1
|
Wang X, Guo Z, Xia Y, Wang X, Wang Z. Research Progress on the Immune Function of Liver Sinusoidal Endothelial Cells in Sepsis. Cells 2025; 14:373. [PMID: 40072101 PMCID: PMC11899273 DOI: 10.3390/cells14050373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Sepsis is a complex clinical syndrome closely associated with the occurrence of acute organ dysfunction and is often characterized by high mortality. Due to the rapid progression of sepsis, early diagnosis and intervention are crucial. Recent research has focused on exploring the pathological response involved in the process of sepsis. Liver sinusoidal endothelial cells (LSECs) are a special type of endothelial cell and an important component of liver non-parenchymal cells. Unlike general endothelial cells, which mainly provide a barrier function within the body, LSECs also have important functions in the clearance and regulation of the immune response. LSECs are not only vital antigen-presenting cells (APCs) in the immune system but also play a significant role in the development of infectious diseases and tumors through their specific immune regulatory pathways. However, in certain disease states, the functions of LSECs may be impaired, leading to immune imbalance and the development of organ failure. Investigating the immune pathways of LSECs in sepsis may provide new solutions for the prevention and treatment of sepsis and is crucial for maintaining microcirculation and improving patient outcomes.
Collapse
Affiliation(s)
- Xinrui Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Y.X.)
| | - Zhe Guo
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China;
| | - Yuxiang Xia
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Y.X.)
| | - Xuesong Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Y.X.)
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China;
| | - Zhong Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Y.X.)
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
2
|
Mo H, Yue P, Li Q, Tan Y, Yan X, Liu X, Xu Y, Luo Y, Palihati S, Yi C, Zhang H, Yuan M, Yang B. The role of liver sinusoidal endothelial cells in metabolic dysfunction-associated steatotic liver diseases and liver cancer: mechanisms and potential therapies. Angiogenesis 2025; 28:14. [PMID: 39899173 DOI: 10.1007/s10456-025-09969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs), with their unique morphology and function, have garnered increasing attention in chronic liver disease research. This review summarizes the critical roles of LSECs under physiological conditions and in two representative chronic liver diseases: metabolic dysfunction-associated steatotic liver disease (MASLD) and liver cancer. Under physiological conditions, LSECs act as selective barriers, regulating substance exchange and hepatic blood flow. Interestingly, LSECs exhibit contrasting roles at different stages of disease progression: in the early stages, they actively resist disease advancement and help restore sinusoidal homeostasis; whereas in later stages, they contribute to disease worsening. During this transition, LSECs undergo capillarization, lose their characteristic markers, and become dysfunctional. As the disease progresses, LSECs closely interact with hepatocytes, hepatic stellate cells, various immune cells, and tumor cells, driving processes such as steatosis, inflammation, fibrosis, angiogenesis, and carcinogenesis. Consequently, targeting LSECs represents a promising therapeutic strategy for chronic liver diseases. Relevant therapeutic targets and potential drugs are summarized in this review.
Collapse
Affiliation(s)
- Hanjun Mo
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Pengfei Yue
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qiaoqi Li
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yinxi Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xinran Yan
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Medical Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Suruiya Palihati
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cheng Yi
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, China.
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, 610041, China.
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| | - Biao Yang
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Roser LA, Sakellariou C, Lindstedt M, Neuhaus V, Dehmel S, Sommer C, Raasch M, Flandre T, Roesener S, Hewitt P, Parnham MJ, Sewald K, Schiffmann S. IL-2-mediated hepatotoxicity: knowledge gap identification based on the irAOP concept. J Immunotoxicol 2024; 21:2332177. [PMID: 38578203 DOI: 10.1080/1547691x.2024.2332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | | | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | - Thierry Flandre
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Sigrid Roesener
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals ehf, Reykjavík, Iceland
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | |
Collapse
|
4
|
Sharma P, Arora A. Basic Understanding of Liver Transplant Immunology. J Clin Exp Hepatol 2023; 13:1091-1102. [PMID: 37975047 PMCID: PMC10643508 DOI: 10.1016/j.jceh.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/14/2023] [Indexed: 11/19/2023] Open
Abstract
The liver is a specialized organ and plays an important role in our immune system. The liver constitutes parenchymal cells which are hepatocytes and cholangiocytes (60-80%) and non-parenchymal cells like liver sinusoidal endothelial cells (LSECs), hepatic satellite/Ito cells, Kupffer cells, neutrophils, mononuclear cells, T and B lymphocytes (conventional and non-conventional), natural killer cells, and natural killer T (NKT) cells. The liver mounts a rapid and strong immune response, under unfavorable conditions and acts as an immune tolerance to a variety of non-pathogenic antigens. This delicate and dynamic interaction between different kinds of immune cells in the liver maintains a balance between immune screening and immune tolerance. The liver allografts are privileged immunologically; however, allograft rejection is not uncommon and is classified as cell or antibody-mediated. Advancements in transplant immunology help in the prevention of allografts rejection by immune reactions of the host thus leading to better graft and host survival. Fewer patients may not require immunosuppression due to systemic donor-specific T-cell tolerance. The liver tolerance mechanism is poorly studied, and LSEC and unconventional lymphocytes play an important role that dampens T cell response either by inducing apoptosis of cells or inhibiting co-stimulatory pathways. Newer cell-based therapy based on Treg, dendritic cells, and mesenchymal stromal cells will probably change the future of immunosuppression. Various invasive and non-invasive biomarkers and artificial intelligence have also been investigated to predict graft survival, post-transplant complications, and immunotolerance in the future.
Collapse
Affiliation(s)
- Praveen Sharma
- Department of Gastroenterology, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil Arora
- Department of Gastroenterology and Hepatology, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
5
|
Tran NL, Ferreira LM, Alvarez-Moya B, Buttiglione V, Ferrini B, Zordan P, Monestiroli A, Fagioli C, Bezzecchi E, Scotti GM, Esposito A, Leone R, Gnasso C, Brendolan A, Guidotti LG, Sitia G. Continuous sensing of IFNα by hepatic endothelial cells shapes a vascular antimetastatic barrier. eLife 2022; 11:e80690. [PMID: 36281643 PMCID: PMC9596162 DOI: 10.7554/elife.80690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs). Moreover, IFNα endowed LSECs with efficient cross-priming potential that, along with the early intravascular tumor burden reduction, supported the generation of antitumor CD8+ T cells and ultimately led to the establishment of a protective long-term memory T cell response. These findings provide a rationale for the use of continuous IFNα therapy in perioperative settings to reduce CRC metastatic spreading to the liver.
Collapse
Affiliation(s)
- Ngoc Lan Tran
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Lorena Maria Ferreira
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Blanca Alvarez-Moya
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Valentina Buttiglione
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Barbara Ferrini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Paola Zordan
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita-Salute San Raffaele UniversityMilanItaly
| | - Andrea Monestiroli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Claudio Fagioli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | | | | | - Antonio Esposito
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Riccardo Leone
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Chiara Gnasso
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Andrea Brendolan
- Division of Experimental Oncology, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita-Salute San Raffaele UniversityMilanItaly
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
6
|
Chai LF, Hardaway JC, Heatherton KR, O'Connell KP, LaPorte JP, Guha P, Lopes MC, Rabinowitz BA, Jaroch D, Cox BF, Knight R, Katz SC. Regional Delivery of CAR-T Effectively Controls Tumor Growth in Colorectal Liver Metastasis Model. J Surg Res 2021; 272:37-50. [PMID: 34929499 DOI: 10.1016/j.jss.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Effective treatment of solid tumors requires multi-modality approaches. In many patients with stage IV liver disease, current treatments are not curative. Chimeric antigen receptor T cells (CAR-T) are an intriguing option following success in hematological malignancies, but this has not been translated to solid tumors. Limitations include sub-optimal delivery and elevated interstitial fluid pressures. We developed a murine model to test the impact of high-pressure regional delivery (HPRD) on trafficking to liver metastases (LM) and tumor response. MATERIALS AND METHODS CAR-T were generated from CD45.1 mice and adoptively transferred into LM-bearing CD45.2 mice via regional or systemic delivery (RD, SD). Trafficking, tumor growth, and toxicity were evaluated with flow cytometry, tumor bioluminescence (TB, photons/sec log2-foldover baseline), and liver function tests (LFTs). RESULTS RD of CAR-T was more effective at controlling tumor growth versus SD from post-treatment days (PTD) 2-7 (P = 0.002). HPRD resulted in increased CAR-T penetration versus low-pressure RD (LPRD, P = 0.004), suppression of tumor proliferation (P = 0.03), and trended toward improved long-term control at PTD17 (TB=3.7 versus 6.1, P = 0.47). No LFT increase was noted utilizing HPRD versus LPRD (AST/ALT P = 0.65/0.84) while improved LFTs in RD versus SD groups suggested better tumor control (HPRD AST/ALT P = 0.04/0.04, LPRD AST/ALT P = 0.02/0.02). CONCLUSIONS Cellular immunotherapy is an emerging option for solid tumors. Our model suggests RD and HPRD improved CAR-T penetration into solid tumors with improved short-term tumor control. Barriers associated with SD can be overcome using RD techniques to maximize therapeutic delivery and HPRD may further augment efficacy without increased toxicity.
Collapse
Affiliation(s)
- Louis F Chai
- Roger Williams Medical Center, Immuno-oncology Institute and Department of Medicine, Providence Rhode Island.
| | - John C Hardaway
- Roger Williams Medical Center, Immuno-oncology Institute and Department of Medicine, Providence Rhode Island
| | - Kara R Heatherton
- Roger Williams Medical Center, Immuno-oncology Institute and Department of Medicine, Providence Rhode Island
| | - Kyle P O'Connell
- Roger Williams Medical Center, Immuno-oncology Institute and Department of Medicine, Providence Rhode Island
| | - Jason P LaPorte
- Roger Williams Medical Center, Immuno-oncology Institute and Department of Medicine, Providence Rhode Island
| | - Prajna Guha
- Roger Williams Medical Center, Immuno-oncology Institute and Department of Medicine, Providence Rhode Island
| | - Mikayla C Lopes
- Roger Williams Medical Center, Immuno-oncology Institute and Department of Medicine, Providence Rhode Island
| | - Benjamin A Rabinowitz
- Roger Williams Medical Center, Immuno-oncology Institute and Department of Medicine, Providence Rhode Island
| | - David Jaroch
- TriSalus Life Sciences, Inc, Westminster, Colorado
| | - Bryan F Cox
- TriSalus Life Sciences, Inc, Westminster, Colorado
| | | | - Steven C Katz
- Roger Williams Medical Center, Immuno-oncology Institute and Department of Medicine, Providence Rhode Island; Boston University Medical Center, Department of Surgery, Boston Massachusetts
| |
Collapse
|
7
|
Muscate F, Woestemeier A, Gagliani N. Functional heterogeneity of CD4 + T cells in liver inflammation. Semin Immunopathol 2021; 43:549-561. [PMID: 34463867 PMCID: PMC8443520 DOI: 10.1007/s00281-021-00881-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
CD4+ T cells play an essential role in orchestrating adequate immunity, but their overactivity has been associated with the development of immune-mediated inflammatory diseases, including liver inflammatory diseases. These cells can be subclassified according to their maturation stage, cytokine profile, and pro or anti-inflammatory functions, i.e., functional heterogeneity. In this review, we summarize what has been discovered so far regarding the role of the different CD4+ T cell polarization states in the progression of two prominent and still different liver inflammatory diseases: non-alcoholic steatohepatitis (NASH) and autoimmune hepatitis (AIH). Finally, the potential of CD4+ T cells as a therapeutic target in both NASH and AIH is discussed.
Collapse
Affiliation(s)
- Franziska Muscate
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Abstract
Liver sinusoidal endothelial cells (LSECs) form the wall of the hepatic sinusoids. Unlike other capillaries, they lack an organized basement membrane and have cytoplasm that is penetrated by open fenestrae, making the hepatic microvascular endothelium discontinuous. LSECs have essential roles in the maintenance of hepatic homeostasis, including regulation of the vascular tone, inflammation and thrombosis, and they are essential for control of the hepatic immune response. On a background of acute or chronic liver injury, LSECs modify their phenotype and negatively affect neighbouring cells and liver disease pathophysiology. This Review describes the main functions and phenotypic dysregulations of LSECs in liver diseases, specifically in the context of acute injury (ischaemia-reperfusion injury, drug-induced liver injury and bacterial and viral infection), chronic liver disease (metabolism-associated liver disease, alcoholic steatohepatitis and chronic hepatotoxic injury) and hepatocellular carcinoma, and provides a comprehensive update of the role of LSECs as therapeutic targets for liver disease. Finally, we discuss the open questions in the field of LSEC pathobiology and future avenues of research.
Collapse
|
9
|
A cell based assay for evaluating binding and uptake of an antibody using hepatic nonparenchymal cells. Sci Rep 2021; 11:8383. [PMID: 33863984 PMCID: PMC8052349 DOI: 10.1038/s41598-021-87912-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 11/08/2022] Open
Abstract
Evaluation of the binding and uptake of an antibody in liver non-parenchymal cells (NPC), including liver sinusoidal endothelial cells, is important for revealing its pharmacokinetic (PK) behavior, since NPC has important roles in eliminating an antibody from the blood via the Fc fragment of IgG receptor IIB (FcγRIIB). However, there is currently no in vitro quantitative assay using NPC. This study reports on the development of a cell-based assay for evaluating the binding and uptake of such an antibody using liver NPC of mice and monkeys. In mice, the FcγRIIB-expressing cells were identified in the CD146-positive and CD45-negative fraction by flow cytometry. A titration assay was performed to determine the PK parameters, and the obtained parameter was comparable to that determined by the fitting of the in vivo PK. This approach was also extended to NPC from monkeys. The concentration-dependent binding and uptake was measured to determine the PK parameters using monkey NPC, the FcγRIIB-expressing fraction of which was identified by CD31 and CD45. The findings presented herein demonstrate that the in vitro liver NPC assay using flow cytometry is a useful tool to determine the binding and uptake of biologics and to predict the PK.
Collapse
|
10
|
Valenzuela NM. IFNγ, and to a Lesser Extent TNFα, Provokes a Sustained Endothelial Costimulatory Phenotype. Front Immunol 2021; 12:648946. [PMID: 33936069 PMCID: PMC8082142 DOI: 10.3389/fimmu.2021.648946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
Background Vascular endothelial cells (EC) are critical for regulation of local immune responses, through coordination of leukocyte recruitment from the blood and egress into the tissue. Growing evidence supports an additional role for endothelium in activation and costimulation of adaptive immune cells. However, this function remains somewhat controversial, and the full repertoire and durability of an enhanced endothelial costimulatory phenotype has not been wholly defined. Methods Human endothelium was stimulated with continuous TNFα or IFNγ for 1-48hr; or primed with TNFα or IFNγ for only 3hr, before withdrawal of stimulus for up to 45hr. Gene expression of cytokines, costimulatory molecules and antigen presentation molecules was measured by Nanostring, and publicly available datasets of EC stimulation with TNFα or IFNγ were leveraged to further corroborate the results. Cell surface protein expression was detected by flow cytometry, and secretion of cytokines was assessed by Luminex and ELISA. Key findings were confirmed in primary human endothelial cells from 4-6 different vascular beds. Results TNFα triggered mostly positive immune checkpoint molecule expression on endothelium, including CD40, 4-1BB, and ICOSLG but in the context of only HLA class I and immunoproteasome subunits. IFNγ promoted a more tolerogenic phenotype of high PD-L1 and PD-L2 expression with both HLA class I and class II molecules and antigen processing genes. Both cytokines elicited secretion of IL-15 and BAFF/BLyS, with TNFα stimulated EC additionally producing IL-6, TL1A and IL-1β. Moreover, endothelium primed for a short period (3hr) with TNFα mostly failed to alter the costimulatory phenotype 24-48hr later, with only somewhat augmented expression of HLA class I. In contrast, brief exposure to IFNγ was sufficient to cause late expression of antigen presentation, cytokines and costimulatory molecules. In particular HLA class I, PD-1 ligand and cytokine expression was markedly high on endothelium two days after IFNγ was last present. Conclusions Endothelia from multiple vascular beds possess a wide range of other immune checkpoint molecules and cytokines that can shape the adaptive immune response. Our results further demonstrate that IFNγ elicits prolonged signaling that persists days after initiation and is sufficient to trigger substantial gene expression changes and immune phenotype in vascular endothelium.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Ellias SD, Larson EL, Taner T, Nyberg SL. Cell-Mediated Therapies to Facilitate Operational Tolerance in Liver Transplantation. Int J Mol Sci 2021; 22:4016. [PMID: 33924646 PMCID: PMC8069094 DOI: 10.3390/ijms22084016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapies using immune cells or non-parenchymal cells of the liver have emerged as potential treatments to facilitate immunosuppression withdrawal and to induce operational tolerance in liver transplant (LT) recipients. Recent pre-clinical and clinical trials of cellular therapies including regulatory T cells, regulatory dendritic cells, and mesenchymal cells have shown promising results. Here we briefly summarize current concepts of cellular therapy for induction of operational tolerance in LT recipients.
Collapse
Affiliation(s)
- Samia D. Ellias
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; (S.D.E.); (E.L.L.); (T.T.)
| | - Ellen L. Larson
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; (S.D.E.); (E.L.L.); (T.T.)
| | - Timucin Taner
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; (S.D.E.); (E.L.L.); (T.T.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott L. Nyberg
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; (S.D.E.); (E.L.L.); (T.T.)
| |
Collapse
|
12
|
Turman JM, Cheplowitz AM, Tiwari C, Thomas T, Joshi D, Bhat M, Wu Q, Pong E, Chu SY, Szymkowski DE, Sharma A, Seveau S, Robinson JM, Kwiek JJ, Burton D, Rajaram MVS, Kim J, Hangartner L, Ganesan LP. Accelerated Clearance and Degradation of Cell-Free HIV by Neutralizing Antibodies Occurs via FcγRIIb on Liver Sinusoidal Endothelial Cells by Endocytosis. THE JOURNAL OF IMMUNOLOGY 2021; 206:1284-1296. [PMID: 33568400 DOI: 10.4049/jimmunol.2000772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023]
Abstract
Neutralizing Abs suppress HIV infection by accelerating viral clearance from blood circulation in addition to neutralization. The elimination mechanism is largely unknown. We determined that human liver sinusoidal endothelial cells (LSEC) express FcγRIIb as the lone Fcγ receptor, and using humanized FcγRIIb mouse, we found that Ab-opsonized HIV pseudoviruses were cleared considerably faster from circulation than HIV by LSEC FcγRIIb. Compared with humanized FcγRIIb-expressing mice, HIV clearance was significantly slower in FcγRIIb knockout mice. Interestingly, a pentamix of neutralizing Abs cleared HIV faster compared with hyperimmune anti-HIV Ig (HIVIG), although the HIV Ab/Ag ratio was higher in immune complexes made of HIVIG and HIV than pentamix and HIV. The effector mechanism of LSEC FcγRIIb was identified to be endocytosis. Once endocytosed, both Ab-opsonized HIV pseudoviruses and HIV localized to lysosomes. This suggests that clearance of HIV, endocytosis, and lysosomal trafficking within LSEC occur sequentially and that the clearance rate may influence downstream events. Most importantly, we have identified LSEC FcγRIIb-mediated endocytosis to be the Fc effector mechanism to eliminate cell-free HIV by Abs, which could inform development of HIV vaccine and Ab therapy.
Collapse
Affiliation(s)
- James M Turman
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Alana M Cheplowitz
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Charu Tiwari
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Thushara Thomas
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Dhruvi Joshi
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Menakshi Bhat
- Center for Retrovirus Research, Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | | | | | | | - Amit Sharma
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - John M Robinson
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Jesse J Kwiek
- Center for Retrovirus Research, Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Dennis Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| | - Lars Hangartner
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Latha P Ganesan
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
13
|
Wilkinson AL, Qurashi M, Shetty S. The Role of Sinusoidal Endothelial Cells in the Axis of Inflammation and Cancer Within the Liver. Front Physiol 2020; 11:990. [PMID: 32982772 PMCID: PMC7485256 DOI: 10.3389/fphys.2020.00990] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) form a unique barrier between the liver sinusoids and the underlying parenchyma, and thus play a crucial role in maintaining metabolic and immune homeostasis, as well as actively contributing to disease pathophysiology. Whilst their endocytic and scavenging function is integral for nutrient exchange and clearance of waste products, their capillarisation and dysfunction precedes fibrogenesis. Furthermore, their ability to promote immune tolerance and recruit distinct immunosuppressive leukocyte subsets can allow persistence of chronic viral infections and facilitate tumour development. In this review, we present the immunological and barrier functions of LSEC, along with their role in orchestrating fibrotic processes which precede tumourigenesis. We also summarise the role of LSEC in modulating the tumour microenvironment, and promoting development of a pre-metastatic niche, which can drive formation of secondary liver tumours. Finally, we summarise closely inter-linked disease pathways which collectively perpetuate pathogenesis, highlighting LSEC as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Costa Verdera H, Kuranda K, Mingozzi F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther 2020; 28:723-746. [PMID: 31972133 PMCID: PMC7054726 DOI: 10.1016/j.ymthe.2019.12.010] [Citation(s) in RCA: 437] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gene therapy with adeno-associated virus (AAV) vectors has demonstrated safety and long-term efficacy in a number of trials across target organs, including eye, liver, skeletal muscle, and the central nervous system. Since the initial evidence that AAV vectors can elicit capsid T cell responses in humans, which can affect the duration of transgene expression, much progress has been made in understanding and modulating AAV vector immunogenicity. It is now well established that exposure to wild-type AAV results in priming of the immune system against the virus, with development of both humoral and T cell immunity. Aside from the neutralizing effect of antibodies, the impact of pre-existing immunity to AAV on gene transfer is still poorly understood. Herein, we review data emerging from clinical trials across a broad range of gene therapy applications. Common features of immune responses to AAV can be found, suggesting, for example, that vector immunogenicity is dose-dependent, and that innate immunity plays an important role in the outcome of gene transfer. A range of host-specific factors are also likely to be important, and a comprehensive understanding of the mechanisms driving AAV vector immunogenicity in humans will be key to unlocking the full potential of in vivo gene therapy.
Collapse
Affiliation(s)
- Helena Costa Verdera
- Genethon and INSERM U951, 91000 Evry, France; Sorbonne Université and INSERM U974, 75013 Paris, France
| | | | - Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; Spark Therapeutics, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
HITM-SIR: phase Ib trial of intraarterial chimeric antigen receptor T-cell therapy and selective internal radiation therapy for CEA + liver metastases. Cancer Gene Ther 2019; 27:341-355. [PMID: 31155611 DOI: 10.1038/s41417-019-0104-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/27/2019] [Indexed: 02/06/2023]
Abstract
Effective chimeric antigen receptor-modified T-cell (CAR-T) therapy for liver metastases (LM) will require innovative solutions to ensure efficient delivery and minimization of systemic toxicity. We previously demonstrated the safety of CAR-T hepatic artery infusions (HAI). We subsequently conducted the phase 1b HITM-SIR trial, in which six patients (pts) with CEA+ LM received anti-CEA CAR-T HAIs and selective internal radiation therapy (SIRT). The primary endpoint was safety with secondary assessments of biologic activity. Enrolled pts had a mean LM size of 6.4 cm, 4 pts had >10 LM, and pts received an average of two lines of prior systemic therapy. No grade 4 or 5 toxicities were observed, and there were no instances of severe cytokine-release syndrome (CRS) or neurotoxicity. The mean transduction efficiency was 60.4%. Following CAR-T HAI, reduced levels of GM-CSF-R, IDO, and PD-L1 were detected in LM, and serum CEA levels were stable or decreased in all subjects. Median survival time was 8 months (mean 11, range 4-31). Anti-CEA CAR-T HAI with subsequent SIRT was well tolerated, and biologic responses were demonstrated following failure of conventional therapy. HAI of CAR-T was once again confirmed not to be associated with severe CRS or neurotoxicity.
Collapse
|
16
|
Zhongqi F, Xiaodong S, Yuguo C, Guoyue L. Can Combined Therapy Benefit Immune Checkpoint Blockade Response in Hepatocellular Carcinoma? Anticancer Agents Med Chem 2019; 19:222-228. [PMID: 30426903 DOI: 10.2174/1871520618666181114112431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/24/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
Background:
Hepatocellular Carcinoma (HCC) is one of the most common cancers with high mortality
rate. The effects of most therapies are limited. The Immune Checkpoint Blockade (ICB) improves the prognosis
in multiple malignancies. The application of immune checkpoint blockade to hepatocellular carcinoma
patients has recently started. Early phase clinical trials have shown some benefits to cancer patients.
Methods/Results:
This review focuses on the immune system of liver and clinical trials of ICB. In particular, we
analyze the mechanisms by which immune checkpoint blockade therapies can be used for the treatment of hepatocellular
carcinoma patients, then examine the factors in cancer resistance to the therapies and finally suggest
possible combination therapies for the treatment of hepatocellular carcinoma patients.
Conclusion:
ICB is a promising therapy for advanced HCC patients. Combined therapy exhibits a great potential
to enhance ICB response in these patients. The better understanding of the factors influencing the sensitivity
of ICB and more clinical trials will consolidate the efficiency and minimize the adverse effects of ICB.
Collapse
Affiliation(s)
- Fan Zhongqi
- First Department of Hepatobiliary & Pancreas Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Sun Xiaodong
- First Department of Hepatobiliary & Pancreas Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Chen Yuguo
- First Department of Hepatobiliary & Pancreas Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lv Guoyue
- First Department of Hepatobiliary & Pancreas Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
17
|
Chen Y, E CY, Gong ZW, Liu S, Wang ZX, Yang YS, Zhang XW. Chimeric antigen receptor-engineered T-cell therapy for liver cancer. Hepatobiliary Pancreat Dis Int 2018; 17:301-309. [PMID: 29861325 DOI: 10.1016/j.hbpd.2018.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/09/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Chimeric antigen receptor-engineered T-cell (CAR-T) therapy is a newly developed immunotherapy used in the treatment of cancers. Because CAR-T therapy has shown great success in treating CD19-positive hematological malignancies, its application has been explored in the treatment of solid tumors, such as liver cancer. In this review, we discuss the immune characteristics of liver cancer, the obstacles encountered during the application of CAR-T therapy, and preclinical and clinical progress in the use of CAR-T therapy in patients with liver cancer. DATA SOURCES The data on CAR-T therapy related to liver cancers were collected by searching PubMed and the Web of Science databases prior to December 2017 with the keywords "chimeric antigen receptor", "CAR-T", "liver cancer", "hepatocellular carcinoma", and "solid tumor". Additional articles were identified by manual search of references found in the primary articles. The data for clinical trials were collected by searching ClinicalTrials.gov. RESULTS The liver has a tolerogenic nature in the intrahepatic milieu and its tumor microenvironment significantly affects tumor progression. The obstacles that reduce the efficacy of CAR-T therapy in solid tumors include a lack of specific tumor antigens, limited trafficking and penetration of CAR-T cells to tumor sites, and an immunosuppressive tumor microenvironment. To overcome these obstacles, several strategies have emerged. In addition, several strategies have been developed to manage the side effects of CAR-T, including enhancing the selectivity of CARs and controlling CAR-T activity. To date, no clinical trials of CAR-T therapy against HCC have been completed. However, preclinical studies in vitro and in vivo have shown potent antitumor efficacy. Glypican-3, mucin-1, epithelial cell adhesion molecule, carcinoembryonic antigen, and other targets are currently being studied. CONCLUSIONS The application of CAR-T therapy for liver cancer is just beginning to be explored and more research is needed. However, we are optimistic that CAR-T therapy will offer a new approach for the treatment of liver cancers in the future.
Collapse
Affiliation(s)
- Yang Chen
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun 130041, China
| | - Chang-Yong E
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Zhi-Wen Gong
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun 130041, China
| | - Shui Liu
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun 130041, China
| | - Zhen-Xiao Wang
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun 130041, China
| | - Yong-Sheng Yang
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun 130041, China
| | - Xue-Wen Zhang
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
18
|
Tegge AN, Rodrigues RR, Larkin AL, Vu L, Murali TM, Rajagopalan P. Transcriptomic Analysis of Hepatic Cells in Multicellular Organotypic Liver Models. Sci Rep 2018; 8:11306. [PMID: 30054499 PMCID: PMC6063915 DOI: 10.1038/s41598-018-29455-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
Liver homeostasis requires the presence of both parenchymal and non-parenchymal cells (NPCs). However, systems biology studies of the liver have primarily focused on hepatocytes. Using an organotypic three-dimensional (3D) hepatic culture, we report the first transcriptomic study of liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) cultured with hepatocytes. Through computational pathway and interaction network analyses, we demonstrate that hepatocytes, LSECs and KCs have distinct expression profiles and functional characteristics. Our results show that LSECs in the presence of KCs exhibit decreased expression of focal adhesion kinase (FAK) signaling, a pathway linked to LSEC dedifferentiation. We report the novel result that peroxisome proliferator-activated receptor alpha (PPARα) is transcribed in LSECs. The expression of downstream processes corroborates active PPARα signaling in LSECs. We uncover transcriptional evidence in LSECs for a feedback mechanism between PPARα and farnesoid X-activated receptor (FXR) that maintains bile acid homeostasis; previously, this feedback was known occur only in HepG2 cells. We demonstrate that KCs in 3D liver models display expression patterns consistent with an anti-inflammatory phenotype when compared to monocultures. These results highlight the distinct roles of LSECs and KCs in maintaining liver function and emphasize the need for additional mechanistic studies of NPCs in addition to hepatocytes in liver-mimetic microenvironments.
Collapse
Affiliation(s)
- Allison N Tegge
- Department of Computer Science, Virginia Tech, Blacksburg, USA
- Department of Statistics, Virginia Tech, Blacksburg, USA
| | - Richard R Rodrigues
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, USA
| | - Adam L Larkin
- Department of Chemical Engineering, Virginia Tech, Blacksburg, USA
| | - Lucas Vu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, USA
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, USA.
- ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, USA.
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, USA.
- ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
19
|
Abstract
This update focuses on two main topics. First, recent developments in our understanding of liver sinusoidal endothelial cell (LSEC) function will be reviewed, specifically elimination of blood-borne waste, immunological function of LSECs, interaction of LSECs with liver metastases, LSECs and liver regeneration, and LSECs and hepatic fibrosis. Second, given the current emphasis on rigor and transparency in biomedical research, the update discusses the need for standardization of methods to demonstrate identity and purity of isolated LSECs, pitfalls in methods that might lead to a selection bias in the types of LSECs isolated, and questions about long-term culture of LSECs. Various surface markers used for immunomagnetic selection are reviewed.
Collapse
Affiliation(s)
- Laurie D. DeLeve
- Division of Gastrointestinal and Liver Diseases and the USC Research Center for Liver Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ana C. Maretti-Mira
- Division of Gastrointestinal and Liver Diseases and the USC Research Center for Liver Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
20
|
Proteomic Analysis Reveals Dab2 Mediated Receptor Endocytosis Promotes Liver Sinusoidal Endothelial Cell Dedifferentiation. Sci Rep 2017; 7:13456. [PMID: 29044176 PMCID: PMC5647404 DOI: 10.1038/s41598-017-13917-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/29/2017] [Indexed: 01/16/2023] Open
Abstract
Sinusoidal dedifferentiation is a complicated process induced by several factors, and exists in early stage of diverse liver diseases. The mechanism of sinusoidal dedifferentiation is poorly unknown. In this study, we established a NaAsO2-induced sinusoidal dedifferentiation mice model. Liver sinusoidal endothelial cells were isolated and isobaric tag for relative and absolute quantitation (iTRAQ) based proteomic approach was adopted to globally examine the effects of arsenic on liver sinusoidal endothelial cells (LSECs) during the progression of sinusoidal dedifferentiation. In all, 4205 proteins were identified and quantified by iTRAQ combined with LC-MS/MS analysis, of which 310 proteins were significantly changed in NaAsO2 group, compared with the normal control. Validation by western blot showed increased level of clathrin-associated sorting protein Disabled 2 (Dab2) in NaAsO2 group, indicating that it may regulate receptor endocytosis, which served as a mechanism to augment intracellular VEGF signaling. Moreover, we found that knockdown of Dab2 reduced the uptake of VEGF in LSECs, furthermore blocking VEGF-mediated LSEC dedifferentiation and angiogenesis.
Collapse
|
21
|
Reha J, Katz SC. Regional immunotherapy for liver and peritoneal metastases. J Surg Oncol 2017; 116:46-54. [PMID: 28543176 DOI: 10.1002/jso.24641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/22/2017] [Indexed: 01/18/2023]
Abstract
Pancreatic adenocarcinoma is a biologically aggressive disease, with liver and peritoneal metastases being a frequent cause of death. We examine how the pancreatic carcinoma microenvironment and immunosuppressive landscape favor tumor progression. Immunotherapy has shown promise in select solid tumors, yet challenges remain in applying these gains to stage IV pancreatic adenocarcinoma. We discuss how regional therapy strategies may be leveraged to open new avenues for treating pancreatic carcinoma metastases with immunotherapy.
Collapse
Affiliation(s)
- Jeffrey Reha
- Department of Surgery, Roger Williams Medical Center, RI/Boston University School of Medicine, Providence, Rhode Island
| | - Steven C Katz
- Department of Surgery, Roger Williams Medical Center, RI/Boston University School of Medicine, Providence, Rhode Island
| |
Collapse
|
22
|
Katz SC, Bamboat ZM, Pillarisetty VG, DeMatteo RP. Liver immunology. BLUMGART'S SURGERY OF THE LIVER, BILIARY TRACT AND PANCREAS, 2-VOLUME SET 2017:173-187.e2. [DOI: 10.1016/b978-0-323-34062-5.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Brown DL. Immunopathology of the Hepatobiliary System. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2017:329-417. [DOI: 10.1007/978-3-319-47385-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Meyer J, Lacotte S, Morel P, Gonelle-Gispert C, Bühler L. An optimized method for mouse liver sinusoidal endothelial cell isolation. Exp Cell Res 2016; 349:291-301. [PMID: 27815020 DOI: 10.1016/j.yexcr.2016.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 01/10/2023]
Abstract
The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yielded 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions.
Collapse
Affiliation(s)
- Jeremy Meyer
- Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland; Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève, Switzerland.
| | - Stéphanie Lacotte
- Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève, Switzerland.
| | - Philippe Morel
- Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland; Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève, Switzerland.
| | - Carmen Gonelle-Gispert
- Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève, Switzerland.
| | - Léo Bühler
- Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland; Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève, Switzerland.
| |
Collapse
|
25
|
Immunosuppression in liver tumors: opening the portal to effective immunotherapy. Cancer Gene Ther 2016; 24:114-120. [DOI: 10.1038/cgt.2016.54] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
|
26
|
Liang Y, Kwota Z, Sun J. Intrahepatic regulation of antiviral T cell responses at initial stages of viral infection. Int Immunopharmacol 2016; 39:106-112. [PMID: 27459170 DOI: 10.1016/j.intimp.2016.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
Abstract
It is generally accepted that the appropriate boost of early immune response will control viral replications and limit the immune-mediated pathology in viral hepatitis. However, poor immunity results in viral persistence, chronic inflammation and finally liver cirrhosis and carcinoma. As a peripheral non-lymphoid organ of immune surveillance, the liver continually encounters hundreds of molecules from the blood, including nutrients, toxins and pathogens. In this way, the liver maintains immune tolerance under healthy conditions, but responds quickly to the hepatotropic pathogens during the early stages of an infection. Although our knowledge of liver cell compositions and functions has been improved significantly in recent years, the intrahepatic immune regulation of antiviral T cells at the initial stage is complex and not well elucidated. Here, we summarize the role of liver cell subpopulations in regulating antiviral T cell response at the initial stages of viral infection. A better understanding of early hepatic immune regulation will pave the way for the development of novel therapies and vaccine design for human viral hepatitis.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| | - Zakari Kwota
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| |
Collapse
|
27
|
Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases. Cancer Gene Ther 2016; 23:188-98. [PMID: 27199222 DOI: 10.1038/cgt.2016.19] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 01/08/2023]
Abstract
Assumptions that liver immune cells and immunosuppressive pathways are similar to their counterparts in other spaces have led to gaps in our understanding of intrahepatic neoplasm aggressiveness. Myeloid-derived suppressor cells (MDSCs) are potent inhibitors of antitumor immunity and pose a major obstacle to solid tumor treatment. Liver MDSCs (L-MDSCs) associated with liver metastases (LM) are particularly problematic by contributing to intrahepatic immunosuppression that promotes tumor progression. L-MDSCs have been reported to expand in response to granulocyte-macrophages colony-stimulating factor (GM-CSF) and suppress antitumor immunity in LM. To extend these findings, we examined mechanisms of intrahepatic immunosuppression exploited by L-MDSCs. We found that the majority of L-MDSCs co-expressed GM-CSF receptor (GM-CSF-R), indoleamine 2,3-dioxygenase (IDO) and programmed death ligand 1 (PD-L1), while demonstrating high levels of signal transducer and activator of transcription factor 3 (STAT3) activation. GM-CSF-secreting tumor cells induced STAT3 phosphorylation in L-MDSCs in addition to expression of IDO and PD-L1. GM-CSF or GM-CSF-R blockade markedly reduced L-MDSC IDO and PD-L1 expression, implicating tumor-derived GM-CSF in supporting L-MDSC-immunoinhibitory molecule expression. Small-molecule inhibitors of Janus-activated kinase 2 (JAK2) and STAT3 also dramatically diminished IDO and PD-L1 expression in L-MDSCs. We determined that STAT3 exerts transcriptional control over L-MDSC IDO and PD-L1 expression by binding to the IDO1 and PD-L1 promoters. Our data suggest that the GM-CSF/JAK2/STAT3 axis in L-MDSCs drives immunosuppression in a model of LM and blockade of this pathway may enable rescue of intrahepatic antitumor immunity.
Collapse
|
28
|
Meyer J, Gonelle-Gispert C, Morel P, Bühler L. Methods for Isolation and Purification of Murine Liver Sinusoidal Endothelial Cells: A Systematic Review. PLoS One 2016; 11:e0151945. [PMID: 26992171 PMCID: PMC4798180 DOI: 10.1371/journal.pone.0151945] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/07/2016] [Indexed: 12/14/2022] Open
Abstract
To study the biological functions of liver sinusoidal endothelial cells (LSEC) and to identify their interplay with blood or liver cells, techniques allowing for the isolation and purification of LSEC have been developed over the last decades. The objective of the present review is to summarize and to compare the efficiency of existing methods for isolating murine LSEC. Toward this end, the MEDLINE database was searched for all original articles describing LSEC isolation from rat and mouse livers. Out of the 489 publications identified, 23 reported the main steps and outcomes of the procedure and were included in our review. Here, we report and analyse the technical details of the essential steps of the techniques used for LSEC isolation. The correlations between the prevalence of some steps and the efficiency of LSEC isolation were also identified. We found that centrifugal elutriation, selective adherence and, more recently, magnetic-activated cell sorting were used for LSEC purification. Centrifugal elutriation procured high yields of pure LSEC (for rats 30-141.9 million cells for 85-98% purities; for mice 9-9.25 million cells for >95% purities), but the use of this method remained limited due to its high technical requirements. Selective adherence showed inconsistent results in terms of cell yields and purities in rats (5-100 million cells for 73.7-95% purities). In contrast, magnetic-activated cell sorting allowed for the isolation of highly pure LSEC, but overall lower cell yields were reported (for rats 10.7 million cells with 97.6% purity; for mice 0.5-9 million cells with 90-98% purities). Notably, the controversies regarding the accuracy of several phenotypic markers for LSEC should be considered and their use for both magnetic sorting and characterization remain doubtful. It appears that more effort is needed to refine and standardize the procedure for LSEC isolation, with a focus on the identification of specific antigens. Such a procedure is required to identify the molecular mechanisms regulating the function of LSEC and to improve our understanding of their role in complex cellular processes in the liver.
Collapse
Affiliation(s)
- Jeremy Meyer
- Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211, Genève 14, Switzerland
- Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206, Genève, Switzerland
| | - Carmen Gonelle-Gispert
- Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206, Genève, Switzerland
| | - Philippe Morel
- Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211, Genève 14, Switzerland
- Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206, Genève, Switzerland
| | - Léo Bühler
- Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211, Genève 14, Switzerland
- Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206, Genève, Switzerland
| |
Collapse
|
29
|
Liver X receptor α is essential for the capillarization of liver sinusoidal endothelial cells in liver injury. Sci Rep 2016; 6:21309. [PMID: 26887957 PMCID: PMC4758044 DOI: 10.1038/srep21309] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Liver X receptors (LXRs) play essential roles in lipogenesis, anti-inflammatory action and hepatic stellate cells (HSCs) activation in the liver. However, the effects of LXRs on the capillarization of liver sinusoidal endothelial cells (LSECs) in liver fibrosis remain undetermined. Here, we demonstrated that LXRα plays an important role in LSECs capillarization in a manner that involved Hedgehog (Hh) signaling. We found that LXRα expression in LSECs was increased in the carbon tetrachloride (CCl4)-induced fibrosis model. LXRα deletion markedly exacerbated CCl4-induced lesions assessed by histopathology, as well as inflammation and collagen deposition. Furthermore, capillarization of the sinusoids was aggravated in CCl4 -treated LXRα-deficient mice, as evidenced by increased CD34 expression, the formation of continuous basement membranes and aggravation of the loss of fenestrae. In vitro, LXR agonist could maintain freshly isolated LSECs differentiation on day 3. Furthermore, LXRα deletion led to increased expression of Hedgehog (Hh)-regulated gene in LSECs in the injured liver. Conversely, the LXR agonist could inhibit the Hh pathway in cultured LSECs. These responses indicated that LXRα suppressed the process of LSECs capillarization by repressing Hh signaling. Overall, our findings suggest that LXRα, by restoring the differentiation of LSECs, may be critical for the regression of liver fibrosis.
Collapse
|
30
|
Wong YC, Tay SS, McCaughan GW, Bowen DG, Bertolino P. Immune outcomes in the liver: Is CD8 T cell fate determined by the environment? J Hepatol 2015; 63:1005-14. [PMID: 26103545 DOI: 10.1016/j.jhep.2015.05.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023]
Abstract
The liver is known for its tolerogenic properties. This unique characteristic is associated with persistent infection of the liver by the hepatitis B and C viruses. Improper activation of cellular adaptive immune responses within the liver and immune exhaustion over time both contribute to ineffective cytotoxic T cell responses to liver-expressed antigens in animal models, and likely play a role in incomplete clearance of chronic hepatitis virus infections in humans. However, under some conditions, functional immune responses can be elicited against hepatic antigens, resulting in control of hepatotropic infections. In order to develop improved therapeutics in immune-mediated chronic liver diseases, including viral hepatitis, it is essential to understand how intrahepatic immunity is regulated. This review focuses on CD8 T cell immunity directed towards foreign antigens expressed in the liver, and explores how the liver environment dictates the outcome of intrahepatic CD8 T cell responses. Potential strategies to rescue unresponsive CD8 T cells in the liver are also discussed.
Collapse
Affiliation(s)
- Yik Chun Wong
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Szun Szun Tay
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Geoffrey W McCaughan
- Liver Cancer and Injury Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David G Bowen
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Patrick Bertolino
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
31
|
Sørensen KK, Simon‐Santamaria J, McCuskey RS, Smedsrød B. Liver Sinusoidal Endothelial Cells. Compr Physiol 2015; 5:1751-74. [DOI: 10.1002/cphy.c140078] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Capone F, Guerriero E, Colonna G, Maio P, Mangia A, Marfella R, Paolisso G, Izzo F, Potenza N, Tomeo L, Castello G, Costantini S. The Cytokinome Profile in Patients with Hepatocellular Carcinoma and Type 2 Diabetes. PLoS One 2015; 10:e0134594. [PMID: 26226632 PMCID: PMC4520685 DOI: 10.1371/journal.pone.0134594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/11/2015] [Indexed: 12/13/2022] Open
Abstract
Understanding the dynamics of the complex interaction network of cytokines, defined as ‘‘cytokinome’’, can be useful to follow progression and evolution of hepatocellular carcinoma (HCC) from its early stages as well as to define therapeutic strategies. Recently we have evaluated the cytokinome profile in patients with type 2 diabetes (T2D) and/or chronic hepatitis C (CHC) infection and/or cirrhosis suggesting specific markers for the different stages of the diseases. Since T2D has been identified as one of the contributory cause of HCC, in this paper we examined the serum levels of cytokines, growth factors, chemokines, as well as of other cancer and diabetes biomarkers in a discovery cohort of patients with T2D, chronic hepatitis C (CHC) and/or CHC-related HCC comparing them with a healthy control group to define a profile of proteins able to characterize these patients, and to recognize the association between diabetes and HCC. The results have evidenced that the serum levels of some proteins are significantly and differently up-regulated in all the patients but they increased still more when HCC develops on the background of T2D. Our results were verified also using a separate validation cohort. Furthermore, significant correlations between clinical and laboratory data characterizing the various stages of this complex disease, have been found. In overall, our results highlighted that a large and simple omics approach, such as that of the cytokinome analysis, supplemented by common biochemical and clinical data, can give a complete picture able to improve the prognosis of the various stages of the disease progression. We have also demonstrated by means of interactomic analysis that our experimental results correlate positively with the general metabolic picture that is emerging in the literature for this complex multifactorial disease.
Collapse
Affiliation(s)
- Francesca Capone
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Eliana Guerriero
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Giovanni Colonna
- Center of Medical Informatics-SIM/AOU-Second University of Naples, Naples, Italy
| | - Patrizia Maio
- Unita`Operativa Malattie Infettive, Azienda Ospedaliera di Rilievo Nazionale ''San Giuseppe Moscati", Avellino, Italy
| | - Alessandra Mangia
- Liver Unit, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Raffaele Marfella
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Naples, Italy
| | - Giuseppe Paolisso
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Naples, Italy
| | - Francesco Izzo
- Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | | | - Giuseppe Castello
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| |
Collapse
|
33
|
Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, Khare PD, Thorn M, Ma Q, Stainken BF, Assanah EO, Davies R, Espat NJ, Junghans RP. Phase I Hepatic Immunotherapy for Metastases Study of Intra-Arterial Chimeric Antigen Receptor-Modified T-cell Therapy for CEA+ Liver Metastases. Clin Cancer Res 2015; 21:3149-59. [PMID: 25850950 PMCID: PMC4506253 DOI: 10.1158/1078-0432.ccr-14-1421] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 03/23/2015] [Indexed: 12/24/2022]
Abstract
PURPOSE Chimeric antigen receptor-modified T cells (CAR-T) have demonstrated encouraging results in early-phase clinical trials. Successful adaptation of CAR-T technology for CEA-expressing adenocarcinoma liver metastases, a major cause of death in patients with gastrointestinal cancers, has yet to be achieved. We sought to test intrahepatic delivery of anti-CEA CAR-T through percutaneous hepatic artery infusions (HAIs). EXPERIMENTAL DESIGN We conducted a phase I trial to test HAI of CAR-T in patients with CEA(+) liver metastases. Six patients completed the protocol, and 3 received anti-CEA CAR-T HAIs alone in dose-escalation fashion (10(8), 10(9), and 10(10) cells). We treated an additional 3 patients with the maximum planned CAR-T HAI dose (10(10) cells × 3) along with systemic IL2 support. RESULTS Four patients had more than 10 liver metastases, and patients received a mean of 2.5 lines of conventional systemic therapy before enrollment. No patient suffered a grade 3 or 4 adverse event related to the CAR-T HAIs. One patient remains alive with stable disease at 23 months following CAR-T HAI, and 5 patients died of progressive disease. Among the patients in the cohort that received systemic IL2 support, CEA levels decreased 37% (range, 19%-48%) from baseline. Biopsies demonstrated an increase in liver metastasis necrosis or fibrosis in 4 of 6 patients. Elevated serum IFNγ levels correlated with IL2 administration and CEA decreases. CONCLUSIONS We have demonstrated the safety of anti-CEA CAR-T HAIs with encouraging signals of clinical activity in a heavily pretreated population with large tumor burdens. Further clinical testing of CAR-T HAIs for liver metastases is warranted.
Collapse
Affiliation(s)
- Steven C Katz
- Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island/Boston University School of Medicine, Boston, Massachusetts
| | - Rachel A Burga
- Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island/Boston University School of Medicine, Boston, Massachusetts
| | - Elise McCormack
- Department of Medicine, Roger Williams Medical Center, Providence, Rhode Island/Boston University School of Medicine, Boston, Massachusetts
| | - Li Juan Wang
- Department of Pathology, Roger Williams Medical Center, Providence, Rhode Island
| | - Wesley Mooring
- Department of Pathology, Roger Williams Medical Center, Providence, Rhode Island
| | - Gary R Point
- Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island/Boston University School of Medicine, Boston, Massachusetts
| | - Pranay D Khare
- Roger Williams Medical Center, GMP Core Facility and Clinical Protocol Office, Providence, Rhode Island
| | - Mitchell Thorn
- Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island/Boston University School of Medicine, Boston, Massachusetts
| | - Qiangzhong Ma
- Department of Medicine, Roger Williams Medical Center, Providence, Rhode Island/Boston University School of Medicine, Boston, Massachusetts
| | - Brian F Stainken
- Department of Radiology, Roger Williams Medical Center, Providence, Rhode Island/Boston University School of Medicine, Boston, Massachusetts
| | - Earle O Assanah
- Department of Radiology, Roger Williams Medical Center, Providence, Rhode Island/Boston University School of Medicine, Boston, Massachusetts
| | - Robin Davies
- Roger Williams Medical Center, GMP Core Facility and Clinical Protocol Office, Providence, Rhode Island
| | - N Joseph Espat
- Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island/Boston University School of Medicine, Boston, Massachusetts
| | - Richard P Junghans
- Department of Medicine, Roger Williams Medical Center, Providence, Rhode Island/Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
34
|
Nishime C, Kawai K, Yamamoto T, Katano I, Monnai M, Goda N, Mizushima T, Suemizu H, Nakamura M, Murata M, Suematsu M, Wakui M. Innate Response to Human Cancer Cells with or without IL-2 Receptor Common γ-Chain Function in NOD Background Mice Lacking Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2015; 195:1883-90. [DOI: 10.4049/jimmunol.1402103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 06/13/2015] [Indexed: 11/19/2022]
|
35
|
Burga RA, Thorn M, Point GR, Guha P, Nguyen CT, Licata LA, DeMatteo RP, Ayala A, Joseph Espat N, Junghans RP, Katz SC. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 2015; 64:817-29. [PMID: 25850344 DOI: 10.1007/s00262-015-1692-6] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 03/26/2015] [Indexed: 01/08/2023]
Abstract
Chimeric antigen receptor-modified T cell (CAR-T) technology, a promising immunotherapeutic tool, has not been applied specifically to treat liver metastases (LM). While CAR-T delivery to LM can be optimized by regional intrahepatic infusion, we propose that liver CD11b+Gr-1+ myeloid-derived suppressor cells (L-MDSC) will inhibit the efficacy of CAR-T in the intrahepatic space. We studied anti-CEA CAR-T in a murine model of CEA+ LM and identified mechanisms through which L-MDSC expand and inhibit CAR-T function. We established CEA+ LM in mice and studied purified L-MDSC and responses to treatment with intrahepatic anti-CEA CAR-T infusions. L-MDSC expanded threefold in response to LM, and their expansion was dependent on GM-CSF, which was produced by tumor cells. L-MDSC utilized PD-L1 to suppress anti-tumor responses through engagement of PD-1 on CAR-T. GM-CSF, in cooperation with STAT3, promoted L-MDSC PD-L1 expression. CAR-T efficacy was rescued when mice received CAR-T in combination with MDSC depletion, GM-CSF neutralization to prevent MDSC expansion, or PD-L1 blockade. As L-MDSC suppressed anti-CEA CAR-T, infusion of anti-CEA CAR-T in tandem with agents targeting L-MDSC is a rational strategy for future clinical trials.
Collapse
Affiliation(s)
- Rachel A Burga
- Division of Surgical Oncology, Department of Surgery, Roger Williams Medical Center, 825 Chalkstone Avenue, Prior 4, Providence, RI, 02908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Khan H, Pillarisetty VG, Katz SC. The prognostic value of liver tumor T cell infiltrates. J Surg Res 2014; 191:189-95. [PMID: 25033707 PMCID: PMC4134707 DOI: 10.1016/j.jss.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/18/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022]
Abstract
Tumor infiltrating lymphocytes (TIL) have been demonstrated to predict oncologic outcomes following resection of primary intrahepatic neoplasms and metastatic liver tumors. Despite strong immunosuppressive factors within the intrahepatic space, TIL are frequently demonstrated in liver tumors. The presence of TIL within liver tumors provides evidence of a host immune response that may be protective, but often is rendered ineffective by tumor induced immune dysfunction. In this review, we discuss techniques involved in studying TIL and subsets of TIL commonly identified. We emphasize the unique nature of the intrahepatic milieu that promotes immunosuppression, and how liver TIL and TIL ratios can be used as indicators of prognosis. Several types of primary and metastatic liver tumors are considered to highlight the similarities and important differences in TIL responses, which likely reflect how intrahepatic immunity is influenced by tumor biology. The studies we discuss indicate that tumor infiltration by suppressor cells and expression of immunoinhibitory molecules by TIL limits the anti-tumor immune function of effector T cells. Most patients fail to mount an adequate immune response to liver tumors, which provides compelling rationale for clinical study of immunotherapy for intrahepatic neoplasms.
Collapse
Affiliation(s)
- Hadi Khan
- Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island
| | - Venu G Pillarisetty
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Steven C Katz
- Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island; Department of Surgery, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
37
|
Thorn M, Point GR, Burga RA, Nguyen CT, Joseph Espat N, Katz SC. Liver metastases induce reversible hepatic B cell dysfunction mediated by Gr-1+CD11b+ myeloid cells. J Leukoc Biol 2014; 96:883-94. [PMID: 25085111 DOI: 10.1189/jlb.3a0114-012rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
LM escape immune surveillance, in part, as a result of the expansion of CD11b+MC, which alter the intrahepatic microenvironment to promote tumor tolerance. HBC make up a significant proportion of liver lymphocytes and appear to delay tumor progression; however, their significance in the setting of LM is poorly defined. Therefore, we characterized HBC and HBC/CD11b+MC interactions using a murine model of LM. Tumor-bearing livers showed a trend toward elevated absolute numbers of CD19+ HBC. A significant increase in the frequency of IgM(lo)IgD(hi) mature HBC was observed in mice with LM compared with normal mice. HBC derived from tumor-bearing mice demonstrated increased proliferation in response to TLR and BCR stimulation ex vivo compared with HBC from normal livers. HBC from tumor-bearing livers exhibited significant down-regulation of CD80 and were impaired in inducing CD4(+) T cell proliferation ex vivo. We implicated hepatic CD11b+MC as mediators of CD80 down-modulation on HBC ex vivo via a CD11b-dependent mechanism that required cell-to-cell contact and STAT3 activity. Therefore, CD11b+MC may compromise the ability of HBC to promote T cell activation in the setting of LM as a result of diminished expression of CD80. Cross-talk between CD11b+MC and HBC may be an important component of LM-induced immunosuppression.
Collapse
Affiliation(s)
- Mitchell Thorn
- Roger Williams Medical Center, Department of Surgery, Providence, Rhode Island, USA; and Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gary R Point
- Roger Williams Medical Center, Department of Surgery, Providence, Rhode Island, USA; and
| | - Rachel A Burga
- Roger Williams Medical Center, Department of Surgery, Providence, Rhode Island, USA; and
| | - Cang T Nguyen
- Roger Williams Medical Center, Department of Surgery, Providence, Rhode Island, USA; and
| | - N Joseph Espat
- Roger Williams Medical Center, Department of Surgery, Providence, Rhode Island, USA; and Boston University School of Medicine, Boston, Massachusetts, USA
| | - Steven C Katz
- Roger Williams Medical Center, Department of Surgery, Providence, Rhode Island, USA; and Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Sultana N, Tabassum S, Ullah Munshi S, Hossain M, Imam A. Nucleoside Analog-treated Chronic Hepatitis B Patients showed Reduced Expression of PECAM-1 Gene in Peripheral Blood Mononuclear Cells in Bangladesh. Euroasian J Hepatogastroenterol 2014; 4:87-91. [PMID: 29699354 PMCID: PMC5913902 DOI: 10.5005/jp-journals-10018-1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/05/2014] [Indexed: 11/23/2022] Open
Abstract
Background and aim Assessment of therapeutic response is important for monitoring the prognosis and to take decision for cessation of nucleoside analogues therapy in chronic hepatitis B patients. In addition to serum alanine aminotransferase (ALT), hepatitis B virus (HBV) deoxyribonucleic acid (DNA) load and HBeAg status, identification of molecular markers associated with host immune response would be essential to assess therapeutic response. In this regard the current study was performed with the aim to detect expression of platelet endothelial cell adhesion molecule (PECAM)-I gene in peripheral blood monocytes (PBMCs) of treated chronic hepatitis B patients and also to correlate expression of this gene with serum HBV DNA load and serum ALT levels. Materials and methods The study analyzed 60 chronic hepatitis B (CHB) patients, including 30 untreated and 30 nucleoside analogs treated and 10 healthy controls. PECAM-1 gene expression/ transcripts were detected by conventional RT-PCR. Results The expression PECAM-1 mRNA in the PBMCs of CHB patients was significantly higher in untreated (3.17 ± 0.75) than the treated patients (1.64 ± 0.29) (p < 0.01). Expression of PECAM-1 was positively correlated with serum ALT levels of both untreated (r = 0.580) and treated (r = 0.566) CHB patients. Moreover, in both untreated and treated groups, these gene expressions were positively correlated to serum HBV DNA load with the correlation coefficient r = 0.545 and r = 0.591 respectively. Conclusion PECAM-1 may be used as a biomarker for assessment of inflammatory activity as well as therapeutic response in CHB patients. How to cite this article: Sultana N, Tabassum S, Munshi SU, Hossain M, Imam A. Nucleoside Analog-treated Chronic Hepatitis B Patients showed Reduced Expression of PECAM-1 Gene in Peripheral Blood Mononuclear Cells in Bangladesh. Euroasian J Hepato-Gastroenterol 2014;4(2):87-91.
Collapse
Affiliation(s)
- Nusrat Sultana
- Department of Virology, Dhaka Medical College, Dhaka, Bangladesh
| | - Shahina Tabassum
- Department of Virology, Dhaka Medical College, Dhaka, Bangladesh
| | - Saif Ullah Munshi
- Department of Virology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Marufa Hossain
- Department of Microbiology, ZH Sikder Women's Medical College, Dhaka, Bangladesh
| | - Akhter Imam
- Department of Dentistry, Kurigram Sadar Hospital, Kurigram, Bangladesh
| |
Collapse
|
39
|
Zhong J, Rao X, Braunstein Z, Taylor A, Narula V, Hazey J, Mikami D, Needleman B, Rutsky J, Sun Q, Deiuliis JA, Satoskar AR, Rajagopalan S. T-cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes 2014; 63:1289-1302. [PMID: 24222350 PMCID: PMC4179314 DOI: 10.2337/db13-1094] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/08/2013] [Indexed: 01/07/2023]
Abstract
A key pathophysiologic role for activated T-cells in mediating adipose inflammation and insulin resistance (IR) has been recently postulated. However, mechanisms underlying their activation are poorly understood. In this study, we demonstrated a previously unrecognized homeostatic role for the costimulatory B7 molecules (CD80 and CD86) in preventing adipose inflammation. Instead of promoting inflammation, which was found in many other disease conditions, B7 costimulation reduced adipose inflammation by maintaining regulatory T-cell (Treg) numbers in adipose tissue. In both humans and mice, expression of CD80 and CD86 was negatively correlated with the degree of IR and adipose tissue macrophage infiltration. Decreased B7 expression in obesity appeared to directly impair Treg proliferation and function that lead to excessive proinflammatory macrophages and the development of IR. CD80/CD86 double knockout (B7 KO) mice had enhanced adipose macrophage inflammation and IR under both high-fat and normal diet conditions, accompanied by reduced Treg development and proliferation. Adoptive transfer of Tregs reversed IR and adipose inflammation in B7 KO mice. Our results suggest an essential role for B7 in maintaining Tregs and adipose homeostasis and may have important implications for therapies that target costimulation in type 2 diabetes.
Collapse
Affiliation(s)
- Jixin Zhong
- Division of Cardiology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Xiaoquan Rao
- Division of Cardiology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Zachary Braunstein
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Anne Taylor
- Department of Surgery, The Ohio State University, Columbus, OH
| | - Vimal Narula
- Department of Surgery, The Ohio State University, Columbus, OH
| | - Jeffrey Hazey
- Department of Surgery, The Ohio State University, Columbus, OH
| | - Dean Mikami
- Department of Surgery, The Ohio State University, Columbus, OH
| | | | - Jessica Rutsky
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Qinghua Sun
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Jeffrey A. Deiuliis
- Division of Cardiology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Abhay R. Satoskar
- Division of Experimental Pathology, The Ohio State University, Columbus, OH
| | - Sanjay Rajagopalan
- Division of Cardiology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
40
|
Duraes FV, Thelemann C, Sarter K, Acha-Orbea H, Hugues S, Reith W. Role of major histocompatibility complex class II expression by non-hematopoietic cells in autoimmune and inflammatory disorders: facts and fiction. ACTA ACUST UNITED AC 2014; 82:1-15. [PMID: 23745569 DOI: 10.1111/tan.12136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is well established that interactions between CD4(+) T cells and major histocompatibility complex class II (MHCII) positive antigen-presenting cells (APCs) of hematopoietic origin play key roles in both the maintenance of tolerance and the initiation and development of autoimmune and inflammatory disorders. In sharp contrast, despite nearly three decades of intensive research, the functional relevance of MHCII expression by non-hematopoietic tissue-resident cells has remained obscure. The widespread assumption that MHCII expression by non-hematopoietic APCs has an impact on autoimmune and inflammatory diseases has in most instances neither been confirmed nor excluded by indisputable in vivo data. Here we review and put into perspective conflicting in vitro and in vivo results on the putative impact of MHCII expression by non-hematopoietic APCs--in both target organs and secondary lymphoid tissues--on the initiation and development of representative autoimmune and inflammatory disorders. Emphasis will be placed on the lacunar status of our knowledge in this field. We also discuss new mouse models--developed on the basis of our understanding of the molecular mechanisms that regulate MHCII expression--that constitute valuable tools for filling the severe gaps in our knowledge on the functions of non-hematopoietic APCs in inflammatory conditions.
Collapse
Affiliation(s)
- F V Duraes
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The liver is the largest organ in the body and is generally regarded by nonimmunologists as having little or no lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and it is instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena, which if not controlled by regulatory lymphoid populations, may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events that lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discuss selected, but not all, immune-mediated liver disease and attempt to place these data in the context of human autoimmunity.
Collapse
Affiliation(s)
- Dimitrios P Bogdanos
- Institute of Liver Studies, Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | |
Collapse
|
42
|
Licata LA, Nguyen CT, Burga RA, Falanga V, Espat NJ, Ayala A, Thorn M, Junghans RP, Katz SC. Biliary obstruction results in PD-1-dependent liver T cell dysfunction and acute inflammation mediated by Th17 cells and neutrophils. J Leukoc Biol 2013; 94:813-23. [PMID: 23883516 DOI: 10.1189/jlb.0313137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biliary obstruction is a common clinical problem that is associated with intrahepatic inflammation and impaired immunity. PD-1 is well known to mediate T cell dysfunction but has been reported to promote and attenuate acute inflammation in various injury models. With the use of a well-established murine model of BDL, we studied the effects of intrahepatic PD-1 expression on LTC function, inflammation, and cholestasis. Following BDL, PD-1 expression increased significantly among LTCs. Increased PD-1 expression following BDL was associated with decreased LTC proliferation and less IFN-γ production. Elimination of PD-1 expression resulted in significantly improved proliferative capacity among LTC following BDL, in addition to a more immunostimulatory cytokine profile. Not only was LTC function rescued in PD-1(-/-) mice, but also, the degrees of biliary cell injury, cholestasis, and inflammation were diminished significantly compared with WT animals following BDL. PD-1-mediated acute inflammation following BDL was associated with expansions of intrahepatic neutrophil and Th17 cell populations, with the latter dependent on IL-6. PD-1 blockade represents an attractive strategy for reversing intrahepatic immunosuppression while limiting inflammatory liver damage.
Collapse
|
43
|
Hutchins NA, Wang F, Wang Y, Chung CS, Ayala A. Kupffer cells potentiate liver sinusoidal endothelial cell injury in sepsis by ligating programmed cell death ligand-1. J Leukoc Biol 2013; 94:963-70. [PMID: 23766529 DOI: 10.1189/jlb.0113051] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PD-1 and PD-L1 have been reported to provide peripheral tolerance by inhibiting TCR-mediated activation. We have reported that PD-L1-/- animals are protected from sepsis-induced mortality and immune suppression. Whereas studies indicate that LSECs normally express PD-L1, which is also thought to maintain local immune liver tolerance by ligating the receptor PD-1 on T lymphocytes, the role of PD-L1 in the septic liver remains unknown. Thus, we hypothesized initially that PD-L1 expression on LSECs protects them from sepsis-induced injury. We noted that the increased vascular permeability and pSTAT3 protein expression in whole liver from septic animals were attenuated in the absence of PD-L1. Isolated LSECs taken from septic animals, which exhibited increased cell death, declining cell numbers, reduced cellular proliferation, and VEGFR2 expression (an angiogenesis marker), also showed improved cell numbers, proliferation, and percent VEGFR2(+) levels in the absence of PD-L1. We also observed that sepsis induced an increase of liver F4/80(+)PD-1(+)-expressing KCs and increased PD-L1 expression on LSECs. Interestingly, PD-L1 expression levels on LSECs decreased when PD-1(+)-expressing KCs were depleted with clodronate liposomes. Contrary to our original hypothesis, we document here that increased interactions between PD-1(+) KCs and PD-L1(+) LSECs appear to lead to the decline of normal endothelial function-essential to sustain vascular integrity and prevent ALF. Importantly, we uncover an underappreciated pathological aspect of PD-1:PD-L1 ligation during inflammation that is independent of its normal, immune-suppressive activity.
Collapse
Affiliation(s)
- Noelle A Hutchins
- 1.Dept. of Surgery/Division of Surgical Research, 593 Eddy St., Aldrich Bldg., Room 227, Providence, RI 02903, USA.
| | | | | | | | | |
Collapse
|
44
|
Costantini S, Capone F, Maio P, Guerriero E, Colonna G, Izzo F, Castello G. Cancer biomarker profiling in patients with chronic hepatitis C virus, liver cirrhosis and hepatocellular carcinoma. Oncol Rep 2013; 29:2163-8. [PMID: 23564159 DOI: 10.3892/or.2013.2378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/14/2012] [Indexed: 11/06/2022] Open
Abstract
The detection and diagnosis of hepatocellular carcinoma (HCC) at an early stage may significantly affect the prognosis of HCC patients. Thus, it is necessary to always identify novel putative markers for improving diagnosis. Hepatocarcinogenesis correlates with pathological hepatic angiogenesis. However, each tumor-induced angio-genetic process is influenced by the microenvironment through several pro- and anti-angiogenic factors released from tumor cells, tumor-associated inflammatory cells and/or from the extracellular matrix, and modulated by various signal pathways. In this study, we evaluated the profiling of angiogenic factors using Bio-Plex Pro™ Human Cancer Biomarker Panel 1, a 16-plex magnetic bead-based assay, in sera of patients with chronic hepatitis C (CHC) virus, liver cirrhosis (LC) and HCC. Our results demonstrated: i) high levels of hepatocyte growth factor (HGF) and prolactin only in LC and HCC patients, ii) high levels of soluble human epidermal growth factor receptor‑2 (sHER-2/neu; ErbB-2), sIL-6Ra, leptin (LEP) and platelet endothelial cell adhesion molecule‑1 (PECAM-1) in CHC, LC and HCC patients and iii) that sIL-6R correlated with the fibrosis stage in CHC patients, with Child‑Pugh score in those patients with LC and with tumor size in those patients with HCC, confirming that this protein may be used as a predictor of liver damage and of inflammatory process leading to fibrosis, cirrhosis, and subsequently to cancer. Moreover, an interactomic study conducted using the Ingenuity Pathway Analysis (IPA) software proved the existence of a correlation between 5 significant proteins [ErbB-2, sIL-6Ra, prolactin (PRL), HGF and LEP] which are involved in the same metabolic pathways.
Collapse
Affiliation(s)
- Susan Costantini
- National Cancer Institute G. Pascale Foundation-Oncology Research Center of Mercogliano (CROM), Mercogliano, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Katz SC, Bamboat ZM, Maker AV, Shia J, Pillarisetty VG, Yopp AC, Hedvat CV, Gonen M, Jarnagin WR, Fong Y, D'Angelica MI, DeMatteo RP. Regulatory T cell infiltration predicts outcome following resection of colorectal cancer liver metastases. Ann Surg Oncol 2013; 20:946-55. [PMID: 23010736 PMCID: PMC3740360 DOI: 10.1245/s10434-012-2668-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Indexed: 01/21/2023]
Abstract
BACKGROUND Tumor-infiltrating lymphocyte (TIL) counts in colorectal cancer liver metastases (CRCLM) predict survival following resection. While CD4 and CD8 T cells have been correlated with outcome following CRCLM resection, the role of regulatory T cells (Treg) is not well defined. METHODS TIL in 188 patients who underwent CRCLM resection between 1998 and 2000 were analyzed by immunohistochemistry using tissue microarrays. Correlation between TIL composition and outcome was determined while controlling for established prognostic factors. Total T cells (CD3), helper T cells (CD4), cytotoxic T cells (CD8), and Treg (FoxP3) were analyzed. RESULTS Median follow-up time was 40 months for all patients and 95 months for survivors. Overall survival (OS) at 5 and 10 years was 40 and 25%, respectively. The CD4 T cell count correlated with OS (p = .02) and recurrence-free survival (p = .04). A high number of CD8 T cells relative to total T cells (CD8:CD3 ratio) predicted longer OS times (p = .05). Analysis of Treg revealed that high FoxP3:CD4 (p = .03) and FoxP3:CD8 (p = .05) ratios were independent predictors of shorter OS. Patients with a high clinical risk score (CRS) were more likely to have a high number of intratumoral Treg, and patients ≥65 years old had a less robust CRCLM T cell infiltration. CONCLUSIONS A high number of Treg relative to CD4 or CD8 T cells predicted poor outcome, suggesting an immunosuppressive role for FoxP3 + TIL. The intratumoral immune response was an independent predictor of outcome in patients with colorectal liver metastases.
Collapse
Affiliation(s)
- Steven C Katz
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xu F, Zhen P, Zheng Y, LIjuan F, Aiting Y, Min C, Hong Y, Jidong J. Preparation of Kupffer cell enriched non-parenchymal liver cells with high yield and reduced damage of surface markers by a modified method for flow cytometry. Cell Biol Int 2013; 37:284-91. [PMID: 23348934 DOI: 10.1002/cbin.10035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/18/2012] [Indexed: 11/11/2022]
Abstract
The aim of this study was to optimise a collagenase perfusion protocol for the isolation of a liver non-parenchymal cell (NPC) suspension enriched for Kupffer cells that reduced damage to F4/80 antigen cell surface expression to allow analysis by flow cytometry. Kupffer cell-enriched liver NPCs were isolated from C57BL/6 mice using different protocols. Flow cytometry was used to examine the effect of collagenase digestion on F4/80 expression on Kupffer cells, and results were represented by the percentage of F4/80 positive cells and by the F4/80 mean fluorescence intensity (MFI). The perfusion temperature, concentration of collagenase solution and total dosage of collagenase for liver perfusion influenced the effect of collagenase perfusion on the expression of F4/80 antigen on Kupffer cells. Collagenase perfusion at 28°C resulted in an increased percentage of F4/80 positive cells (P = 0.001) and MFI (P = 0.005) compared with 37°C. Perfusion with a total dose of 1.0 g/kg BW collagenase (using a 0.75 mg/mL solution) resulted in the highest percentage of F4/80 positive cells (P = 0.001) compared with 0.8 g/kg BW and 1.2 g/kg BW collagenase. Isolation of cells using the modified protocol resulted in a higher percentage of Kupffer cells (P < 0.001) and a higher MFI of F4/80 antigen (P < 0.001) compared with the common protocol.
Collapse
Affiliation(s)
- Fan Xu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hutchins NA, Chung CS, Borgerding JN, Ayala CA, Ayala A. Kupffer cells protect liver sinusoidal endothelial cells from Fas-dependent apoptosis in sepsis by down-regulating gp130. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:742-54. [PMID: 23306157 DOI: 10.1016/j.ajpath.2012.11.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 10/05/2012] [Accepted: 11/08/2012] [Indexed: 02/07/2023]
Abstract
Endothelial cell (EC) dysfunction is a key feature of multiple organ injury, the primary cause of fatality seen in critically ill patients. Although the development of EC dysfunction in the heart and lung is well studied in sepsis, it remains unclear in the liver. Herein, we report that liver sinusoidal ECs (LSECs; defined as CD146(+)CD45(-)) exhibit increased intercellular adhesion molecule-1 (CD54) and Fas in response to sepsis induced by cecal ligation and puncture (CLP). By using magnetically enriched LSEC (CD146(+)) populations, we show evidence of marked apoptosis, with a twofold decline in viable LSECs in CLP animals compared with sham controls. These changes and increased serum alanine aminotransferase levels were all mitigated in septic Fas(-/-) and Fas ligand(-/-) animals. Although we previously reported increased numbers of Fas ligand expressing CD8(+) T lymphocytes in the septic liver, CD8(+) T-cell deficiency did not reverse the onset of LSEC apoptosis/damage. However, Kupffer cell depletion with clodronate liposomes resulted in greater apoptosis and Fas expression after CLP and a decrease in glycoprotein 130 expression on LSECs, suggesting that STAT3 activation may protect these cells from injury. Our results document a critical role for death receptor-mediated LSEC injury and show the first evidence that Kupffer cells are essential to the viability of LSECs, which appears to be mediated through glycoprotein 130 expression in sepsis.
Collapse
Affiliation(s)
- Noelle A Hutchins
- Brown University Pathobiology Graduate Program, Warren Alpert School of Medicine, Providence, Rhode Island, USA
| | | | | | | | | |
Collapse
|
48
|
Sørensen KK, McCourt P, Berg T, Crossley C, Le Couteur D, Wake K, Smedsrød B. The scavenger endothelial cell: a new player in homeostasis and immunity. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1217-R1230. [PMID: 23076875 DOI: 10.1152/ajpregu.00686.2011] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To maintain homeostasis, the animal body is equipped with a powerful system to remove circulating waste. This review presents evidence that the scavenger endothelial cell (SEC) is responsible for the clearance of blood-borne waste macromolecules in vertebrates. SECs express pattern-recognition endocytosis receptors (mannose and scavenger receptors), and in mammals, the endocytic Fc gamma-receptor IIb2. This cell type has an endocytic machinery capable of super-efficient uptake and degradation of physiological and foreign waste material, including all major classes of biological macromolecules. In terrestrial vertebrates, most SECs line the wall of the liver sinusoid. In phylogenetically older vertebrates, SECs reside instead in heart, kidney, or gills. SECs, thus, by virtue of their efficient nonphagocytic elimination of physiological and microbial substances, play a critical role in the innate immunity of vertebrates. In major invertebrate phyla, including insects, the same function is carried out by nephrocytes. The concept of a dual-cell principle of waste clearance is introduced to emphasize that professional phagocytes (macrophages in vertebrates; hemocytes in invertebrates) eliminate larger particles (>0.5 μm) by phagocytosis, whereas soluble macromolecules and smaller particles are eliminated efficiently and preferentially by clathrin-mediated endocytosis in nonphagocytic SECs in vertebrates or nephrocytes in invertebrates. Including these cells as important players in immunology and physiology provides an additional basis for understanding host defense and tissue homeostasis.
Collapse
Affiliation(s)
- Karen Kristine Sørensen
- Vascular Biology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | | | | | | | | | | | | |
Collapse
|
49
|
Lentsch AB. Regulatory mechanisms of injury and repair after hepatic ischemia/reperfusion. SCIENTIFICA 2012; 2012:513192. [PMID: 24278708 PMCID: PMC3820555 DOI: 10.6064/2012/513192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/12/2012] [Indexed: 06/02/2023]
Abstract
Hepatic ischemia/reperfusion injury is an important complication of liver surgery and transplantation. The mechanisms of this injury as well as the subsequent reparative and regenerative processes have been the subject of thorough study. In this paper, we discuss the complex and coordinated responses leading to parenchymal damage after liver ischemia/reperfusion as well as the manner in which the liver clears damaged cells and regenerates functional mass.
Collapse
Affiliation(s)
- Alex B. Lentsch
- Department of Surgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45267-0558, USA
| |
Collapse
|
50
|
Kurniali PC, O'Gara K, Wang X, Wang LJ, Somasundar P, Falanga V, Espat NJ, Katz SC. The effects of sorafenib on liver regeneration in a model of partial hepatectomy. J Surg Res 2012; 178:242-7. [PMID: 22482755 DOI: 10.1016/j.jss.2012.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sorafenib is currently approved for advanced hepatocellular carcinoma (HCC) and is presently being studied as an adjuvant treatment for HCC following resection. The effects of sorafenib on liver regeneration have not been clearly defined. Our objective was to identify the effects of sorafenib on liver regeneration in a murine partial hepatectomy (PH) model. MATERIALS AND METHODS We performed PH in C57Bl/6 mice treated with a range of sorafenib doses with assessments at several time points. Liver sinusoidal endothelial cells (LSEC) and hepatocyte DNA synthesis and proliferation were assessed with 5-bromo-2'-deoxyuridine (BrdU) and Ki67 by flow cytometry and immunohistochemistry. RESULTS Treatment with sorafenib did not result in any deaths following PH. When we measured BrdU uptake to assess DNA synthesis, there was a statistically significant increase at 48 h post-PH for nonfibrotic LSEC following treatment with 60 mg/kg of sorafenib. However, BrdU and Ki67 staining among LSEC and hepatocytes was not significantly affected by sorafenib at any of the other doses or time points. BrdU and Ki67 flow cytometry data correlated with immunohistochemistry findings and postoperative liver weights. CONCLUSION In a murine PH model, sorafenib did not alter the repair response of normal or fibrotic livers following PH as measured by changes in liver weight, DNA synthesis, and cellular proliferation. These findings suggest sorafenib administered following hepatic resection does not impair liver regeneration.
Collapse
Affiliation(s)
- Peter C Kurniali
- Department of Medicine, Roger Williams Medical Center, Providence, Rhode Island 02908, USA
| | | | | | | | | | | | | | | |
Collapse
|