1
|
Pandey AK, Trivedi V. Heat shock protein HSPA8 impedes hemin-induced cellular-toxicity in liver. Toxicol In Vitro 2025; 102:105959. [PMID: 39486598 DOI: 10.1016/j.tiv.2024.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Accumulation of hemin in cells, tissues, and organs is one of the major pathological conditions linked to hemolytic diseases like malaria. Pro-oxidant hemin confers high toxicity following its accumulation. We tested the cellular toxicity of hemin on HepG2 cells by exploring modulation in various cellular characteristics. Hemin reduces the viability of HepG2 cells and brings about visible morphological changes. Hemin causes perforations on the surface of HepG2 cells observed through SEM. Hemin leads to the extracellular release of liver enzymes and reduces the wound-healing potential of HepG2 cells. Hemin leads to the fragmentation of HepG2 DNA, arrests the cell cycle progression in the S-phase and induces apoptosis in these cells. Western blot analysis revealed that hemin triggers both the extrinsic and intrinsic pathways of apoptosis in HepG2 cells. We have already shown that the cytoprotective protein HSPA8 can polymerize hemin and minimize its toxicity. Similar experiments with hemin in the presence and absence of HSPA8 showed that HSPA8 reverses all the tested toxic effects of hemin on HepG2 cells. The protection from hemin toxicity in HepG2 cells appeared to be due to the extracellular polymerization of hemin by HSPA8.
Collapse
Affiliation(s)
- Alok Kumar Pandey
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Chowdhury P, Dey Talukdar P, Mukherjee P, Dey D, Chatterji U, Sengupta S. Hemin-induced reactive oxygen species triggers autophagy-dependent macrophage differentiation and pro-inflammatory responses in THP-1 cells. Exp Cell Res 2024; 442:114216. [PMID: 39182663 DOI: 10.1016/j.yexcr.2024.114216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The toxic effect of oxidized-heme, also known as hemin, is implicated in developing adverse clinical outcome in various hematolytic diseases. To simulate and reconstruct the molecular events associated with hemin exposure on circulating monocytes, we employed a THP-1 cell line based in vitro model. Flow cytometry and Western blot analyses were subsequently applied. Hemin-treated THP-1 produced ROS in a dose-dependent manner which resulted in 10-30 % of cell death primarily through apoptosis. Surviving cells induced autophagy which too was ROS-dependent, as revealed by application of N-acetyl-L-cysteine. Hemin-mediated autophagy promoted differentiation of CD14+ THP-1 cells into CD11b+ macrophages. Application of 3-methyladenine, reinforced that differentiation of THP-1 was an autophagy-dependent process. It was revealed that despite a higher polarization towards M2-macrophage, synthesis of pro-inflammatory cytokines namely TNF-α, IL-1A, IL-2, IL-8 and IL-17A predominated. IL-6, a pleiotropic cytokine, was also elevated. It may thus be surmised that hemin-induced pro-inflammatory response in THP-1 is downstream to ROS-dependent autophagy and monocyte differentiation. This finding is translationally meaningful as hemin is already approved by FDA for amelioration of acute porphyria and is actively considered as a therapeutic agent for other diseases. This study underscores the need of further research untangling the reciprocal regulation of inflammatory signaling and autophagy under oxidative stress.
Collapse
Affiliation(s)
- Pramita Chowdhury
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Priyanka Dey Talukdar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Pritha Mukherjee
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Debangana Dey
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Urmi Chatterji
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
3
|
de Ligt LA, Gaartman AE, Biemond BJ, Fijnvandraat K, van Bruggen R, Nur E. Neutrophils in sickle cell disease: Exploring their potential role as a therapeutic target. Am J Hematol 2024; 99:1119-1128. [PMID: 38293835 DOI: 10.1002/ajh.27224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024]
Abstract
Factors influencing the activation of neutrophils in SCD and the potential neutrophil-mediated ameliorating effects of therapies in SCD.
Collapse
Affiliation(s)
- Lydian A de Ligt
- Amsterdam UMC location University of Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam, The Netherlands
- Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Department of Pediatric Hematology, Amsterdam, the Netherlands
| | - Aafke E Gaartman
- Amsterdam UMC location University of Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam, The Netherlands
| | - Bart J Biemond
- Amsterdam UMC location University of Amsterdam, Department of Hematology, Amsterdam, The Netherlands
| | - Karin Fijnvandraat
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam, The Netherlands
- Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Department of Pediatric Hematology, Amsterdam, the Netherlands
| | - Robin van Bruggen
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam, The Netherlands
| | - Erfan Nur
- Amsterdam UMC location University of Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Sanquin Research and Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Pandey AK, Trivedi V. Role Transformation of HSPA8 to Heme-peroxidase After Binding Hemin to Catalyze Heme Polymerization. Protein J 2024; 43:48-61. [PMID: 38066289 DOI: 10.1007/s10930-023-10167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 02/29/2024]
Abstract
Hemin, a byproduct of hemoglobin degradation, inflicts oxidative insult to cells. Following its accumulation, several proteins are recruited for heme detoxification with heme oxygenase playing the key role. Chaperones play a protective role primarily by preventing protein degradation and unfolding. They also are known to have miscellaneous secondary roles during similar situations. To discover a secondary role of chaperones during heme stress we studied the role of the chaperone HSPA8 in the detoxification of hemin. In-silico studies indicated that HSPA8 has a well-defined biophoric environment to bind hemin. Through optical difference spectroscopy, we found that HSPA8 binds hemin through its N-terminal domain with a Kd value of 5.9 ± 0.04 µM and transforms into a hemoprotein. The hemoprotein was tested for exhibiting peroxidase activity using guaiacol as substrate. The complex formed reacts with H2O2 and exhibits classical peroxidase activity with an ability to oxidize aromatic and halide substrates. HSPA8 is dose-dependently catalyzing heme polymerization through its N-terminal domain. The IR results reveal that the polymer formed exhibits structural similarities to β-hematin suggesting its covalent nature. The polymerization mechanism was tested through optical spectroscopy, spin-trap, and activity inhibition experiments. The results suggest that the polymerization occurs through a peroxidase-H2O2 system involving a one-electron transfer mechanism, and the formation of free radical and radical-radical interaction. It highlights a possible role of the HSPA8-hemin complex in exhibiting cytoprotective function during pathological conditions like malaria, sickle cell disease, etc.
Collapse
Affiliation(s)
- Alok Kumar Pandey
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
5
|
Ross JT, Robles AJ, Mazer MB, Studer AC, Remy KE, Callcut RA. Cell-Free Hemoglobin in the Pathophysiology of Trauma: A Scoping Review. Crit Care Explor 2024; 6:e1052. [PMID: 38352942 PMCID: PMC10863949 DOI: 10.1097/cce.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
OBJECTIVES Cell-free hemoglobin (CFH) is a potent mediator of endothelial dysfunction, organ injury, coagulopathy, and immunomodulation in hemolysis. These mechanisms have been demonstrated in patients with sepsis, hemoglobinopathies, and those receiving transfusions. However, less is known about the role of CFH in the pathophysiology of trauma, despite the release of equivalent levels of free hemoglobin. DATA SOURCES Ovid MEDLINE, Embase, Web of Science Core Collection, and BIOSIS Previews were searched up to January 21, 2023, using key terms related to free hemoglobin and trauma. DATA EXTRACTION Two independent reviewers selected studies focused on hemolysis in trauma patients, hemoglobin breakdown products, hemoglobin-mediated injury in trauma, transfusion, sepsis, or therapeutics. DATA SYNTHESIS Data from the selected studies and their references were synthesized into a narrative review. CONCLUSIONS Free hemoglobin likely plays a role in endothelial dysfunction, organ injury, coagulopathy, and immune dysfunction in polytrauma. This is a compelling area of investigation as multiple existing therapeutics effectively block these pathways.
Collapse
Affiliation(s)
- James T Ross
- Department of Surgery, University of California Davis, Sacramento, CA
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals Cleveland, Cleveland, OH
| | - Anamaria J Robles
- Department of Surgery, University of California Davis, Sacramento, CA
| | - Monty B Mazer
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals Cleveland, Cleveland, OH
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, UH Rainbow Babies and Children's Hospital, Cleveland, OH
| | - Amy C Studer
- Blaisdell Medical Library, University of California Davis, Sacramento, CA
| | - Kenneth E Remy
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals Cleveland, Cleveland, OH
- Division of Pulmonary Critical Care Medicine, Department of Medicine, University Hospitals of Cleveland, Case Western Reserve School of Medicine, Cleveland, OH
| | - Rachael A Callcut
- Department of Surgery, University of California Davis, Sacramento, CA
| |
Collapse
|
6
|
Yan Q, Jia S, Li D, Yang J. The role and mechanism of action of microbiota-derived short-chain fatty acids in neutrophils: From the activation to becoming potential biomarkers. Biomed Pharmacother 2023; 169:115821. [PMID: 37952355 DOI: 10.1016/j.biopha.2023.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, have emerged as critical mediators in the communication between the human microbiota and its host. As the first responder to the inflammatory site, neutrophils play an important role in protecting the host against bacterial infections. Recent investigations revealed that SCFAs generated from microbiota influence various neutrophil activities, including activation, migration, and generation of mediators of inflammatory processes. SCFAs have also been demonstrated to exhibit potential therapeutic benefits in a variety of disorders related to neutrophil dysfunction, including inflammatory bowel disease, viral infectious disorders, and cancer. This study aims to examine the molecular processes behind the complicated link between SCFAs and neutrophils, as well as their influence on neutrophil-driven inflammatory disorders. In addition, we will also provide an in-depth review of current research on the diagnostic and therapeutic value of SCFAs as possible biomarkers for neutrophil-related diseases.
Collapse
Affiliation(s)
- Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Shengnan Jia
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Dongfu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Junling Yang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
7
|
Balazs I, Stadlbauer V. Circulating neutrophil anti-pathogen dysfunction in cirrhosis. JHEP Rep 2023; 5:100871. [PMID: 37822786 PMCID: PMC10562928 DOI: 10.1016/j.jhepr.2023.100871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Neutrophils are the largest population of leucocytes and are among the first cells of the innate immune system to fight against intruding pathogens. In patients with cirrhosis, neutrophils exhibit altered functionality, including changes in phagocytic ability, bacterial killing, chemotaxis, degranulation, reactive oxygen species production and NET (neutrophil extracellular trap) formation. This results in their inability to mount an adequate antibacterial response and protect the individual from infection. Prognosis and survival in patients with cirrhosis are greatly influenced by the development of infectious complications. Multidrug-resistant bacterial infections in patients with cirrhosis are currently a growing problem worldwide; therefore, alternative methods for the prevention and treatment of bacterial infections in cirrhosis are urgently needed. The prevention and treatment of neutrophil dysfunction could be a potential way to protect patients from bacterial infections. However, the reasons for changes in neutrophil function in cirrhosis are still not completely understood, which limits the development of efficient therapeutic strategies. Both cellular and serum factors have been proposed to contribute to the functional impairment of neutrophils. Herein, we review the current knowledge on features and proposed causes of neutrophil dysfunction in cirrhosis, with a focus on current knowledge gaps and limitations, as well as opportunities for future investigations in this field.
Collapse
Affiliation(s)
- Irina Balazs
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| |
Collapse
|
8
|
de Oliveira GP, Welsh JA, Pinckney B, Palu CC, Lu S, Zimmerman A, Barbosa RH, Sahu P, Noshin M, Gummuluru S, Tigges J, Jones JC, Ivanov AR, Ghiran IC. Human red blood cells release microvesicles with distinct sizes and protein composition that alter neutrophil phagocytosis. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e107. [PMID: 37942280 PMCID: PMC10629908 DOI: 10.1002/jex2.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 11/10/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound structures released by cells and tissues into biofluids, involved in cell-cell communication. In humans, circulating red blood cells (RBCs), represent the most common cell-type in the body, generating daily large numbers of microvesicles. In vitro, RBC vesiculation can be mimicked by stimulating RBCs with calcium ionophores, such as ionomycin and A23187. The fate of microvesicles released during in vivo aging of RBCs and their interactions with circulating cells is hitherto unknown. Using SEC plus DEG isolation methods, we have found that human RBCs generate microvesicles with two distinct sizes, densities, and protein composition, identified by flow cytometry, and MRPS, and further validated by immune TEM. Furthermore, proteomic analysis revealed that RBC-derived microvesicles (RBC-MVs) are enriched in proteins with important functions in ion channel regulation, calcium homeostasis, and vesicular transport, such as of sorcin, stomatin, annexin A7, and RAB proteins. Cryo-electron microscopy identified two separate pathways of RBC-MV-neutrophil interaction, direct fusion with the plasma membrane and internalization, respectively. Functionally, RBC-MVs decrease neutrophil ability to phagocytose E. coli but do not affect their survival at 24 hrs. This work brings new insights regarding the complexity of the RBC-MVs biogenesis, as well as their possible role in circulation.
Collapse
Affiliation(s)
- Getulio Pereira de Oliveira
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of Chemistry and Chemical BiologyBarnett Institute of Chemical & Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Brandy Pinckney
- Nano Flow Core FacilityBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Shulin Lu
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Alan Zimmerman
- Department of Chemistry and Chemical BiologyBarnett Institute of Chemical & Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Raquel Hora Barbosa
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Parul Sahu
- Department of AnesthesiaBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Maeesha Noshin
- Translational Nanobiology Section, Laboratory of Pathology Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Suryaram Gummuluru
- Department of MicrobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - John Tigges
- Nano Flow Core FacilityBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Jennifer Clare Jones
- Translational Nanobiology Section, Laboratory of Pathology Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical BiologyBarnett Institute of Chemical & Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Ionita C. Ghiran
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of AnesthesiaBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
9
|
Chen X, Hao Z, Wang N, Zhu J, Yi H, Tang S. Genetic Polymorphisms of UDP-Glucuronosyltransferases and Susceptibility to Antituberculosis Drug-Induced Liver Injury: A Systematic Review and Meta-Analysis. J Trop Med 2023; 2023:5044451. [PMID: 37868740 PMCID: PMC10586897 DOI: 10.1155/2023/5044451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Methods The PRISMA statement was strictly followed, and the protocol was registered in PROSPERO (CRD42022339317). The PICOS framework was used: patients received antituberculosis treatment, UGTs polymorphisms (mutants), UGTs polymorphisms (wild), AT-DILI, and case-control studies. Eligible studies were searched through nine databases up to April 27, 2022. The study's qualities were assessed by the revised Little's recommendations. Meta-analysis was conducted with a random-effects model using odds ratios (ORs) with 95% confidence intervals (95% CIs) as the effect size. Results Twelve case-control studies with 2128 cases and 4338 controls were included, and 32 single nucleotide polymorphisms (SNPs) in the seven UGT genes have been reported in Chinese and Korean. All studies were judged as high quality. The pooled results indicated that UGT1A1 rs3755319 (AC vs. AA, OR = 1.454, 95% CI: 1.100-1.921, P = 0.009), UGT2B7 rs7662029 (G vs. A, OR = 1.547, 95% CI: 1.249-1.917, P < 0.0001; GG + AG vs. AA, OR = 2.371, 95% CI: 1.779-3.160, P < 0.0001; AG vs. AA, OR = 2.686, 95% CI: 1.988-3.627, P < 0.0001), and UGT2B7 rs7439366 (C vs. T, OR = 0.585, 95% CI: 0.477-0.717, P < 0.0001; CC + TC vs. TT, OR = 0.347, 95% CI: 0.238-0.506, P < 0.0001; CC vs. TC + TT, OR = 0.675, 95% CI: 0.507-0.898, P = 0.007) might be associated with the risk of AT-DILI. Conclusions The polymorphisms of UGT1A1 rs3755319, UGT2B7 rs7662029, and UGT2B7 rs7439366 were significantly associated with AT-DILI susceptibility. However, this conclusion should be interpreted with caution due to the low number of studies and the relatively small sample size.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhuolu Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Nannan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jia Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Sadeghi M, Fathi M, Gholizadeh Navashenaq J, Mohammadi H, Yousefi M, Hojjat-Farsangi M, Namdar A, Movasaghpour Akbari AA, Jadidi-Niaragh F. The prognostic and therapeutic potential of HO-1 in leukemia and MDS. Cell Commun Signal 2023; 21:57. [PMID: 36915102 PMCID: PMC10009952 DOI: 10.1186/s12964-023-01074-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/11/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Heme oxygenase-1 (HO-1), a heme-degrading enzyme, is proven to have anti-apoptotic effects in several malignancies. In addition, HO-1 is reported to cause chemoresistance and increase cell survival. Growing evidence indicates that HO-1 contributes to the course of hematological malignancies as well. Here, the expression pattern, prognostic value, and the effect of HO-1 targeting in HMs are discussed. MAIN BODY According to the recent literature, it was discovered that HO-1 is overexpressed in myelodysplastic syndromes (MDS), chronic myeloid leukemia (CML), acute myeloblastic leukemia (AML), and acute lymphoblastic leukemia (ALL) cells and is associated with high-risk disease. Furthermore, in addition to HO-1 expression by leukemic and MDS cells, CML, AML, and ALL leukemic stem cells express this protein as well, making it a potential target for eliminating minimal residual disease (MRD). Moreover, it was concluded that HO-1 induces tumor progression and prevents apoptosis through various pathways. CONCLUSION HO-1 has great potential in determining the prognosis of leukemia and MDS patients. HO-1 induces resistance to several chemotherapeutic agents as well as tyrosine kinase inhibitors and following its inhibition, chemo-sensitivity increases. Moreover, the exact role of HO-1 in Chronic Lymphocytic Leukemia (CLL) is yet unknown. While findings illustrate that MDS and other leukemic patients could benefit from HO-1 targeting. Future studies can help broaden our knowledge regarding the role of HO-1 in MDS and leukemia. Video abstract.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Namdar
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Sobrevilla-Hernández G, Franco-Molina MA, Zárate-Triviño DG, Kawas JR, Hernández-Martínez SP, García-Coronado PL, Santana-Krímskaya SE, Alvizo-Báez CA, Rodríguez-Padilla C. Development of a new generation of miniemulsion based on cottonseed oil with α-tocopherol and ZnO and evaluation of its adjuvant activity. PeerJ 2023; 11:e14981. [PMID: 36968001 PMCID: PMC10035431 DOI: 10.7717/peerj.14981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
Background Emulsions have been widely used as immunological adjuvants. But the use of materials derived from plants such as cottonseed oil, alpha-tocopherol, or minerals such as zinc, as well as their use at the nanometric scale has been little explored. In this study, we develop a new miniemulsion and evaluated its antioxidant and phagocytic capacity, as well as parameters related to immune response stimulation by cytokine expression and antibodies production in a mice model. Methods Formulated CN (cottonseed oil miniemulsion) and CNZ (cottonseed oil miniemulsion whit zinc oxide nanoparticles) miniemulsions were characterized by scanning electronic microscopy SEM, DLS and FT-IR. In murine macrophages, splenocytes and thymocytes primary cultures safety and cytotoxicity were determined by MTT. In macrophages the antioxidant and phagocytic capacity was evaluated. In BALB/c mice, the stimulation of the immune system was determined by the expression of cytokines and the production of antibodies. Results The CN and CNZ presented stability for 90 days. Immediately after preparation, the CN presented a higher particle size (543.1 nm) than CNZ (320 nm). FT-IR demonstrated the correct nanoparticle synthesis by the absence of sulfate groups. CN and CNZ (1.25 to 10 µL/mL) had no toxic effect on macrophages (p = 0.108), splenocytes (p = 0.413), and thymocytes (p = 0.923). All CN and CNZ doses tested induced nitric oxide and antioxidants production in dose dependent manner when compared with control. CN-ovalbumin and CNZ-ovalbumin treatments in femoral subcutaneous tissue area showed inflammation with higher leukocyte infiltration compared with FCA. The intraperitoneal administration with CN, CNZ, and FCA showed a higher total intraperitoneal cells recruitment (CD14+) after 24 h of inoculation than control (p = 0.0001). CN and CNZ increased the phagocyte capacity with respect to untreated macrophages in the Candida albicans-phagocytosis assay. The evaluation of residual CFU indicated that only CN significantly decreased (p = 0.004) this value at 3 h. By other side, only CN increased (p = 0.002) the nitric oxide production. CNZ stimulated a major INFγ secretion compared with FCA at day 7. A major IL-2 secretion was observed at days 7 and 14, stimulated with CN and CNZ. Both miniemulsions did not affect the antibody isotypes production (IgG1, IgG2a, IgG3, IgA and IgM) at days 7, 14, 28, and 42. CN induced a significant IgG production against OVA, but lesser than FCA. Conclusions The two new miniemulsions with adjuvant and antioxidant capacity, were capable of generating leukocyte infiltration and increased cytokines and antibodies production.
Collapse
Affiliation(s)
- Gustavo Sobrevilla-Hernández
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Moisés Armides Franco-Molina
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Diana G. Zárate-Triviño
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Jorge R. Kawas
- Posgrado Conjunto Agronomía-Veterinaría, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo León, Mexico
| | | | - Paola Leonor García-Coronado
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Silvia Elena Santana-Krímskaya
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Cynthia Aracely Alvizo-Báez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
12
|
Mubeen S, Domingo-Fernández D, Díaz del Ser S, Solanki DM, Kodamullil AT, Hofmann-Apitius M, Hopp MT, Imhof D. Exploring the Complex Network of Heme-Triggered Effects on the Blood Coagulation System. J Clin Med 2022; 11:jcm11195975. [PMID: 36233841 PMCID: PMC9572022 DOI: 10.3390/jcm11195975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Excess labile heme, occurring under hemolytic conditions, displays a versatile modulator in the blood coagulation system. As such, heme provokes prothrombotic states, either by binding to plasma proteins or through interaction with participating cell types. However, despite several independent reports on these effects, apparently contradictory observations and significant knowledge gaps characterize this relationship, which hampers a complete understanding of heme-driven coagulopathies and the development of suitable and specific treatment options. Thus, the computational exploration of the complex network of heme-triggered effects in the blood coagulation system is presented herein. Combining hemostasis- and heme-specific terminology, the knowledge available thus far was curated and modeled in a mechanistic interactome. Further, these data were incorporated in the earlier established heme knowledge graph, "HemeKG", to better comprehend the knowledge surrounding heme biology. Finally, a pathway enrichment analysis of these data provided deep insights into so far unknown links and novel experimental targets within the blood coagulation cascade and platelet activation pathways for further investigation of the prothrombotic nature of heme. In summary, this study allows, for the first time, a detailed network analysis of the effects of heme in the blood coagulation system.
Collapse
Affiliation(s)
- Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
- Enveda Biosciences, Inc., San Francisco, CA 94080, USA
| | - Sara Díaz del Ser
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
- Polytechnic University of Madrid, E-28040 Madrid, Spain
| | - Dhwani M. Solanki
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Alpha T. Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
- Causality Biomodels, Kinfra Hi-Tech Park, Kalamassery, Cochin 683503, Kerala, India
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
| | - Marie-T. Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Correspondence: (M.-T.H.); (D.I.); Tel.: +49-228-73-5231 (M.-T.H.); +49-228-73-5254 (D.I.)
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Correspondence: (M.-T.H.); (D.I.); Tel.: +49-228-73-5231 (M.-T.H.); +49-228-73-5254 (D.I.)
| |
Collapse
|
13
|
Liu W, Lu L, Pan H, He X, Zhang M, Wang N, Zhu J, Yi H, Tang S. Haem oxygenase-1 and haemopexin gene polymorphisms and the risk of anti-tuberculosis drug-induced hepatotoxicity in China. Pharmacogenomics 2022; 23:431-441. [PMID: 35470713 DOI: 10.2217/pgs-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: To assess whether the risk of anti-tuberculosis drug-induced hepatotoxicity (ATDH) might be influenced by haem oxygenase-1 (HMOX1) and haemopexin (HPX) gene polymorphisms. Methods: A dynamic anti-tuberculosis treatment cohort was constructed, and the 1:4 matched nested case-control study was analysed. Eight single nucleotide polymorphisms (SNPs) of the two genes were selected for genotyping and Bonferroni correction was performed to correct for multiple comparison. Results: Overall, 7.8% of patients developed ATDH. SNP rs1807714 in the HMOX1 gene had decreased effects on the risk of moderate and severe hepatotoxicity under the dominant and additive models, and hepatocellular injury under the additive model. SNP rs2682099 in the HPX gene had increased effects on the risk of moderate and severe hepatotoxicity under the recessive model. However, these associations disappeared after Bonferroni correction. Conclusion: HMOX1 and HPX gene polymorphisms might not be associated with susceptibility to ATDH in the Chinese population.
Collapse
Affiliation(s)
- Wenpei Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People's Hospital of Changshu, Changshu, 215500, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, 212021, China
| | - Xiaomin He
- Department of Infectious Disease, The People's Hospital of Taixing, Taixing, 225400, China
| | - Meiling Zhang
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, 212400, China
| | - Nannan Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jia Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Honggang Yi
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shaowen Tang
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
14
|
Molecular mechanisms of hematological and biochemical alterations in malaria: A review. Mol Biochem Parasitol 2021; 247:111446. [PMID: 34953384 DOI: 10.1016/j.molbiopara.2021.111446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
Abstract
Malaria is a dangerous disease that contributes to millions of hospital visits and hundreds of thousands of deaths, especially in children residing in sub-Saharan Africa. Although several interventions such as vector control, case detection, and treatment are already in place, there is no substantive reduction in the disease burden. Several studies in the past have reported the emergence of resistant strains of malaria parasites (MPs) and mosquitoes, and poor adherence and inaccessibility to effective antimalarial drugs as the major factors for this persistent menace of malaria infections. Moreover, victory against MP infections for many years has been hampered by an incomplete understanding of the complex nature of malaria pathogenesis. Very recent studies have identified different complex interactions and hematological alterations induced by malaria parasites. However, no studies have hybridized these alterations for a better understanding of Malaria pathogenesis. Hence, this review thoroughly discusses the molecular mechanisms of all reported hematological and biochemical alterations induced by MPs infections. Specifically, the mechanisms in which MP-infection induces anemia, thrombocytopenia, leukopenia, dyslipidemia, hypoglycemia, oxidative stress, and liver and kidney malfunctions were presented. The study also discussed how MPs evade the host's immune response and suggested strategies to limit evasion of the host's immune response to combat malaria and its complications.
Collapse
|
15
|
Vinchi F. Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxid Redox Signal 2021; 35:387-414. [PMID: 33554718 PMCID: PMC8328045 DOI: 10.1089/ars.2020.8167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Significance: While atherosclerosis is an almost inevitable consequence of aging, food preferences, lack of exercise, and other aspects of the lifestyle in many countries, the identification of new risk factors is of increasing importance to tackle a disease, which has become a major health burden for billions of people. Iron has long been suspected to promote the development of atherosclerosis, but data have been conflicting, and the contribution of iron is still debated controversially. Recent Advances: Several experimental and clinical studies have been recently published about this longstanding controversial problem, highlighting the critical need to unravel the complexity behind this topic. Critical Issues: The aim of the current review is to provide an overview of the current knowledge about the proatherosclerotic impact of iron, and discuss the emerging role of non-transferrin-bound iron (NTBI) as driver of vasculotoxicity and atherosclerosis. Finally, I will provide detailed mechanistic insights on the cellular processes and molecular pathways underlying iron-exacerbated atherosclerosis. Overall, this review highlights a complex framework where NTBI acts at multiple levels in atherosclerosis by altering the serum and vascular microenvironment in a proatherogenic and proinflammatory manner, affecting the functionality and survival of vascular cells, promoting foam cell formation and inducing angiogenesis, calcification, and plaque destabilization. Future Directions: The use of additional iron markers (e.g., NTBI) may help adequately predict predisposition to cardiovascular disease. Clinical studies are needed in the aging population to address the atherogenic role of iron fluctuations within physiological limits and the therapeutic value of iron restriction approaches. Antioxid. Redox Signal. 35, 387-414.
Collapse
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), New York Blood Center (NYBC), New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
16
|
Balla J, Zarjou A. Heme Burden and Ensuing Mechanisms That Protect the Kidney: Insights from Bench and Bedside. Int J Mol Sci 2021; 22:8174. [PMID: 34360940 PMCID: PMC8347331 DOI: 10.3390/ijms22158174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
With iron at its core, the tetrapyrrole heme ring is a cardinal prosthetic group made up of many proteins that participate in a wide array of cellular functions and metabolism. Once released, due to its pro-oxidant properties, free heme in sufficient amounts can result in injurious effects to the kidney and other organs. Heme oxygenase-1 (HO-1) has evolved to promptly attend to such injurious potential by facilitating degradation of heme into equimolar amounts of carbon monoxide, iron, and biliverdin. HO-1 induction is a beneficial response to tissue injury in diverse animal models of diseases, including those that affect the kidney. These protective attributes are mainly due to: (i) prompt degradation of heme leading to restraining potential hazardous effects of free heme, and (ii) generation of byproducts that along with induction of ferritin have proven beneficial in a number of pathological conditions. This review will focus on describing clinical aspects of some of the conditions with the unifying end-result of increased heme burden and will discuss the molecular mechanisms that ensue to protect the kidneys.
Collapse
Affiliation(s)
- József Balla
- ELKH-UD Vascular Biology and Myocardial Pathophysiology Research Group, Division of Nephrology, Department of Medicine, Faculty of Medicine, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary;
| | - Abolfazl Zarjou
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 618 Zeigler Research Building, 703 South 19th Street, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Heme induces significant neutrophil adhesion in vitro via an NFκB and reactive oxygen species-dependent pathway. Mol Cell Biochem 2021; 476:3963-3974. [PMID: 34191232 DOI: 10.1007/s11010-021-04210-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Intravascular hemolysis, a major manifestation of sickle cell disease (SCD) and other diseases, incurs the release of hemoglobin and heme from red blood cells, in turn triggering inflammatory processes. This study investigated the in vitro effects of heme, a major inflammatory DAMP, on the adhesive properties of isolated human neutrophils. Heme (20 and 50 µM) significantly increased the adhesion of neutrophils to fibronectin and to recombinant ICAM-1, under static conditions, even more efficiently than the potent pro-inflammatory cytokine, tumor necrosis factor-α (TNF); a microfluidic assay confirmed that heme stimulated neutrophil adhesion under conditions of shear stress. Heme-induced neutrophil adhesion was associated with the increased activities, but not expressions, of the Mac-1 and LFA-1 integrin subunits, CD11b and CD11a, on the cell surface. Notably, heme (50 µM) significantly induced NFκB translocation in neutrophils, and inhibition of NFκB activity with the BAY11-7082 molecule abolished heme-induced cell adhesion to fibronectin and significantly decreased CD11a activity. Flow cytometric analysis demonstrated major reactive oxygen species (ROS) generation in neutrophils following heme stimulation that could be inhibited by the antioxidant, α-tocopherol, and by BAY11-7082. Furthermore, co-incubation with α-tocopherol abrogated both heme-stimulated neutrophil adhesion and CD11a/CD11b activation. Thus, our data indicate that heme, at clinically relevant concentrations, is a potent activator of neutrophil adhesion, increasing the ligand affinity of the β2 integrins via a mechanism that may be partially mediated by an NFkB-dependent pathway and the generation of ROS. Given the fundamental role that the adhesion of neutrophils to the vascular wall plays in SCD vaso-occlusion and other vascular inflammatory processes, our findings provide further evidence that cell-free heme is a major therapeutic target in the hemolytic diseases.
Collapse
|
18
|
Gamage SMK, Lee KTW, Dissabandara DLO, Lam AKY, Gopalan V. Dual role of heme iron in cancer; promotor of carcinogenesis and an inducer of tumour suppression. Exp Mol Pathol 2021; 120:104642. [PMID: 33905708 DOI: 10.1016/j.yexmp.2021.104642] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/14/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Heme is a crucial compound for cell survival but is also equipped with the potential to be toxic and carcinogenic to cells. However, with the recent advancement of knowledge regarding ferroptosis, the iron mediated cell death, heme can be postulated to induce tumour suppression through ferroptosis. This review summarizes the literature on the carcinogenic and anticarcinogenic properties of heme with specific emphasis on the alterations observed on heme synthesis, metabolism and transport in tumour cells. METHODS Literature search was performed in PubMed data base using the MeSH terms 'heme iron or heme', 'cancer or carcinogenesis' and 'tumour suppression' or 'anticarcinogenic properties. Out of 189 results, 166 were relevant to the current review. RESULTS Heme supports carcinogenesis via modulation of immune cell function, promoting inflammation and gut dysbiosis, impeding tumour suppressive potential of P53 gene, promoting cellular cytotoxicity and reactive oxygen species generation and modulating Nfr2 /HO-1 axis. The carcinogenic and anticarcinogenic properties of heme are both dose and oxygen concentration dependant. At low doses, heme is harmless and even helpful in maintaining the much-needed redox balance within the cell. However, when heme exceeds physiological concentrations, it could initiate and propagate carcinogenesis, due to its ability to produce reactive oxygen species (ROS). The same phenomenon of heme mediated ROS generation could be manipulated to initiate tumour suppression via ferroptosis, but the therapeutic doses are yet to be determined. CONCLUSION Heme iron possesses powerful carcinogenic and anticarcinogenic properties which are dosage and oxygen availability dependant.
Collapse
Affiliation(s)
- Sujani M K Gamage
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia; Department of Anatomy, Faculty of Medicine, University of Peradeniya, Sri Lanka
| | - Katherine T W Lee
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - D Lakal O Dissabandara
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
19
|
Mohamedi Y, Fontanil T, Cal S, Cobo T, Obaya ÁJ. ADAMTS-12: Functions and Challenges for a Complex Metalloprotease. Front Mol Biosci 2021; 8:686763. [PMID: 33996918 PMCID: PMC8119882 DOI: 10.3389/fmolb.2021.686763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nineteen members of the ADAMTS family of secreted zinc metalloproteinases are present in the human degradome. A wide range of different functions are being attributed to these enzymes and the number of their known substrates is considerably increasing in recent years. ADAMTSs can participate in processes such as fertility, inflammation, arthritis, neuronal and behavioral disorders, as well as cancer. Since its first annotation in 2001, ADAMTS-12 has been described to participate in different processes displayed by members of this family of proteinases. In this sense, ADAMTS-12 performs essential roles in modulation and recovery from inflammatory processes such as colitis, endotoxic sepsis and pancreatitis. ADAMTS-12 has also been involved in cancer development acting either as a tumor suppressor or as a pro-tumoral agent. Furthermore, participation of ADAMTS-12 in arthritis or in neuronal disorders has also been suggested through degradation of components of the extracellular matrix. In addition, ADAMTS-12 proteinase activity can also be modified by interaction with other proteins and thus, can be an alternative way of modulating ADAMTS-12 functions. In this review we revised the most relevant findings about ADAMTS-12 function on the 20th anniversary of its identification.
Collapse
Affiliation(s)
- Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Departamento de Investigación, Instituto Ordóñez, Oviedo, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain.,Instituto Asturiano de Odontología, Oviedo, Spain
| | - Álvaro J Obaya
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, Oviedo, Spain.,Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
20
|
Roy M, Pal I, Dey C, Dey A, Dey SG. Electronic structure and reactivity of heme bound insulin. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin resistance as well as insulin deficiency are said to be principal to the development of type 2 diabetes mellitus (T2Dm). Heme has also been suggested to play an important role in the disease etiology since many of the heme deficiency symptoms constitute the common pathological features of T2Dm. Besides, iron overload, higher heme iron intake and transfusion requiring diseases are associated with a higher risk of T2Dm development. In this study the interaction between these two key components i.e. heme and insulin has been studied spectroscopically under different conditions which include the effect of excess peptide as well as increasing pH. The resultant heme-insulin complexes in their reduced state are found to produce very little partially reduced oxygen species (PROS) on getting oxidized by molecular oxygen. The interaction between insulin and previously reported T2Dm relevant heme-amylin complex were also examined using absorption and resonance Raman spectroscopy. The corresponding data suggest that insulin sequesters heme from heme-amylin to form the much less cytotoxic heme-insulin.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
21
|
Rossi M, Korpak K, Doerfler A, Zouaoui Boudjeltia K. Deciphering the Role of Heme Oxygenase-1 (HO-1) Expressing Macrophages in Renal Ischemia-Reperfusion Injury. Biomedicines 2021; 9:biomedicines9030306. [PMID: 33809696 PMCID: PMC8002311 DOI: 10.3390/biomedicines9030306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), which contributes to the development of chronic kidney disease (CKD). Renal IRI combines major events, including a strong inflammatory immune response leading to extensive cell injuries, necrosis and late interstitial fibrosis. Macrophages act as key players in IRI-induced AKI by polarizing into proinflammatory M1 and anti-inflammatory M2 phenotypes. Compelling evidence exists that the stress-responsive enzyme, heme oxygenase-1 (HO-1), mediates protection against renal IRI and modulates macrophage polarization by enhancing a M2 subset. Hereafter, we review the dual effect of macrophages in the pathogenesis of IRI-induced AKI and discuss the critical role of HO-1 expressing macrophages.
Collapse
Affiliation(s)
- Maxime Rossi
- Department of Urology, CHU de Charleroi, Université libre de Bruxelles (ULB), 6000 Charleroi, Belgium;
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Correspondence: (M.R.); (K.Z.B.)
| | - Kéziah Korpak
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Department of Geriatric Medicine, CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium
| | - Arnaud Doerfler
- Department of Urology, CHU de Charleroi, Université libre de Bruxelles (ULB), 6000 Charleroi, Belgium;
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Correspondence: (M.R.); (K.Z.B.)
| |
Collapse
|
22
|
Hopp MT, Imhof D. Linking Labile Heme with Thrombosis. J Clin Med 2021; 10:427. [PMID: 33499296 PMCID: PMC7865584 DOI: 10.3390/jcm10030427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Thrombosis is one of the leading causes of death worldwide. As such, it also occurs as one of the major complications in hemolytic diseases, like hemolytic uremic syndrome, hemorrhage and sickle cell disease. Under these conditions, red blood cell lysis finally leads to the release of large amounts of labile heme into the vascular compartment. This, in turn, can trigger oxidative stress and proinflammatory reactions. Moreover, the heme-induced activation of the blood coagulation system was suggested as a mechanism for the initiation of thrombotic events under hemolytic conditions. Studies of heme infusion and subsequent thrombotic reactions support this assumption. Furthermore, several direct effects of heme on different cellular and protein components of the blood coagulation system were reported. However, these effects are controversially discussed or not yet fully understood. This review summarizes the existing reports on heme and its interference in coagulation processes, emphasizing the relevance of considering heme in the context of the treatment of thrombosis in patients with hemolytic disorders.
Collapse
Affiliation(s)
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany;
| |
Collapse
|
23
|
Tao B, Yang M, Chen H, Pan H, Liu W, Yi H, Tang S. Association of ABO blood group and antituberculosis drug-induced liver injury: A case-control study from a Chinese Han population. J Clin Pharm Ther 2020; 45:638-645. [PMID: 32259340 DOI: 10.1111/jcpt.13139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Antituberculosis drug-induced liver injury (ATLI) is a serious adverse drug reaction, and its pathogenic mechanism is still largely unknown. Rifampin (RIF) has been reported to cause haemolysis due to the production of drug-dependent antibodies, and haemolysis results in an increased level of free haem, which affects the function of hepatocytes. Blood group determinants can act as specific receptor sites for drug-antibody complexes, causing erythrocyte destruction in the presence of RIF. RIF-induced immune haemolysis may be a potential mechanism for ATLI. Thus, the study aimed to explore the role of ABO blood group systems in Chinese ATLI patients. METHODS A 1:4 matched case-control study was conducted among 146 ATLI cases and 584 controls. Multivariable conditional logistic regression and Cox proportional regression were used to estimate the association between ABO blood group and risk of ATLI by odds ratio (OR), hazards ratio (HR) and 95% confidence intervals (CIs), and liver disease history and taking hepatoprotectant were used as covariates. RESULTS AND DISCUSSION Patients in the A, B, AB and non-O blood groups had a significantly higher risk of ATLI than those in the O blood group (OR = 1.832, 95% CI: 1.126-2.983, P = .015; OR = 1.751, 95% CI: 1.044-2.937, P = .034; OR = 2.059, 95% CI: 1.077-3.938, P = .029; OR = 1.822, 95% CI: 1.173-2.831, P = .007, respectively). After considering the time of ALTI occurrence, similar results were found in the A, B, AB and non-O blood groups (HR = 1.676, 95% CI: 1.072-2.620, P = .024; HR = 1.620, 95% CI: 1.016-2.584, P = .043; HR = 2.010, 95% CI: 1.130-3.576, P = .018; HR = 1.701, 95% CI: 1.138-2.542, P = .010, respectively). Furthermore, subgroup analysis also detected a significant association between ABO blood group and ATLI in patients taking RIF (P < .05). However, no significant difference was observed in patients not taking RIF (P > .05). WHAT IS NEW AND CONCLUSION The present study is the first to evaluate the role of ABO blood group systems in Chinese ATLI cases. Based on the present matched case-control study, the ABO blood group may be associated with susceptibility to ATLI in the Chinese antituberculosis population, especially in patients with blood groups A, B and AB who are taking RIF.
Collapse
Affiliation(s)
- Bilin Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Miaomiao Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbo Chen
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, China
| | - Wenpei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Abstract
Sepsis is a heterogeneous clinical syndrome that is complicated commonly by acute kidney injury (sepsis-AKI). Currently, no approved pharmacologic therapies exist to either prevent sepsis-AKI or to treat sepsis-AKI once it occurs. A growing body of evidence supports a connection between red blood cell biology and sepsis-AKI. Increased levels of circulating cell-free hemoglobin (CFH) released from red blood cells during hemolysis are common during sepsis and can contribute to sepsis-AKI through several mechanisms including tubular obstruction, nitric oxide depletion, oxidative injury, and proinflammatory signaling. A number of potential pharmacologic therapies targeting CFH in sepsis have been identified including haptoglobin, hemopexin, and acetaminophen, and early phase clinical trials have suggested that acetaminophen may have beneficial effects on lipid peroxidation and kidney function in patients with sepsis. Bedside measurement of CFH levels may facilitate predictive enrichment for future clinical trials of CFH-targeted therapeutics. However, rapid and reliable bedside tests for plasma CFH will be required for such trials to move forward.
Collapse
Affiliation(s)
- V Eric Kerchberger
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville TN.
| |
Collapse
|
25
|
Chen S, Wang X, Nisar MF, Lin M, Zhong JL. Heme Oxygenases: Cellular Multifunctional and Protective Molecules against UV-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5416728. [PMID: 31885801 PMCID: PMC6907065 DOI: 10.1155/2019/5416728] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Ultraviolet (UV) irradiation can be considered as a double-edged sword: not only is it a crucial environmental factor that can cause skin-related disorders but it can also be used for phototherapy of skin diseases. Inducible heme oxygenase-1 (HO-1) in response to a variety of stimuli, including UV exposure, is vital to maintain cell homeostasis. Heme oxygenase-2 (HO-2), another member of the heme oxygenase family, is constitutively expressed. In this review, we discuss how heme oxygenase (HO), a vital rate-limiting enzyme, participates in heme catabolism and cytoprotection. Phylogenetic analysis showed that there may exist a functional differentiation between HO-1 and HO-2 during evolution. Furthermore, depending on functions in immunomodulation and antioxidation, HO-1 participates in disease progression, especially in pathogenesis of skin diseases, such as vitiligo and psoriasis. To further investigate the particular role of HO-1 in diseases, we summarized the profile of the HO enzyme system and its related signaling pathways, such as Nrf2 and endoplasmic reticulum crucial signaling, both known to regulate HO-1 expression. Furthermore, we report on a C-terminal truncation of HO-1, which is generally considered as a signal molecule. Also, a newly identified alternative splice isoform of HO-1 not only provides us a novel perspective on comprehensive HO-1 alternative splicing but also offers us a basis to clarify the relationship between HO-1 transcripts and oxidative diseases. To conclude, the HO system is not only involved in heme catabolism but also involved in biological processes related to the pathogenesis of certain diseases, even though the mechanism of disease progression still remains sketchy. Further understanding the role of the HO system and its relationship to UV is helpful for revealing the HO-related signaling networks and the pathogenesis of many diseases.
Collapse
Affiliation(s)
- ShiDa Chen
- The Base of “111 Project” for Biomechanics & Tissue Repair Engineering; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - XiaoYu Wang
- The Base of “111 Project” for Biomechanics & Tissue Repair Engineering; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Muhammad Farrukh Nisar
- The Base of “111 Project” for Biomechanics & Tissue Repair Engineering; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Mao Lin
- Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Julia Li Zhong
- The Base of “111 Project” for Biomechanics & Tissue Repair Engineering; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
- Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| |
Collapse
|
26
|
Rocco-Machado N, Cosentino-Gomes D, Nascimento MT, Paes-Vieira L, Khan YA, Mittra B, Andrews NW, Meyer-Fernandes JR. Leishmania amazonensis ferric iron reductase (LFR1) is a bifunctional enzyme: Unveiling a NADPH oxidase activity. Free Radic Biol Med 2019; 143:341-353. [PMID: 31446054 DOI: 10.1016/j.freeradbiomed.2019.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023]
Abstract
Leishmania amazonensis is one of leishmaniasis' causative agents, a disease that has no cure and leads to the appearance of cutaneous lesions. Recently, our group showed that heme activates a Na+/K+ ATPase in these parasites through a signaling cascade involving hydrogen peroxide (H2O2) generation. Heme has a pro-oxidant activity and signaling capacity, but the mechanism by which this molecule increases H2O2 levels in L. amazonensis has not been elucidated. Here we investigated the source of H2O2 stimulated by heme, ruling out the participation of mitochondria and raising the possibility of a role for a NADPH oxidase (Nox) activity. Despite the absence of a classical Nox sequence in trypanosomatid genomes, L. amazonensis expresses a surface ferric iron reductase (LFR1). Interestingly, Nox enzymes are thought to have evolved from ferric iron reductases because they share same core domain and are very similar in structure. The main difference is that Nox catalyses electron flow from NADPH to oxygen, generating reactive oxygen species (ROS), while ferric iron reductase promotes electron flow to ferric iron, generating ferrous iron. Using L. amazonensis overexpressing or knockout for LFR1 and heterologous expression of LFR1 in mammalian embryonic kidney (HEK 293) cells, we show that this enzyme is bifunctional, being able to generate both ferrous iron and H2O2. It was previously described that protozoans knockout for LFR1 have their differentiation to virulent forms (amastigote and metacyclic promastigote) impaired. In this work, we observed that LFR1 overexpression stimulates protozoan differentiation to amastigote forms, reinforcing the importance of this enzyme in L. amazonensis life cycle regulation. Thus, we not only identified a new source of ROS production in Leishmania, but also described, for the first time, an enzyme with both ferric iron reductase and Nox activities.
Collapse
Affiliation(s)
- N Rocco-Machado
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - D Cosentino-Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of Chemistry, Department of Biochemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - M T Nascimento
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - L Paes-Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Y A Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - B Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - N W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - J R Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
27
|
Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 2019; 15:671-692. [PMID: 31455889 DOI: 10.1038/s41581-019-0181-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron - potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) - and potentially HO2 - represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.
| | - Erfan Nur
- Department of Haematology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
28
|
Thomas AM, Gerogianni A, McAdam MB, Fløisand Y, Lau C, Espevik T, Nilsson PH, Mollnes TE, Barratt-Due A. Complement Component C5 and TLR Molecule CD14 Mediate Heme-Induced Thromboinflammation in Human Blood. THE JOURNAL OF IMMUNOLOGY 2019; 203:1571-1578. [PMID: 31413105 DOI: 10.4049/jimmunol.1900047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Heme is a critical danger molecule liberated from hemeproteins in various conditions, including from hemoglobin in hemolytic diseases. Heme may cause thromboinflammatory damage by activating inflammatory and hemostatic pathways, such as complement, the TLRs, coagulation, and platelets. In this study, we explored the effect of single and dual inhibition of complement component C5 and TLR coreceptor CD14 on heme-induced thromboinflammation in an ex vivo human whole blood model. Heme induced a dose-dependent activation of complement via the alternative pathway. Single inhibition of C5 by eculizumab attenuated the release of IL-6, IL-8, TNF, MCP-1, MIP-1α, IFN-γ, LTB-4, MMP-8 and -9, and IL-1Ra with more than 60% (p < 0.05 for all) reduced the upregulation of CD11b on granulocytes and monocytes by 59 and 40%, respectively (p < 0.05), and attenuated monocytic tissue factor expression by 33% (p < 0.001). Blocking CD14 attenuated IL-6 and TNF by more than 50% (p < 0.05). In contrast to single inhibition, combined C5 and CD14 was required for a significantly attenuated prothrombin cleavage (72%, p < 0.05). Markers of thromboinflammation were also quantified in two patients admitted to the hospital with sickle cell disease (SCD) crisis. Both SCD patients had pronounced hemolysis and depleted plasma hemopexin and haptoglobin. Plasma heme and complement activation was markedly increased in one patient, a coinciding observation as demonstrated ex vivo. In conclusion, heme-induced thromboinflammation was largely attenuated by C5 inhibition alone, with a beneficial effect of adding a CD14 inhibitor to attenuate prothrombin activation. Targeting C5 has the potential to reduce thromboinflammation in SCD crisis patients.
Collapse
Affiliation(s)
- Anub M Thomas
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Alexandra Gerogianni
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
| | - Martin B McAdam
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Yngvar Fløisand
- Department of Haematology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway
| | - Corinna Lau
- Research Laboratory, Nordland Hospital, 8092 Bodo, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway.,Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway.,Research Laboratory, Nordland Hospital, 8092 Bodo, Norway.,K.G. Jebsen Thrombosis Research and Expertise Centre, University of Tromso, 9037 Tromso, Norway; and
| | - Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital and K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway; .,Division of Emergencies and Critical Care, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| |
Collapse
|
29
|
Wu B, Wu Y, Tang W. Heme Catabolic Pathway in Inflammation and Immune Disorders. Front Pharmacol 2019; 10:825. [PMID: 31396090 PMCID: PMC6667928 DOI: 10.3389/fphar.2019.00825] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, the heme catabolic pathway is considered to play an important regulatory role in cell protection, apoptosis, inflammation, and other physiological and pathological processes. An appropriate amount of heme forms the basic elements of various life activities, while when released in large quantities, it can induce toxicity by mediating oxidative stress and inflammation. Heme oxygenase (HO) -1 can catabolize free heme into carbon monoxide (CO), ferrous iron, and biliverdin (BV)/bilirubin (BR). The diverse functions of these metabolites in immune systems are fascinating. Decades work shows that administration of degradation products of heme such as CO and BV/BR exerts protective activities in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS) and other immune disorders. This review elaborates the molecular and biochemical characterization of heme catabolic pathway, discusses the signal transduction and immunomodulatory mechanism in inflammation and summarizes the promising therapeutic strategies based on this pathway in inflammatory and immune disorders.
Collapse
Affiliation(s)
- Bing Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yanwei Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Glomerular Hematuria: Cause or Consequence of Renal Inflammation? Int J Mol Sci 2019; 20:ijms20092205. [PMID: 31060307 PMCID: PMC6539976 DOI: 10.3390/ijms20092205] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/21/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
Glomerular hematuria is a cardinal symptom of renal disease. Glomerular hematuria may be classified as microhematuria or macrohematuria according to the number of red blood cells in urine. Recent evidence suggests a pathological role of persistent glomerular microhematuria in the progression of renal disease. Moreover, gross hematuria, or macrohematuria, promotes acute kidney injury (AKI), with subsequent impairment of renal function in a high proportion of patients. In this pathological context, hemoglobin, heme, or iron released from red blood cells in the urinary space may cause direct tubular cell injury, oxidative stress, pro-inflammatory cytokine production, and further monocyte/macrophage recruitment. The aim of this manuscript is to review the role of glomerular hematuria in kidney injury, the role of inflammation as cause and consequence of glomerular hematuria, and to discuss novel therapies to combat hematuria.
Collapse
|
31
|
Giuliani KTK, Kassianos AJ, Healy H, Gois PHF. Pigment Nephropathy: Novel Insights into Inflammasome-Mediated Pathogenesis. Int J Mol Sci 2019; 20:E1997. [PMID: 31018590 PMCID: PMC6514712 DOI: 10.3390/ijms20081997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
Pigment nephropathy is an acute decline in renal function following the deposition of endogenous haem-containing proteins in the kidneys. Haem pigments such as myoglobin and haemoglobin are filtered by glomeruli and absorbed by the proximal tubules. They cause renal vasoconstriction, tubular obstruction, increased oxidative stress and inflammation. Haem is associated with inflammation in sterile and infectious conditions, contributing to the pathogenesis of many disorders such as rhabdomyolysis and haemolytic diseases. In fact, haem appears to be a signalling molecule that is able to activate the inflammasome pathway. Recent studies highlight a pathogenic function for haem in triggering inflammatory responses through the activation of the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome. Among the inflammasome multiprotein complexes, the NLRP3 inflammasome has been the most widely characterized as a trigger of inflammatory caspases and the maturation of interleukin-18 and -1β. In the present review, we discuss the latest evidence on the importance of inflammasome-mediated inflammation in pigment nephropathy. Finally, we highlight the potential role of inflammasome inhibitors in the prophylaxis and treatment of pigment nephropathy.
Collapse
Affiliation(s)
- Kurt T K Giuliani
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia.
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD 4029, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia.
| | - Andrew J Kassianos
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia.
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD 4029, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia.
- Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Helen Healy
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia.
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD 4029, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia.
| | - Pedro H F Gois
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia.
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD 4029, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia.
| |
Collapse
|
32
|
Dos Santos PT, Larsen PT, Menendez-Gil P, Lillebæk EMS, Kallipolitis BH. Listeria monocytogenes Relies on the Heme-Regulated Transporter hrtAB to Resist Heme Toxicity and Uses Heme as a Signal to Induce Transcription of lmo1634, Encoding Listeria Adhesion Protein. Front Microbiol 2018; 9:3090. [PMID: 30619169 PMCID: PMC6305404 DOI: 10.3389/fmicb.2018.03090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/29/2018] [Indexed: 01/29/2023] Open
Abstract
For pathogenic bacteria, host-derived heme represents an important metabolic cofactor and a source for iron. However, high levels of heme are toxic to bacteria. We have previously shown that excess heme has a growth-inhibitory effect on the Gram-positive foodborne pathogen Listeria monocytogenes, and we have learned that the LhrC1-5 family of small RNAs, together with the two-component system (TCS) LisRK, play a role in the adaptation of L. monocytogenes to heme stress conditions. However, a broader knowledge on how this pathogen responds to heme toxicity is still lacking. Here, we analyzed the global transcriptomic response of L. monocytogenes to heme stress. We found that the response of L. monocytogenes to excess heme is multifaceted, involving various strategies acting to minimize the toxic effects of heme. For example, heme exposure triggers the SOS response that deals with DNA damage. In parallel, L. monocytogenes shuts down the transcription of genes involved in heme/iron uptake and utilization. Furthermore, heme stress resulted in a massive increase in the transcription of a putative heme detoxification system, hrtAB, which is highly conserved in Gram-positive bacteria. As expected, we found that the TCS HssRS is required for heme-mediated induction of hrtAB and that a functional heme efflux system is essential for L. monocytogenes to resist heme toxicity. Curiously, the most highly up-regulated gene upon heme stress was lmo1634, encoding the Listeria adhesion protein, LAP, which acts to promote the translocation of L. monocytogenes across the intestinal barrier. Additionally, LAP is predicted to act as a bifunctional acetaldehyde-CoA/alcohol dehydrogenase. Surprisingly, a mutant lacking lmo1634 grows well under heme stress conditions, showing that LAP is not required for L. monocytogenes to resist heme toxicity. Likewise, a functional ResDE TCS, which contributes to heme-mediated expression of lmo1634, is not required for the adaptation of L. monocytogenes to heme stress conditions. Collectively, this study provides novel insights into the strategies employed by L. monocytogenes to resist heme toxicity. Our findings indicate that L. monocytogenes is using heme as a host-derived signaling molecule to control the expression of its virulence genes, as exemplified by lmo1634.
Collapse
Affiliation(s)
| | - Pernille Tholund Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pilar Menendez-Gil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
33
|
Sundd P, Gladwin MT, Novelli EM. Pathophysiology of Sickle Cell Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:263-292. [PMID: 30332562 DOI: 10.1146/annurev-pathmechdis-012418-012838] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the discovery of sickle cell disease (SCD) in 1910, enormous strides have been made in the elucidation of the pathogenesis of its protean complications, which has inspired recent advances in targeted molecular therapies. In SCD, a single amino acid substitution in the β-globin chain leads to polymerization of mutant hemoglobin S, impairing erythrocyte rheology and survival. Clinically, erythrocyte abnormalities in SCD manifest in hemolytic anemia and cycles of microvascular vaso-occlusion leading to end-organ ischemia-reperfusion injury and infarction. Vaso-occlusive events and intravascular hemolysis promote inflammation and redox instability that lead to progressive small- and large-vessel vasculopathy. Based on current evidence, the pathobiology of SCD is considered to be a vicious cycle of four major processes, all the subject of active study and novel therapeutic targeting: ( a) hemoglobin S polymerization, ( b) impaired biorheology and increased adhesion-mediated vaso-occlusion, ( c) hemolysis-mediated endothelial dysfunction, and ( d) concerted activation of sterile inflammation (Toll-like receptor 4- and inflammasome-dependent innate immune pathways). These molecular, cellular, and biophysical processes synergize to promote acute and chronic pain and end-organ injury and failure in SCD. This review provides an exhaustive overview of the current understanding of the molecular pathophysiology of SCD, how this pathophysiology contributes to complications of the central nervous and cardiopulmonary systems, and how this knowledge is being harnessed to develop current and potential therapies.
Collapse
Affiliation(s)
- Prithu Sundd
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA; .,Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Sickle Cell Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA; .,Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Sickle Cell Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Enrico M Novelli
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Sickle Cell Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
34
|
Dos Santos PT, Menendez-Gil P, Sabharwal D, Christensen JH, Brunhede MZ, Lillebæk EMS, Kallipolitis BH. The Small Regulatory RNAs LhrC1-5 Contribute to the Response of Listeria monocytogenes to Heme Toxicity. Front Microbiol 2018; 9:599. [PMID: 29636750 PMCID: PMC5880928 DOI: 10.3389/fmicb.2018.00599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022] Open
Abstract
The LhrC family of small regulatory RNAs (sRNAs) is known to be induced when the foodborne pathogen Listeria monocytogenes is exposed to infection-relevant conditions, such as human blood. Here we demonstrate that excess heme, the core component of hemoglobin in blood, leads to a strong induction of the LhrC family members LhrC1–5. The heme-dependent activation of lhrC1–5 relies on the response regulator LisR, which is known to play a role in virulence and stress tolerance. Importantly, our studies revealed that LhrC1–5 and LisR contribute to the adaptation of L. monocytogenes to excess heme. Regarding the regulatory function of the sRNAs, we demonstrate that LhrC1–5 act to down-regulate the expression of known LhrC target genes under heme-rich conditions: oppA, tcsA, and lapB, encoding surface exposed proteins with virulence functions. These genes were originally identified as targets for LhrC-mediated control under cell envelope stress conditions, suggesting a link between the response to heme toxicity and cell envelope stress in L. monocytogenes. We also investigated the role of LhrC1–5 in controlling the expression of genes involved in heme uptake and utilization: lmo2186 and lmo2185, encoding the heme-binding proteins Hbp1 and Hbp2, respectively, and lmo0484, encoding a heme oxygenase-like protein. Using in vitro binding assays, we demonstrated that the LhrC family member LhrC4 interacts with mRNAs encoded from lmo2186, lmo2185, and lmo0484. For lmo0484, we furthermore show that LhrC4 uses a CU-rich loop for basepairing to the AG-rich Shine–Dalgarno region of the mRNA. The presence of a link between the response to heme toxicity and cell envelope stress was further underlined by the observation that LhrC1–5 down-regulate the expression of lmo0484 in response to the cell wall-acting antibiotic cefuroxime. Collectively, this study suggests a role for the LisR-regulated sRNAs LhrC1–5 in a coordinated response to excess heme and cell envelope stress in L. monocytogenes.
Collapse
Affiliation(s)
- Patrícia T Dos Santos
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pilar Menendez-Gil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Dharmesh Sabharwal
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jens-Henrik Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maja Z Brunhede
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Eva M S Lillebæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Zerumbone protects human skin keratinocytes against UVA-irradiated damages through Nrf2 induction. Biochem Pharmacol 2018; 148:130-146. [DOI: 10.1016/j.bcp.2017.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/18/2017] [Indexed: 02/08/2023]
|
36
|
Abstract
PURPOSE OF REVIEW Interactions between neutrophils and platelets contribute to the progression of thromboinflammatory disease. However, the regulatory mechanism governing these interactions is poorly understood. The present review focuses on the crucial role of Ser/Thr protein kinase B (AKT)β-NADPH oxidase 2 (NOX2) signaling in regulating neutrophil and platelet activation and their heterotypic interactions under thromboinflammatory conditions. RECENT FINDINGS Growing evidence has shown that platelets, leukocytes, and blood coagulation need to be considered to treat thromboinflammatory disease in which inflammation and thrombosis occur concurrently. In addition to plasma proteins and intracellular signaling molecules, extracellular reactive oxygen species (ROS) produced from activated leukocytes could be an important factor in the pathophysiology of thromboinflammatory disease. Recent studies reveal that AKT2-NOX2 signaling has critical roles in Ca mobilization, ROS generation, degranulation, and control of the ligand-binding function of cell surface molecules, thereby promoting heterotypic cell-cell interactions in thromboinflammation. These findings have provided novel insights into attractive therapeutic targets for the prevention and treatment of thromboinflammatory disease. SUMMARY Recent discoveries concerning molecular mechanisms regulating neutrophil-platelet interactions have bridged some gaps in our knowledge of the complicated signaling pathways exacerbating thromboinflammatory conditions.
Collapse
|
37
|
Quintela-Carvalho G, Luz NF, Celes FS, Zanette DL, Andrade D, Menezes D, Tavares NM, Brodskyn CI, Prates DB, Gonçalves MS, de Oliveira CI, Almeida RP, Bozza MT, Andrade BB, Borges VM. Heme Drives Oxidative Stress-Associated Cell Death in Human Neutrophils Infected with Leishmania infantum. Front Immunol 2017; 8:1620. [PMID: 29218050 PMCID: PMC5703736 DOI: 10.3389/fimmu.2017.01620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/08/2017] [Indexed: 11/25/2022] Open
Abstract
Free heme is an inflammatory molecule capable of inducing migration and activation of neutrophils. Here, we examine the heme-driven oxidative stress-associated cell death mechanisms in human neutrophils infected with Leishmania infantum, an etiologic agent of visceral leishmaniasis (VL). We first performed exploratory analyses in a population of well characterized treatment-naïve VL patients as well as uninfected controls, who were part of previously reported studies. We noted a positive correlation between serum concentrations of heme with heme oxygenase-1 (HO-1) and lactate deydrogenase, as well as, a negative correlation between heme values and peripheral blood neutrophils counts. Moreover, in vitro infection with L. infantum in the presence of heme enhanced parasite burden in neutrophils, while increasing the production of reactive oxygen species and release of neutrophilic enzymes. Additional experiments demonstrated that treatment of infected neutrophils with ferrous iron (Fe+2), a key component of the heme molecule, resulted in increased parasite survival without affecting neutrophil activation status. Furthermore, stimulation of infected neutrophils with heme triggered substantial increases in HO-1 mRNA expression as well as in superoxide dismutase-1 enzymatic activity. Heme, but not Fe+2, induced oxidative stress-associated cell death. These findings indicate that heme promotes intracellular L. infantum survival via activation of neutrophil function and oxidative stress. This study opens new perspectives for the understanding of immunopathogenic mechanisms involving neutrophils in VL.
Collapse
Affiliation(s)
- Graziele Quintela-Carvalho
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia Baiano (IFBaiano), Santa Inês, Brazil
| | - Nívea F Luz
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Fabiana S Celes
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Dalila L Zanette
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Daniela Andrade
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Diego Menezes
- Instituto de Tecnologia e Pesquisa (ITP), Aracaju, Brazil
| | - Natália M Tavares
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Claudia I Brodskyn
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Deboraci B Prates
- Departamento de Biomorfologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Marilda S Gonçalves
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Roque P Almeida
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe (UFS), Aracaju, Brazil
| | - Marcelo T Bozza
- Departamento de Imunologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno B Andrade
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Valeria M Borges
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
38
|
Guarda CCD, Santiago RP, Fiuza LM, Aleluia MM, Ferreira JRD, Figueiredo CVB, Yahouedehou SCMA, Oliveira RMD, Lyra IM, Gonçalves MDS. Heme-mediated cell activation: the inflammatory puzzle of sickle cell anemia. Expert Rev Hematol 2017; 10:533-541. [PMID: 28482712 DOI: 10.1080/17474086.2017.1327809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hemolysis triggers the onset of several clinical manifestations of sickle cell anemia (SCA). During hemolysis, heme, which is derived from hemoglobin (Hb), accumulates due to the inability of detoxification systems to scavenge sufficiently. Heme exerts multiple harmful effects, including leukocyte activation and migration, enhanced adhesion molecule expression by endothelial cells and the production of pro-oxidant molecules. Area covered: In this review, we describe the effects of heme on leukocytes and endothelial cells, as well as the features of vascular endothelial cells related to vaso-occlusion in SCA. Expert commentary: Free Hb, heme and iron, potent cytotoxic intravascular molecules released during hemolysis, can exacerbate, modulate and maintain the inflammatory response, a main feature of SCA. Endothelial cells in the vascular environment, as well as leukocytes, can become activated via the molecular signaling effects of heme. Due to the hemolytic nature of SCA, hemolysis represents an interesting therapeutic target for heme-scavenging purposes.
Collapse
Affiliation(s)
- Caroline Conceição da Guarda
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil
| | - Rayra Pereira Santiago
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil
| | - Luciana Magalhães Fiuza
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil
| | - Milena Magalhães Aleluia
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil
| | - Júnia Raquel Dutra Ferreira
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil.,b Faculdade de Farmácia , Universidade Federal da Bahia , Salvador , Bahia , Brasil
| | - Camylla Vilas Boas Figueiredo
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil
| | | | | | - Isa Menezes Lyra
- c Hematologia, Fundação de Hematologia e Hemoterapia do Estado da Bahia , Salvador , Bahia , Brasil
| | - Marilda de Souza Gonçalves
- a Laboratório de Hematologia, Genética e Biologia Computacional , Instituto Gonçalo Moniz, FIOCRUZ , Salvador , Bahia , Brasil.,b Faculdade de Farmácia , Universidade Federal da Bahia , Salvador , Bahia , Brasil
| |
Collapse
|
39
|
Li G, Xue H, Fan Z, Bai Y. Impact of heme on specific antibody production in mice: promotive, inhibitive or null outcome is determined by its concentration. Heliyon 2017; 3:e00303. [PMID: 28560357 PMCID: PMC5435615 DOI: 10.1016/j.heliyon.2017.e00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/30/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022] Open
Abstract
Free heme is an endogenous danger signal that provokes innate immunity. Active innate immunity provides a precondition of an effective adaptive immune response. However, heme catabolites, CO, biliverdin and bilirubin trigger immunosuppression. Furthermore, free heme induces expression of heme oxygenase-1 to increase production of CO, biliverdin and bilirubin. As such, free heme can play a paradoxical role in adaptive immunity. What is the outcome of the animal immune response to an antigen in the presence of free heme? This question remains to be explored. Here, we report the immunization results of rats and mice after intraperitoneal injection of formulations containing BSA and heme. When the heme concentrations were below 1 μM, between 1 μM and 5 μM and above 5 μM, production of anti-BSA IgG and IgM was unaffected, enhanced and suppressed, respectively. The results suggest that heme can influence adaptive immunity by double concentration-thresholds. If the heme concentrations are less than the first threshold, there is no effect on adaptive immunity; if the concentrations are more than the first but less than the second threshold, there is promotion effect; and if the concentrations are more than the second threshold, there is an inhibitory effect. A hypothesis is also presented here to explain the mechanism.
Collapse
Affiliation(s)
- Guofu Li
- Experimental Training Center, Sun Yat-Sen University, Zhuhai, China, 519082
| | - Haiyan Xue
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China, 510275
| | - Zeng Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China, 510275
| | - Yun Bai
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China, 510275
| |
Collapse
|
40
|
Effect of protein structure and/or conformation on the dityrosine cross-linking induced by haem-hydrogen peroxide. Biochim Biophys Acta Gen Subj 2016; 1860:2232-8. [PMID: 27150213 DOI: 10.1016/j.bbagen.2016.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/14/2016] [Accepted: 04/29/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Haem, an essential cofactor in aerobic organisms, can cause oxidative stress and impose toxic effects on tissues and organs. It can induce aggregation of proteins via dityrosine cross-linking and cause neurodegenerative diseases. Although dityrosine cross-linking in many proteins induced by haem has been reported, not all the proteins have the same effect or the efficiency of cross-linking varies, while the reason has not been clarified. METHODS The correlation of protein structure/conformation with its aggregation tendency via dityrosine induced by hematin (oxidized form of haem) in the presence of hydrogen peroxide (H2O2) was studied through reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fluorescence and circular dichroism (CD) measurements, and the mechanism was investigated by performing UV-Vis absorbance, Raman spectroscopy and low-temperature electron spin resonance (ESR) experiments. RESULTS It was found that proteins in unstructured state are more readily to be cross-linked via dityrosine formation by hematin-H2O2. The unstructured protein without steric effect can coordinate with hematin to form six-coordinated protein-hematin complex, in which the produced tyrosyl radicals by H2O2 are with high tendency to dimerize to form dityrosine. CONCLUSIONS Our results demonstrate that protein structure/conformation can affect its coordination state with haem, and the tendency of reaction of two tyrosyl radicals, further influencing the yield and efficiency of dityrosine cross-linking in the presence of H2O2. GENERAL SIGNIFICANCE This research can help to deepen our understanding of the protein aggregation and inactivation mechanisms in varied sophisticated conditions, and especially give us the new insight into the toxic effects under haem stress.
Collapse
|
41
|
Soares MP, Bozza MT. Red alert: labile heme is an alarmin. Curr Opin Immunol 2015; 38:94-100. [PMID: 26741528 DOI: 10.1016/j.coi.2015.11.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 01/03/2023]
Abstract
Alarmins are a heterogeneous group of endogenous molecules that signal cellular damage when sensed extracellularly. Heme is an endogenous molecule that acts as a prosthetic group of hemoproteins, such as hemoglobin and myoglobin. When released from damaged red blood cells or muscle cells, oxidized hemoglobin and myoglobin release their prosthetic heme groups, respectively. This generates labile heme, which is sensed by pattern recognition receptors (PRR) expressed by innate immune cells and possibly regulatory T cells (TREG). The ensuing adaptive response, which alerts for the occurrence of red blood cell or muscle cell damage, regulates the pathologic outcome of hemolysis or rhabdomyolysis, respectively. In conclusion, we propose that labile heme is an alarmin.
Collapse
Affiliation(s)
- Miguel P Soares
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Marcelo T Bozza
- Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Cidade Universitária, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
42
|
Mackern-Oberti JP, Obreque J, Méndez GP, Llanos C, Kalergis AM. Carbon monoxide inhibits T cell activation in target organs during systemic lupus erythematosus. Clin Exp Immunol 2015; 182:1-13. [PMID: 26095291 DOI: 10.1111/cei.12657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2015] [Indexed: 01/15/2023] Open
Abstract
Systemic lupus erythematosus is characterized by the presence of circulating anti-nuclear antibodies (ANA) and systemic damage that includes nephritis, haematological manifestations and pulmonary compromise, among others. Although major progress has been made in elucidating the molecular mechanisms responsible for autoimmunity, current therapies for lupus have not improved considerably. Because the exposure of carbon monoxide (CO) has been shown to display beneficial immunoregulatory properties in different immune-mediated diseases, we investigated whether CO therapy improves lupus-related kidney injury in lupus mice. MRL-Fas(lpr) lupus mice were exposed to CO and disease progression was evaluated. ANA, leucocyte-infiltrating populations in spleen, kidney and lung and kidney lesions, were measured. CO therapy significantly decreased the frequency of activated B220(+) CD4(-) CD8(-) T cells in kidneys and lungs, as well as serum levels of ANA. Furthermore, we observed that CO therapy reduced kidney injury by decreasing proliferative glomerular damage and immune complexes deposition, decreased proinflammatory cytokine production and finally delayed the impairment of kidney function. CO exposure ameliorates kidney and lung leucocyte infiltration and delays kidney disease in MRL-Fas(lpr) lupus mice. Our data support the notion that CO could be explored as a potential new therapy for lupus nephritis.
Collapse
Affiliation(s)
- J P Mackern-Oberti
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Microbiología y Genética Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), Science and Technology Center (CCT) of Mendoza, National Council of Scientific and Technical Research (CONICET), Mendoza, Argentina
| | - J Obreque
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - G P Méndez
- Departamento de Anatomía Patológica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Llanos
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Microbiología y Genética Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM UMR 1064-Center for Research in Transplantation and Immunology, Nantes, France
| |
Collapse
|
43
|
Liu LY, McGregor N, Wong BKJ, Butt H, Darby IB. The association between clinical periodontal parameters and free haem concentration within the gingival crevicular fluid: a pilot study. J Periodontal Res 2015; 51:86-94. [DOI: 10.1111/jre.12286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2015] [Indexed: 11/29/2022]
Affiliation(s)
- L. Y. Liu
- Melbourne Dental School; The University of Melbourne; Melbourne Vic. Australia
| | - N. McGregor
- Melbourne Dental School; The University of Melbourne; Melbourne Vic. Australia
- BioScreen Medical; Parkville Vic. Australia
| | - B. K. J. Wong
- Melbourne Dental School; The University of Melbourne; Melbourne Vic. Australia
| | - H. Butt
- BioScreen Medical; Parkville Vic. Australia
| | - I. B. Darby
- Melbourne Dental School; The University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
44
|
Das D, Patra M, Chakrabarti A. Binding of hemin, hematoporphyrin, and protoporphyrin with erythroid spectrin: fluorescence and molecular docking studies. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:171-82. [PMID: 25737232 DOI: 10.1007/s00249-015-1012-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 11/27/2022]
Abstract
Free heme has toxic effects, for example lipid peroxidation, DNA damage, and protein aggregation. In severe hemolysis, which occurs during pathological states, for example sickle cell disease, ischemia reperfusion, and malaria, levels of free heme increase inside erythrocytes. The purpose of this study was to investigate whether spectrin, the major erythroid cytoskeleton protein, is involved as an acceptor of free heme. We compared the interactions of three heme derivatives, hemin chloride, hematoporphyrin, and protoporphyrin-IX, with dimeric and tetrameric spectrin. The dissociation constants (K d) for binding to spectrin dimer and tetramer were 0.57 and 1.16 µM respectively. Thermodynamic data associated with this binding revealed the binding to be favored by a positive change in entropy. Although molecular docking studies identified the SH3 domain as the unique binding site of these heme derivatives to erythroid spectrin, experimental results indicated a binding stoichiometry of 1 heme attached to both dimeric and tetrameric spectrin, indicating the common self-associating domain to be the unique binding site. We also noticed heme-induced structural changes in the membrane skeletal protein. Erythroid spectrin could thus act as a potential acceptor of heme, particularly relevant under disease conditions.
Collapse
Affiliation(s)
- Debashree Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | | | | |
Collapse
|
45
|
Tripathy S, Roy S. Redox sensing and signaling by malaria parasite in vertebrate host. J Basic Microbiol 2015; 55:1053-63. [PMID: 25740654 DOI: 10.1002/jobm.201500031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/12/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Satyajit Tripathy
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore West Bengal India
| | - Somenath Roy
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore West Bengal India
| |
Collapse
|
46
|
Chi J, Zaw T, Cardona I, Hosnain M, Garg N, Lefkowitz HR, Tolias P, Du H. Use of surface-enhanced Raman scattering as a prognostic indicator of acute kidney transplant rejection. BIOMEDICAL OPTICS EXPRESS 2015; 6:761-9. [PMID: 25798301 PMCID: PMC4361431 DOI: 10.1364/boe.6.000761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 05/16/2023]
Abstract
We report an early, noninvasive and rapid prognostic method of predicting potential acute kidney dysfunction using surface-enhanced Raman scattering (SERS). Our analysis was performed on urine samples collected prospectively from 58 kidney transplant patients using a He-Ne laser (632.8 nm) as the excitation source. All abnormal kidney function episodes (three acute rejections and two acute kidney failures that were eventually diagnosed independently by clinical biopsy) consistently exhibited unique SERS spectral features in just one day following the transplant surgery. These results suggested that SERS analysis provides an early and more specific indication to kidney function than the clinically used biomarker, serum creatinine (sCr).
Collapse
Affiliation(s)
- Jingmao Chi
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, 07030,
USA
| | - Thet Zaw
- Newark Beth Israel Medical Center, Newark, NJ, 07112,
USA
| | - Iliana Cardona
- Newark Beth Israel Medical Center, Newark, NJ, 07112,
USA
| | | | - Neha Garg
- Newark Beth Israel Medical Center, Newark, NJ, 07112,
USA
| | | | - Peter Tolias
- Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, NJ, 07030,
USA
| | - Henry Du
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, 07030,
USA
| |
Collapse
|
47
|
Affiliation(s)
- Konrad Teodor Sawicki
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (K.T.S., H.C.C., H.A.)
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (K.T.S., H.C.C., H.A.)
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (K.T.S., H.C.C., H.A.)
| |
Collapse
|
48
|
Nisar MF, Parsons KSG, Bian CX, Zhong JL. UVA irradiation induced heme oxygenase-1: a novel phototherapy for morphea. Photochem Photobiol 2014; 91:210-20. [PMID: 25207998 DOI: 10.1111/php.12342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
Abstract
Long wave UVA radiation (340-400 nm) causes detrimental as well as beneficial effects on human skin. Studies of human skin fibroblasts irradiated with UVA demonstrate increased expression of both antifibrotic heme oxygenase-1 (HO-1) and matrix metalloproteinase 1 (MMP-1). The use of UVA-induced MMP-1 is well-studied in treating skin fibrotic conditions such as localized scleroderma, now called morphea. However, the role that UVA-induced HO-1 plays in phototherapy of morphea has not been characterized. In the present manuscript, we have illustrated and reviewed the biological function of HO-1 and the use of UVA1 wavebands (340-400 nm) for phototherapy; the potential use of HO-1 induction in UVA therapy of morphea is also discussed.
Collapse
Affiliation(s)
- Muhammad Farrukh Nisar
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | | | | | | |
Collapse
|
49
|
Sachla AJ, Le Breton Y, Akhter F, McIver KS, Eichenbaum Z. The crimson conundrum: heme toxicity and tolerance in GAS. Front Cell Infect Microbiol 2014; 4:159. [PMID: 25414836 PMCID: PMC4220732 DOI: 10.3389/fcimb.2014.00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/17/2014] [Indexed: 01/16/2023] Open
Abstract
The massive erythrocyte lysis caused by the Group A Streptococcus (GAS) suggests that the β-hemolytic pathogen is likely to encounter free heme during the course of infection. In this study, we investigated GAS mechanisms for heme sensing and tolerance. We compared the minimal inhibitory concentration of heme among several isolates and established that excess heme is bacteriostatic and exposure to sub-lethal concentrations of heme resulted in noticeable damage to membrane lipids and proteins. Pre-exposure of the bacteria to 0.1 μM heme shortened the extended lag period that is otherwise observed when naive cells are inoculated into heme-containing medium, implying that GAS is able to adapt. The global response to heme exposure was determined using microarray analysis revealing a significant transcriptome shift that included 79 up regulated and 84 down regulated genes. Among other changes, the induction of stress-related chaperones and proteases, including groEL/ES (8x), the stress regulators spxA2 (5x) and ctsR (3x), as well as redox active enzymes were prominent. The heme stimulon also encompassed a number of regulatory proteins and two-component systems that are important for virulence. A three-gene cluster that is homologous to the pefRCD system of the Group B Streptococcus was also induced by heme. PefR, a MarR-like regulator, specifically binds heme with stoichiometry of 1:2 and protoporphyrin IX (PPIX) with stoichiometry of 1:1, implicating it is one of the GAS mediators to heme response. In summary, here we provide evidence that heme induces a broad stress response in GAS, and that its success as a pathogen relies on mechanisms for heme sensing, detoxification, and repair.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Fahmina Akhter
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Zehava Eichenbaum
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| |
Collapse
|
50
|
Abstract
The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K(+) efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release.
Collapse
|