1
|
Sykes M, Sachs DH. Progress in xenotransplantation: overcoming immune barriers. Nat Rev Nephrol 2022; 18:745-761. [PMID: 36198911 DOI: 10.1038/s41581-022-00624-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
A major limitation of organ allotransplantation is the insufficient supply of donor organs. Consequently, thousands of patients die every year while waiting for a transplant. Progress in xenotransplantation that has permitted pig organ graft survivals of years in non-human primates has led to renewed excitement about the potential of this approach to alleviate the organ shortage. In 2022, the first pig-to-human heart transplant was performed on a compassionate use basis, and xenotransplantation experiments using pig kidneys in deceased human recipients provided encouraging data. Many advances in xenotransplantation have resulted from improvements in the ability to genetically modify pigs using CRISPR-Cas9 and other methodologies. Gene editing has the capacity to generate pig organs that more closely resemble those of humans and are hence more physiologically compatible and less prone to rejection. Despite such modifications, immune responses to xenografts remain powerful and multi-faceted, involving innate immune components that do not attack allografts. Thus, the induction of innate and adaptive immune tolerance to prevent rejection while preserving the capacity of the immune system to protect the recipient and the graft from infection is desirable to enable clinical xenotransplantation.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University, New York, NY, USA.
| | - David H Sachs
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Amdahl H, Haapasalo K, Tan L, Meri T, Kuusela PI, van Strijp JA, Rooijakkers S, Jokiranta TS. Staphylococcal protein Ecb impairs complement receptor-1 mediated recognition of opsonized bacteria. PLoS One 2017; 12:e0172675. [PMID: 28273167 PMCID: PMC5342210 DOI: 10.1371/journal.pone.0172675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/08/2017] [Indexed: 01/01/2023] Open
Abstract
Staphyloccus aureus is a major human pathogen leading frequently to sepsis and soft tissue infections with abscesses. Multiple virulence factors including several immune modulating molecules contribute to its survival in the host. When S. aureus invades the human body, one of the first line defenses is the complement system, which opsonizes the bacteria with C3b and attract neutrophils by release of chemotactic peptides. Neutrophils express Complement receptor-1 [CR1, CD35) that interacts with the C3b-opsonized particles and thereby plays an important role in pathogen recognition by phagocytic cells. In this study we observed that a fraction of S. aureus culture supernatant prevented binding of C3b to neutrophils. This fraction consisted of S. aureus leukocidins and Efb. The C-terminus of Efb is known to bind C3b and shares significant sequence homology to the extracellular complement binding protein [Ecb). Here we show that S. aureus Ecb displays various mechanisms to block bacterial recognition by neutrophils. The presence of Ecb blocked direct interaction between soluble CR1 and C3b and reduced the cofactor activity of CR1 in proteolytic inactivation of C3b. Furthermore, Ecb could dose-dependently prevent recognition of C3b by cell-bound CR1 that lead to impaired phagocytosis of NHS-opsonized S. aureus. Phagocytosis was furthermore reduced in the presence of soluble CR1 [sCR1). These data indicate that the staphylococcal protein Ecb prevents recognition of C3b opsonized bacteria by neutrophil CR1 leading to impaired killing by phagocytosis and thereby contribute to immune evasion of S. aureus.
Collapse
Affiliation(s)
- Hanne Amdahl
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Lydia Tan
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Taru Meri
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pentti I. Kuusela
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Central Hospital Laboratory, Helsinki, Finland
| | - Jos A. van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Suzan Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (SR); (TSJ)
| | - T. Sakari Jokiranta
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
- * E-mail: (SR); (TSJ)
| |
Collapse
|
3
|
Griesemer A, Yamada K, Sykes M. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 2015; 258:241-58. [PMID: 24517437 DOI: 10.1111/imr.12152] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The discrepancy between organ need and organ availability represents one of the major limitations in the field of transplantation. One possible solution to this problem is xenotransplantation. Research in this field has identified several obstacles that have so far prevented the successful development of clinical xenotransplantation protocols. The main immunologic barriers include strong T-cell and B-cell responses to solid organ and cellular xenografts. In addition, components of the innate immune system can mediate xenograft rejection. Here, we review these immunologic and physiologic barriers and describe some of the strategies that we and others have developed to overcome them. We also describe the development of two strategies to induce tolerance across the xenogeneic barrier, namely thymus transplantation and mixed chimerism, from their inception in rodent models through their current progress in preclinical large animal models. We believe that the addition of further beneficial transgenes to Gal knockout swine, combined with new therapies such as Treg administration, will allow for successful clinical application of xenotransplantation.
Collapse
Affiliation(s)
- Adam Griesemer
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | |
Collapse
|
4
|
Kurimoto E, Kuroki K, Yamaguchi Y, Yagi-Utsumi M, Igaki T, Iguchi T, Maenaka K, Kato K. Structural and functional mosaic nature of MHC class I molecules in their peptide-free form. Mol Immunol 2013; 55:393-9. [DOI: 10.1016/j.molimm.2013.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
5
|
Dai ZX, Zhang GH, Zhang XH, Xia HJ, Li SY, Zheng YT. The β2-microglobulin-free heterodimerization of rhesus monkey MHC class I A with its normally spliced variant reduces the ubiquitin-dependent degradation of MHC class I A. THE JOURNAL OF IMMUNOLOGY 2012; 188:2285-96. [PMID: 22291188 DOI: 10.4049/jimmunol.1100665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The MHC class I (MHC I) molecules play a pivotal role in the regulation of immune responses by presenting antigenic peptides to CTLs and by regulating cytolytic activities of NK cells. In this article, we show that MHC I A in rhesus macaques can be alternatively spliced, generating a novel MHC I A isoform (termed "MHC I A-sv1") devoid of α(3) domain. Despite the absence of β2-microglobulin (β2m), the MHC I A-sv1 proteins reached the cell surface of K562-transfected cells as endoglycosidase H-sensitive glycoproteins that could form disulfide-bonded homodimers. Cycloheximide-based protein chase experiments showed that the MHC I A-sv1 proteins were more stable than the full-length MHC I A in transiently or stably transfected cell lines. Of particular interest, our studies demonstrated that MHC I A-sv1 could form β2m-free heterodimers with its full-length protein in mammalian cells. The formation of heterodimers was accompanied by a reduction in full-length MHC I A ubiquitination and consequent stabilization of the protein. Taken together, these results demonstrated that MHC I A-sv1 and MHC I A can form a novel heterodimeric complex as a result of the displacement of β2m and illustrated the relevance of regulated MHC I A protein degradation in the β2m-free heterodimerization-dependent control, which may have some implications for the MHC I A splice variant in the fine tuning of classical MHC I A/TCR and MHC I A/killer cell Ig-like receptor interactions.
Collapse
Affiliation(s)
- Zheng-Xi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
McPhee CG, Sproule TJ, Shin DM, Bubier JA, Schott WH, Steinbuck MP, Avenesyan L, Morse HC, Roopenian DC. MHC class I family proteins retard systemic lupus erythematosus autoimmunity and B cell lymphomagenesis. THE JOURNAL OF IMMUNOLOGY 2011; 187:4695-704. [PMID: 21964024 DOI: 10.4049/jimmunol.1101776] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dysregulation of the T cell-dependent Ab response can lead to numerous immunological disorders, ranging from systemic lupus erythematosus to B cell lymphomas. Cellular processes governed by MHC class II proteins play a major role in this response and its dysregulation. The extent to which processes controlled by the diverse family of MHC class I proteins impact such autoimmune and neoplastic disorders, however, is less clear. In this study, we genetically dissect the contributions of individual MHC class I family members and the pathological processes under their control in the systemic lupus erythematosus-like disease of BXSB.Yaa mice and B cell lymphomagenesis of SJL mice. This study reveals a powerful repressive regulatory axis comprised of MHC class I-dependent CD8(+) T cells and NK cells. These results indicate that the predominant role of the MHC class I protein family in such immunological disorders is to protect from more aggressive diseases.
Collapse
|
7
|
Baroni M, Matucci A, Scarlatti G, Soprana E, Rossolillo P, Lopalco L, Zipeto D, Siccardi AG, De Santis C. HLA-C is necessary for optimal human immunodeficiency virus type 1 infection of human peripheral blood CD4 lymphocytes. J Gen Virol 2009; 91:235-41. [PMID: 19776241 DOI: 10.1099/vir.0.015230-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hypothesis that open conformers of HLA-C on target cells might directly exert an effect on their infectability by human immunodeficiency virus (HIV) has been suggested previously. This was tested by exploiting the peculiar specificity of monoclonal antibody (mAb) L31 for HLA-C open conformers to show that normal levels of Env-driven fusion were restored in HLA-C transfectants of a major histocompatibility complex-deleted (fusion-incompetent) cell line. The physiological relevance of this finding is now confirmed in this report, where small interfering RNA (siRNA) technology was used to silence HLA-C expression in peripheral blood lymphocytes (PBLs) from 11 healthy donors. Infectability by HIV (strains IIIB and Bal and primary isolates) was significantly reduced (P=0.016) in silenced cells compared with cells that maintained HLA-C expression in 10 of the 11 PBL donors. Normal infectability was resumed, together with HLA-C expression, when the effect of siRNA interference waned after several days in culture. Additional confirmation of the HLA-C effect was obtained in several assays employing HLA-C-positive and -negative cell lines, a number of HIV strains and also pseudoviruses. In particular, viruses pseudotyped with env genes from HIV strains AC10 and QH0692.42 were assayed on siRNA-silenced lymphocytes from three healthy donors: the differences in infection with pseudoviruses were even higher than those observed in infections with normal viruses.
Collapse
Affiliation(s)
- Miriam Baroni
- Department of Biology and Genetics, University of Milan, Via Viotti 3/5, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Benoît LA, Tan R. Xenogeneic β2-Microglobulin Substitution Alters NK Cell Function. THE JOURNAL OF IMMUNOLOGY 2007; 179:1466-74. [PMID: 17641012 DOI: 10.4049/jimmunol.179.3.1466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, it has been shown that human beta(2)-microglobulin (h-beta(2)m) blocks the association between the NK cell inhibitory receptor Ly49C and H-2K(b). Given this finding, we therefore sought to assess the immunobiology of NK cells derived from C57BL/6 (H-2(b)) mice expressing exclusively h-beta(2)m. Initial analysis revealed that the Ly49C expression profile of NK cells from h-beta(2)m(+) mice was modified, despite the fact that H-2K(b) expression was normal in these mice. Moreover, the NK cells were not anergic in that IL-2 treatment of h-beta(2)m(+) NK cells in vitro enabled efficient lysis of prototypic tumor cell lines as well as of syngeneic h-beta(2)m(+) lymphoblasts. This loss of self-tolerance appeared to correlate with the activation status of h-beta(2)m(+) NK cells because quiescent h-beta(2)m(+) transplant recipients maintained h-beta(2)m(+) grafts but polyinosine:polycytidylic acid-treated recipients acutely rejected h-beta(2)m(+) grafts. NK cell reactivity toward h-beta(2)m(+) targets was attributed to defective Ly49C interactions with h-beta(2)m:H-2K(b) molecules. With regard to NK cell regulatory mechanisms, we observed that h-beta(2)m:H-2K(b) complexes in the cis-configuration were inefficient at regulating Ly49C and, furthermore, that receptor-mediated uptake of h-beta(2)m:H-2K(b) by Ly49C was impaired compared with uptake of mouse beta(2)m:H-2K(b). Thus, we conclude that transgenic expression of h-beta(2)m alters self-MHC class I in such a way that it modulates the NK cell phenotype and interferes with regulatory mechanisms, which in turn causes in vitro-expanded and polyinosine:polycytidylic acid-activated NK cells to be partially self-reactive similar to what is seen with NK cells derived from MHC class I-deficient mice.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cytotoxicity, Immunologic/genetics
- Female
- Graft Rejection/genetics
- Graft Rejection/immunology
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Humans
- Immunophenotyping
- Killer Cells, Lymphokine-Activated/immunology
- Killer Cells, Lymphokine-Activated/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Self Tolerance/genetics
- Self Tolerance/immunology
- beta 2-Microglobulin/biosynthesis
- beta 2-Microglobulin/deficiency
- beta 2-Microglobulin/genetics
Collapse
Affiliation(s)
- Loralyn A Benoît
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
9
|
Arosa FA, Santos SG, Powis SJ. Open conformers: the hidden face of MHC-I molecules. Trends Immunol 2007; 28:115-23. [PMID: 17261379 DOI: 10.1016/j.it.2007.01.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/13/2006] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
A pool of MHC-I molecules present at the plasma membrane can dissociate from the peptide and/or the light chain, becoming open MHC-I conformers. Whereas peptide-bound MHC-I molecules have an important role in regulating adaptive and innate immune responses, through trans-interactions with T cell and NK cell receptors, the function of the open MHC-I conformers is less clear but seems to be related to their inherent ability to cis-associate, both with themselves and with other receptors. Here, we review data indicating the open MHC-I conformers as regulators of ligand-receptor interactions and discuss the biological implications for immune and non-immune cells. The likelihood that the MHC-I heavy chains have hidden functions that are determined by the amino acid sequence of the alpha1 and alpha2 domains are discussed.
Collapse
Affiliation(s)
- Fernando A Arosa
- Lymphocyte Biology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4150-180 Porto, Portugal.
| | | | | |
Collapse
|