced or lost expression of beta2-integrins, whilst in LAD-III, beta2-integrins are expressed but dysfunctional because a major integrin cytoplasmic regulator, kindlin-3, is mutated. Interestingly, some LAD-related phenotypes such as periodontitis have recently been shown to be due to an uncontrolled inflammatory response rather than to an uncontrolled infection, as was previously thought. This review will focus on the recent advances concerning the regulation and functions of beta2-integrins in leukocyte trafficking, immune suppression, and immune deficiency disease.
Collapse
Affiliation(s)
- Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Liisa M Uotila
- Research Services, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Thome S, Begandt D, Pick R, Salvermoser M, Walzog B. Intracellular β 2 integrin (CD11/CD18) interacting partners in neutrophil trafficking. Eur J Clin Invest 2018; 48 Suppl 2:e12966. [PMID: 29896791 DOI: 10.1111/eci.12966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/10/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neutrophil recruitment during acute inflammation critically depends on the spatial and temporal regulation of β2 integrins (CD11/CD18). This regulation occurs by inside-out and outside-in signalling via interaction of cytoplasmic proteins with the intracellular domains of the integrin α- and β-subunits. The underlying molecular mechanisms regulating β2 integrins in neutrophils are still incompletely understood. AIM This review provides a comprehensive overview of our current knowledge on proteins interacting with the cytoplasmic tail of CD18, the conserved β-subunit of β2 integrins, their regulation and their functional importance for neutrophil trafficking during acute inflammation. RESULTS A total of 22 proteins including Talin, Kindlin 3 and Coronin 1A have been reported to interact with the CD18 cytoplasmic tail. Here, proteins binding to the cytoplasmic domain of CD18 in experiments using purified, recombinant proteins or peptides in, for example, pull-down assays, are defined as direct interactors. Proteins that have been shown to interact with the cytoplasmic domain of CD18 using whole cell lysates in, for example, pull-down experiments are claimed as interacting proteins without evidence for direct interaction. In summary, β2 integrin activation and signalling depend on a specific subset of proteins interacting with CD18 and their precise regulation. If disturbed, profound defects of neutrophil recruitment and activation become evident compromising the innate immune response. CONCLUSIONS The knowledge of proteins interacting with β2 integrins and their regulation during neutrophil trafficking does not only improve our basic understanding of innate immunity but may pave the way to novel therapeutic strategies in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Sarah Thome
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Daniela Begandt
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Robert Pick
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Melanie Salvermoser
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Barbara Walzog
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|