1
|
Oh J, Kirsh C, Hsin JP, Radecki KC, Zampieri A, Manry D, Ando Y, Miller S, Chan J, McLeod E, Cunningham KM, Wong LM, Xu H, Kamb A. NOT gated T cells that selectively target EGFR and other widely expressed tumor antigens. iScience 2024; 27:109913. [PMID: 38799557 PMCID: PMC11126980 DOI: 10.1016/j.isci.2024.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 01/04/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Here, we show that a NOT gated cell therapy (Tmod) can exploit antigens such as epidermal growth factor receptor (EGFR) and human leukocyte antigen-E (HLA-E) which are widely expressed on cancer cells. Noncancerous cells-despite high expression of these antigens-are protected from cytotoxicity by the action of an inhibitory receptor ("blocker") via a mechanism that involves blocker modulation of CAR surface expression. The blocker is triggered by the product of a polymorphic HLA allele (e.g., HLA-A∗02) deleted in a significant subset of solid tumors via loss of heterozygosity. Moreover, Tmod constructs that target mouse homologs of EGFR or HLA-E for activation, and a mouse-equivalent of HLA-A∗02 for inhibition, protect mice from toxicity caused by the CAR alone. The blocker also controls graft vs. host response in allogeneic T cells in vitro, consistent with the use of Tmod cells for off-the-shelf therapy without additional gene-editing.
Collapse
Affiliation(s)
- Julyun Oh
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Charles Kirsh
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Jing-Ping Hsin
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Kelly C. Radecki
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | | | - Diane Manry
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Yuta Ando
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Sara Miller
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Jamie Chan
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Ethan McLeod
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | | | - Lu Min Wong
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Han Xu
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Alexander Kamb
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| |
Collapse
|
2
|
Zhang M, Yang J, Zhang J, Huang C, Liu H, Zhang P, Zhai Y, Liu L, Yang J. Research progress of B subfamily of leucocyte immunoglobulin-like receptors in inflammation. Int J Immunogenet 2023; 50:107-116. [PMID: 37038910 DOI: 10.1111/iji.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Leucocyte immunoglobulin-like receptors subfamily B (LILRB) belongs to the type I transmembrane glycoproteins, which is the immunosuppressive receptor. LILRBs are widely expressed in bone marrow cells, hematopoietic stem cells, nerve cells and other body cells. Studies have found that LILRBs receptor can bind to a variety of ligands and has a variety of biological functions such as regulating inflammatory response, immune tolerance and cell differentiation. Inflammatory reaction plays a vital role in resisting microorganisms. The function of inhibitory immune receptors can recognize the signs of infection and promote the function of anti-microbial effect. The inflammatory response must be strictly regulated to prevent excessive inflammation and tissue damage. Therefore, it is of general interest to understand the role of LILRBs in the inflammatory response. Because they can inhibit the anti-microbial response of neutrophils, some human pathogens use these receptors to escape immunity. This article reviews the biological role of LILRBs in the inflammatory response. We focus on the known ligands of LILRBs, their different roles after binding with ligands, and how these receptors help to form neutrophil responses during infection. Recent studies have shown that LILRBs recruit phosphatases through intracellular tyrosine-based immunoreceptor inhibitory motifs to negatively regulate immune activation, thereby transmitting inflammation-related signals, suggesting that LILRBs may be an ideal target for the treatment of inflammatory diseases. Here, we describe in detail the regulation of LILRBs on the inflammatory response, its signal transduction mode in inflammation, and the progress in the treatment of inflammatory diseases, providing a reference for further research.
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cuiyuan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Haiyin Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Peiyue Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Li Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| |
Collapse
|
3
|
Strecker M, Wlotzka K, Strassheimer F, Roller B, Ludmirski G, König S, Röder J, Opitz C, Alekseeva T, Reul J, Sevenich L, Tonn T, Wels W, Steinbach J, Buchholz C, Burger M. AAV-mediated gene transfer of a checkpoint inhibitor in combination with HER2-targeted CAR-NK cells as experimental therapy for glioblastoma. Oncoimmunology 2022; 11:2127508. [PMID: 36249274 PMCID: PMC9559045 DOI: 10.1080/2162402x.2022.2127508] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GB) is the most common primary brain tumor, which is characterized by low immunogenicity of tumor cells and prevalent immunosuppression in the tumor microenvironment (TME). Targeted local combination immunotherapy is a promising strategy to overcome these obstacles. Here, we evaluated tumor-cell specific delivery of an anti-PD-1 immunoadhesin (aPD-1) via a targeted adeno-associated viral vector (AAV) as well as HER2-specific NK-92/5.28.z (anti-HER2.CAR/NK-92) cells as components for a combination immunotherapy. In co-culture experiments, target-activated anti-HER2.CAR/NK-92 cells modified surrounding tumor cells and bystander immune cells by triggering the release of inflammatory cytokines and upregulation of PD-L1. Tumor cell-specific delivery of aPD-1 was achieved by displaying a HER2-specific designed ankyrin repeat protein (DARPin) on the AAV surface. HER2-AAV mediated gene transfer into GB cells correlated with HER2 expression levels, without inducing anti-viral responses in transduced cells. Furthermore, AAV-transduction did not interfere with anti-HER2.CAR/NK-92 cell-mediated tumor cell lysis. After selective transduction of HER2+ cells, aPD-1 expression was detected at the mRNA and protein level. The aPD-1 immunoadhesin was secreted in a time-dependent manner, bound its target on PD-1-expressing cells and was able to re-activate T cells by efficiently disrupting the PD-1/PD-L1 axis. Moreover, high intratumoral and low systemic aPD-1 concentrations were achieved following local injection of HER2-AAV into orthotopic tumor grafts in vivo. aPD-1 was selectively produced in tumor tissue and could be detected up to 10 days after a single HER2-AAV injection. In subcutaneous GL261-HER2 and Tu2449-HER2 immunocompetent mouse models, administration of the combination therapy significantly prolonged survival, including complete tumor control in several animals in the GL261-HER2 model. In summary, local therapy with aPD-1 encoding HER2-AAVs in combination with anti-HER2.CAR/NK-92 cells may be a promising novel strategy for GB immunotherapy with the potential to enhance efficacy and reduce systemic side effects of immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- M.I. Strecker
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - K. Wlotzka
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - F. Strassheimer
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - B. Roller
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - G. Ludmirski
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - S. König
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - J. Röder
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - C. Opitz
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - T. Alekseeva
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - J. Reul
- Paul-Ehrlich-Institut, Molecular Biotechnology and Gene Therapy, Langen, Germany
| | - L. Sevenich
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - T. Tonn
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany
| | - W.S. Wels
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - J.P. Steinbach
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - C.J. Buchholz
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Paul-Ehrlich-Institut, Molecular Biotechnology and Gene Therapy, Langen, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| | - M.C. Burger
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
4
|
Li Y, Basar R, Wang G, Liu E, Moyes JS, Li L, Kerbauy LN, Uprety N, Fathi M, Rezvan A, Banerjee PP, Muniz-Feliciano L, Laskowski TJ, Ensley E, Daher M, Shanley M, Mendt M, Acharya S, Liu B, Biederstädt A, Rafei H, Guo X, Melo Garcia L, Lin P, Ang S, Marin D, Chen K, Bover L, Champlin RE, Varadarajan N, Shpall EJ, Rezvani K. KIR-based inhibitory CARs overcome CAR-NK cell trogocytosis-mediated fratricide and tumor escape. Nat Med 2022; 28:2133-2144. [PMID: 36175679 PMCID: PMC9942695 DOI: 10.1038/s41591-022-02003-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/09/2022] [Indexed: 01/21/2023]
Abstract
Trogocytosis is an active process that transfers surface material from targeted to effector cells. Using multiple in vivo tumor models and clinical data, we report that chimeric antigen receptor (CAR) activation in natural killer (NK) cells promoted transfer of the CAR cognate antigen from tumor to NK cells, resulting in (1) lower tumor antigen density, thus impairing the ability of CAR-NK cells to engage with their target, and (2) induced self-recognition and continuous CAR-mediated engagement, resulting in fratricide of trogocytic antigen-expressing NK cells (NKTROG+) and NK cell hyporesponsiveness. This phenomenon could be offset by a dual-CAR system incorporating both an activating CAR against the cognate tumor antigen and an NK self-recognizing inhibitory CAR that transferred a 'don't kill me' signal to NK cells upon engagement with their TROG+ siblings. This system prevented trogocytic antigen-mediated fratricide, while sparing activating CAR signaling against the tumor antigen, and resulted in enhanced CAR-NK cell activity.
Collapse
Affiliation(s)
- Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guohui Wang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judy S Moyes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lucila N Kerbauy
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo, Sao Paulo, Brazil
- Department of Stem Cell Transplantation and Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohsen Fathi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Ali Rezvan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Pinaki P Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tamara J Laskowski
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine III: Hematology and Oncology, Technical University of Munich, Munich, Germany
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingliang Guo
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonny Ang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Bover
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Mandel I, Haves Ziv D, Goldshtein I, Peretz T, Alishekevitz D, Fridman Dror A, Hakim M, Hashmueli S, Friedman I, Sapir Y, Greco R, Qu H, Nestle F, Wiederschain D, Pao L, Sharma S, Ben Moshe T. BND-22, a first-in-class humanized ILT2-blocking antibody, promotes antitumor immunity and tumor regression. J Immunother Cancer 2022; 10:jitc-2022-004859. [PMID: 36096532 PMCID: PMC9472153 DOI: 10.1136/jitc-2022-004859] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Cancer immunotherapy has revolutionized cancer treatment. However, considering the limited success of immunotherapy to only some cancer types and patient cohorts, there is an unmet need for developing new treatments that will result in higher response rates in patients with cancer. Immunoglobulin-like transcript 2 (ILT2), a LILRB family member, is an inhibitory receptor expressed on a variety of immune cells including T cells, natural killer (NK) cells and different myeloid cells. In the tumor microenvironment, binding of class I MHC (in particular HLA-G) to ILT2 on immune cells mediates a strong inhibitory effect, which manifests in inhibition of antitumor cytotoxicity of T and NK cells, and prevention of phagocytosis of the tumor cells by macrophages. METHODS We describe here the development and characteristics of BND-22, a novel, humanized monoclonal antibody that selectively binds to ILT2 and blocks its interaction with classical MHC I and HLA-G. BND-22 was evaluated for its binding and blocking characteristics as well as its ability to increase the antitumor activity of macrophages, T cells and NK cells in various in vitro, ex vivo and in vivo systems. RESULTS Collectively, our data suggest that BND-22 enhances activity of both innate and adaptive immune cells, thus generating robust and comprehensive antitumor immunity. In humanized mice models, blocking ILT2 with BND-22 decreased the growth of human tumors, hindered metastatic spread to the lungs, and prolonged survival of the tumor-bearing mice. In addition, BND-22 improved the antitumor immune response of approved therapies such as anti-PD-1 or anti-EGFR antibodies. CONCLUSIONS BND-22 is a first-in-human ILT2 blocking antibody which has demonstrated efficient antitumor activity in various preclinical models as well as a favorable safety profile. Clinical evaluation of BND-22 as a monotherapy or in combination with other therapeutics is under way in patients with cancer. TRIAL REGISTRATION NUMBER NCT04717375.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rita Greco
- Oncology Reseach, Sanofi, Cambridge, Massachusetts, USA
| | - Hongjing Qu
- Oncology Reseach, Sanofi, Cambridge, Massachusetts, USA
| | - Frank Nestle
- Oncology Reseach, Sanofi, Cambridge, Massachusetts, USA
| | | | - Lily Pao
- Oncology Reseach, Sanofi, Cambridge, Massachusetts, USA
| | - Sharad Sharma
- Oncology Reseach, Sanofi, Cambridge, Massachusetts, USA
| | | |
Collapse
|
6
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Burger MC, Zhang C, Harter PN, Romanski A, Strassheimer F, Senft C, Tonn T, Steinbach JP, Wels WS. CAR-Engineered NK Cells for the Treatment of Glioblastoma: Turning Innate Effectors Into Precision Tools for Cancer Immunotherapy. Front Immunol 2019; 10:2683. [PMID: 31798595 PMCID: PMC6868035 DOI: 10.3389/fimmu.2019.02683] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GB) is the most common and aggressive primary brain tumor in adults and currently incurable. Despite multimodal treatment regimens, median survival in unselected patient cohorts is <1 year, and recurrence remains almost inevitable. Escape from immune surveillance is thought to contribute to the development and progression of GB. While GB tumors are frequently infiltrated by natural killer (NK) cells, these are actively suppressed by the GB cells and the GB tumor microenvironment. Nevertheless, ex vivo activation with cytokines can restore cytolytic activity of NK cells against GB, indicating that NK cells have potential for adoptive immunotherapy of GB if potent cytotoxicity can be maintained in vivo. NK cells contribute to cancer immune surveillance not only by their direct natural cytotoxicity which is triggered rapidly upon stimulation through germline-encoded cell surface receptors, but also by modulating T-cell mediated antitumor immune responses through maintaining the quality of dendritic cells and enhancing the presentation of tumor antigens. Furthermore, similar to T cells, specific recognition and elimination of cancer cells by NK cells can be markedly enhanced through expression of chimeric antigen receptors (CARs), which provides an opportunity to generate NK-cell therapeutics of defined specificity for cancer immunotherapy. Here, we discuss effects of the GB tumor microenvironment on NK-cell functionality, summarize early treatment attempts with ex vivo activated NK cells, and describe relevant CAR target antigens validated with CAR-T cells. We then outline preclinical approaches that employ CAR-NK cells for GB immunotherapy, and give an overview on the ongoing clinical development of ErbB2 (HER2)-specific CAR-NK cells currently applied in a phase I clinical trial in glioblastoma patients.
Collapse
Affiliation(s)
- Michael C Burger
- Institute for Neurooncology, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Congcong Zhang
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Patrick N Harter
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Annette Romanski
- German Red Cross Blood Donation Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
| | - Florian Strassheimer
- Institute for Neurooncology, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Christian Senft
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Torsten Tonn
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Red Cross Blood Donation Service North-East, Dresden, Germany.,Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Joachim P Steinbach
- Institute for Neurooncology, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Winfried S Wels
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Arnold ML, Kainz A, Hidalgo LG, Eskandary F, Kozakowski N, Wahrmann M, Haslacher H, Oberbauer R, Heilos A, Spriewald BM, Halloran PF, Böhmig GA. Functional Fc gamma receptor gene polymorphisms and donor-specific antibody-triggered microcirculation inflammation. Am J Transplant 2018; 18:2261-2273. [PMID: 29478298 DOI: 10.1111/ajt.14710] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/02/2018] [Accepted: 02/16/2018] [Indexed: 01/25/2023]
Abstract
Fc-dependent effector mechanisms may contribute to antibody-mediated rejection (ABMR), and distinct gene polymorphisms modifying the function of Fc gamma receptors (FcγRs) may influence the capability of donor-specific antibodies (DSAs) to trigger inflammation. To evaluate the relevance of functional FcγR variants in late ABMR, 85 DSA-positive kidney allograft recipients, who were recruited upon antibody screening of 741 prevalent patients, were genotyped for polymorphisms in FcγRIIA (FCGR2A-H/R131 ; rs1801274), FcγRIIIA (FCGR3A-V/F158 ; rs396991), and FcγRIIIB (FCGR3B-neutrophil antigen 1 ([NA1]/NA2; rs35139848). Individuals with high-affinity FCGR3A-V158 alleles (V/V158 or V/F158 ) showed a higher rate (and extent) of peritubular capillaritis (ptc) in protocol biopsies than homozygous carriers of the lower-affinity allele (ptc score ≥1: 53.6% vs 25.9%; P = .018). Associations were independent of C1q-binding to DSA or capillary C4d. In parallel, there was a trend toward increased macrophage- and injury-repair response-associated transcript subsets. Kidney function over 24 months, however, was not different. In support of a functional role of FcγRIIIA polymorphism, NK92 cells expressing FCGR3A-V158 produced >2 times as much interferon gamma upon incubation with HLA antibody-coated cells as those expressing FCGR3A-F158 . FcγRIIA and FcγRIIIB polymorphisms were not associated with allograft morphology. Our data suggest that the presence of high-affinity FcγRIIIA variants may favor DSA-triggered microcirculation inflammation.
Collapse
Affiliation(s)
- M L Arnold
- Department of Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - A Kainz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - L G Hidalgo
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - F Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - N Kozakowski
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - M Wahrmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - H Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - R Oberbauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - A Heilos
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - B M Spriewald
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - P F Halloran
- Alberta Transplant Applied Genomics Centre, ATAGC, University of Alberta, Edmonton, AB, Canada
| | - G A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Yu K, Davidson CL, Wójtowicz A, Lisboa L, Wang T, Airo AM, Villard J, Buratto J, Sandalova T, Achour A, Humar A, Boggian K, Cusini A, van Delden C, Egli A, Manuel O, Mueller N, Bochud PY, Burshtyn DN. LILRB1 polymorphisms influence posttransplant HCMV susceptibility and ligand interactions. J Clin Invest 2018. [PMID: 29528338 DOI: 10.1172/jci96174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UL18 is a human CMV (HCMV) MHC class I (MHCI) homolog that efficiently inhibits leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1)+ NK cells. We found an association of LILRB1 polymorphisms in the regulatory regions and ligand-binding domains with control of HCMV in transplant patients. Naturally occurring LILRB1 variants expressed in model NK cells showed functional differences with UL18 and classical MHCI, but not with HLA-G. The altered functional recognition was recapitulated in binding assays with the binding domains of LILRB1. Each of 4 nonsynonymous substitutions in the first 2 LILRB1 immunoglobulin domains contributed to binding with UL18, classical MHCI, and HLA-G. One of the polymorphisms controlled addition of an N-linked glycan, and that mutation of the glycosylation site altered binding to all ligands tested, including enhancing binding to UL18. Together, these findings indicate that specific LILRB1 alleles that allow for superior immune evasion by HCMV are restricted by mutations that limit LILRB1 expression selectively on NK cells. The polymorphisms also maintained an appropriate interaction with HLA-G, fitting with a principal role of LILRB1 in fetal tolerance.
Collapse
Affiliation(s)
- Kang Yu
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Chelsea L Davidson
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Agnieszka Wójtowicz
- Infectious Diseases Service, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Luiz Lisboa
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ting Wang
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Adriana M Airo
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jean Villard
- Immunology and Transplant Unit, Service of Nephrology, Geneva University Hospital, Geneva, Switzerland
| | - Jeremie Buratto
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Atul Humar
- Multi-Organ Transplant Program, University of Toronto, Toronto, Ontario, Canada
| | - Katia Boggian
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Alexia Cusini
- Department of Infectious Diseases and Hospital Epidemiology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Christian van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Geneva, Switzerland
| | - Adrian Egli
- Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Center, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pierre-Yves Bochud
- Infectious Diseases Service, University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Deborah N Burshtyn
- Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Bylińska A, Wilczyńska K, Malejczyk J, Milewski Ł, Wagner M, Jasek M, Niepiekło-Miniewska W, Wiśniewski A, Płoski R, Barcz E, Roszkowski P, Kamiński P, Malinowski A, Wilczyński JR, Radwan P, Radwan M, Kuśnierczyk P, Nowak I. The impact of HLA-G, LILRB1 and LILRB2 gene polymorphisms on susceptibility to and severity of endometriosis. Mol Genet Genomics 2017; 293:601-613. [PMID: 29234882 PMCID: PMC5948266 DOI: 10.1007/s00438-017-1404-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
Abstract
Endometriosis is a disease in which endometriotic tissue occurs outside the uterus. Its pathogenesis is still unknown. The most widespread hypothesis claims that ectopic endometrium appears as a result of retrograde menstruation and its insufficient elimination by immunocytes. Some reports have shown expression of non-classical HLA-G molecules on ectopic endometrium. HLA-G is recognized by KIR2DL4, LILRB1 and LILRB2 receptors on natural killer (NK) and other cells. These receptors are polymorphic, which may affect their activity. In this study we investigated whether HLA-G, KIR2DL4, LILRB1 and LILRB2 polymorphisms may influence susceptibility to endometriosis and disease progression. We used polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism (PCR-RFLP) and allelic discrimination methods with TaqMan SNP Genotyping Assays for typing of 276 patients with endometriosis and 314 healthy fertile women. The HLA-G rs1632947:GG genotype was associated with protection against the disease and its severe stages; HLA-G rs1233334:CT protected against progression; LILRB1 rs41308748:AA and LILRB2 rs383369:AG predisposed to the disease and its progression. No effect of KIR2DL4 polymorphism was observed. These results support the role of polymorphisms of HLA-G and its receptors LILRB1 and LILRB2 in susceptibility to endometriosis and its progression.
Collapse
Affiliation(s)
- Aleksandra Bylińska
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Karolina Wilczyńska
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Centre of Biostructure Research, Medical University of Warsaw, ul. Chałubińskiego 5, 02-004, Warszawa, Poland
| | - Łukasz Milewski
- Department of Histology and Embryology, Centre of Biostructure Research, Medical University of Warsaw, ul. Chałubińskiego 5, 02-004, Warszawa, Poland
| | - Marta Wagner
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Monika Jasek
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Wanda Niepiekło-Miniewska
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Andrzej Wiśniewski
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Centre of Biostructure Research, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106, Warszawa, Poland
| | - Ewa Barcz
- First Chair and Clinic of Obstetrics and Gynecology, Medical University of Warsaw, Pl. Starynkiewcza 1/3, 02-015, Warszawa, Poland
| | - Piotr Roszkowski
- Second Clinic of Obstetrics and Gynecology, Medical University of Warsaw, ul. Karowa 2, 00-315, Warszawa, Poland
| | - Paweł Kamiński
- Department of Gynecology and Gynecological Oncology, Military Medical Institute, Central Clinical Hospital of Ministry of Defence, ul. Szaserów 128, 04-141, Warszawa, Poland
| | - Andrzej Malinowski
- Department of Surgical, Endoscopic and Oncologic Gynecology, Polish Mothers' Memorial Hospital-Research Institute, ul. Rzgowska 281/289, 93-338, Łódź, Poland
| | - Jacek R Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, Al. Kościuszki 4, 90-419, Łódź, Poland
| | - Paweł Radwan
- Department of Reproductive Medicine, Gameta Hospital, ul. Rudzka 34/36, 95-030, Rzgów, Poland.,Biogeno - Regional Science-Technology Centre, Podzamcze 45, 26-060 Chęciny Kielce, Podzamcze, Poland
| | - Michał Radwan
- Department of Reproductive Medicine, Gameta Hospital, ul. Rudzka 34/36, 95-030, Rzgów, Poland.,Faculty of Health Sciences, The State University of Applied Sciences in Plock, Plac Dąbrowskiego 2, 09-402, Płock, Poland
| | - Piotr Kuśnierczyk
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland.
| | - Izabela Nowak
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wrocław, Poland.
| |
Collapse
|
11
|
Zhang C, Oberoi P, Oelsner S, Waldmann A, Lindner A, Tonn T, Wels WS. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity. Front Immunol 2017; 8:533. [PMID: 28572802 PMCID: PMC5435757 DOI: 10.3389/fimmu.2017.00533] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022] Open
Abstract
Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR-engineered NK-92 cells as off-the-shelf cellular therapeutics, with special emphasis on ErbB2 (HER2)-specific NK-92 cells that are approaching clinical application.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Sarah Oelsner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Anja Waldmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Aline Lindner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Torsten Tonn
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.,Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Kang X, Kim J, Deng M, John S, Chen H, Wu G, Phan H, Zhang CC. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle 2016; 15:25-40. [PMID: 26636629 PMCID: PMC4825776 DOI: 10.1080/15384101.2015.1121324] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology - as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.
Collapse
Affiliation(s)
- Xunlei Kang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Jaehyup Kim
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Mi Deng
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Samuel John
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Heyu Chen
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Guojin Wu
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Hiep Phan
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Cheng Cheng Zhang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
13
|
Burshtyn DN, Morcos C. The Expanding Spectrum of Ligands for Leukocyte Ig-like Receptors. THE JOURNAL OF IMMUNOLOGY 2016; 196:947-55. [PMID: 26802060 DOI: 10.4049/jimmunol.1501937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human leukocyte Ig-like receptor family is part of the paired receptor system. The receptors are widely expressed by various immune cells, and new functions continue to emerge. Understanding the range of functions of the receptors is of general interest because several types of pathogens exploit the receptors and genetic diversity of the receptors has been linked to various autoimmune diseases. Class I major histocompatibility molecules were the first ligands appreciated for these receptors, but the types of ligands identified over the last several years are quite diverse, including intact pathogens, immune-modulatory proteins, and molecules normally found within the CNS. This review focuses on the types of ligands described to date, how the individual receptors bind to several distinct types of ligands, and the known functional consequences of those interactions.
Collapse
Affiliation(s)
- Deborah N Burshtyn
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Chris Morcos
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
14
|
Hirayasu K, Arase H. Functional and genetic diversity of leukocyte immunoglobulin-like receptor and implication for disease associations. J Hum Genet 2015; 60:703-8. [PMID: 26040207 DOI: 10.1038/jhg.2015.64] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 01/03/2023]
Abstract
Human leukocyte immunoglobulin-like receptors (LILR) are a family of 11 functional genes encoding five activating (LILRA1, 2, 4-6), five inhibitory (LILRB1-5) and one soluble (LILRA3) form. The number of LILR genes is conserved among individuals, except for LILRA3 and LILRA6, which exhibit copy-number variations. The LILR genes are rapidly evolving and showing large interspecies differences, making it difficult to analyze the functions of LILR using an animal model. LILRs are expressed on various cells such as lymphoid and myeloid cells and the expression patterns are different from gene to gene. The LILR gene expression and polymorphisms have been reported to be associated with autoimmune and infectious diseases such as rheumatoid arthritis and cytomegalovirus infection. Although human leukocyte antigen (HLA) class I is a well-characterized ligand for some LILRs, non-HLA ligands have been increasingly identified in recent years. LILRs have diverse functions, including the regulation of inflammation, immune tolerance, cell differentiation and nervous system plasticity. This review focuses on the genetic and functional diversity of the LILR family.
Collapse
Affiliation(s)
- Kouyuki Hirayasu
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hisashi Arase
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Cheent KS, Jamil KM, Cassidy S, Liu M, Mbiribindi B, Mulder A, Claas FHJ, Purbhoo MA, Khakoo SI. Synergistic inhibition of natural killer cells by the nonsignaling molecule CD94. Proc Natl Acad Sci U S A 2013; 110:16981-6. [PMID: 24082146 PMCID: PMC3801078 DOI: 10.1073/pnas.1304366110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peptide selectivity is a feature of inhibitory receptors for MHC class I expressed by natural killer (NK) cells. CD94-NKG2A operates in tandem with the polymorphic killer cell Ig-like receptors (KIR) and Ly49 systems to inhibit NK cells. However, the benefits of having two distinct inhibitory receptor-ligand systems are not clear. We show that noninhibitory peptides presented by HLA-E can augment the inhibition of NKG2A(+) NK cells mediated by MHC class I signal peptides through the engagement of CD94 without a signaling partner. Thus, CD94 is a peptide-selective NK cell receptor, and NK cells can be regulated by nonsignaling interactions. We also show that KIR(+) and NKG2A(+) NK cells respond with differing stoichiometries to MHC class I down-regulation. MHC-I-bound peptide functions as a molecular rheostat controlling NK cell function. Selected peptides which in isolation do not inhibit NK cells can have different effects on KIR and NKG2A receptors. Thus, these two inhibitory systems may complement each other by having distinct responses to bound peptide and surface levels of MHC class I.
Collapse
Affiliation(s)
- Kuldeep S. Cheent
- Division of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Khaleel M. Jamil
- Division of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Sorcha Cassidy
- Division of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Mengya Liu
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton S016 6YD, United Kingdom; and
| | - Berenice Mbiribindi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton S016 6YD, United Kingdom; and
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Frans H. J. Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Marco A. Purbhoo
- Division of Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Salim I. Khakoo
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton S016 6YD, United Kingdom; and
| |
Collapse
|
16
|
Li NL, Fu L, Uchtenhagen H, Achour A, Burshtyn DN. Cis association of leukocyte Ig-like receptor 1 with MHC class I modulates accessibility to antibodies and HCMV UL18. Eur J Immunol 2013; 43:1042-52. [PMID: 23348966 DOI: 10.1002/eji.201242607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 12/16/2012] [Accepted: 01/21/2013] [Indexed: 01/21/2023]
Abstract
Leukocyte Ig-like receptor (LIR) 1 (CD85j/ILT2/LILRB1) is an inhibitory receptor with broad specificity for MHC class I (MHC-I) and the human CMV MHC-I homologue UL18. LIR-1 can inhibit NK cells through the conventional interaction with MHC-I expressed on a target cell (in trans) but the nature and the effects of LIR-1 interactions with MHC-I in cis are not well understood. Here we show that MHC-I expressed in cis has an impact on the detection of LIR-1 with various antibodies. We found the cis interaction alters recognition by only one of two antibodies known to block functional trans recognition by LIR-1 on NK cells. Specifically, we observed an enhancement of recognition with GHI/75 in the presence of various MHC-I alleles on 721.221 cells. We found that blocking the LIR-1 contact site with anti-MHC-I antibodies decreased detection of LIR-1 with GHI/75. We also observed a decrease in GHI/75 following acid denaturation of MHC-I. Finally, disruption of LIR-1 cis interactions with MHC-I significantly enhanced UL18-Fc binding to NK92 cells and enhanced the relative inhibition of NK92 cells by HLA-G. These results have implications for LIR-1 function in scenarios such as infection when MHC-I levels on effector cells may be increased by IFNs.
Collapse
Affiliation(s)
- Nicholas L Li
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
17
|
Impact of the NK cell receptor LIR-1 (ILT-2/CD85j/LILRB1) on cytotoxicity against multiple myeloma. Clin Dev Immunol 2012; 2012:652130. [PMID: 22844324 PMCID: PMC3400434 DOI: 10.1155/2012/652130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 11/25/2022]
Abstract
The role of different receptors in natural-killer- (NK-) cell-mediated cytotoxicity against multiple myeloma (MM) cells is unknown. We investigated if an enhancement of NK-cell-mediated cytotoxicity against MM could be reached by blocking of the inhibitory leukocyte immunoglobulin-like receptor 1 (LIR-1). Our investigations revealed high levels of LIR-1 expression not only on the NK cell line NK-92, but also on myeloma cells (MOLP-8, RPMI8226) as well as on a lymphoblastoid cell line (LBCL; IM-9). Subsequent cytotoxicity assays were designed to show the isolated effects of LIR-1 blocking on either the effector or the tumor side to rule out receptor-receptor interactions. Although NK-92 was shown to be capable of myeloma cell lysis, inhibition of LIR-1 on NK-92 did not enhance cytotoxicity. Targeting the receptor on MM and LBCL did not also alter NK-92-mediated lysis. We come to the conclusion that LIR-1 alone does not directly influence NK-cell-mediated cytotoxicity against myeloma. To our knowledge, this work provides the first investigation of the inhibitory capability of LIR-1 in NK-92-mediated cytotoxicity against MM and the first functional evaluation of LIR-1 on MM and LBCL.
Collapse
|
18
|
Garcia-Garcia E, Grayfer L, Stafford JL, Belosevic M. Evidence for the presence of functional lipid rafts in immune cells of ectothermic organisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:257-269. [PMID: 22450166 DOI: 10.1016/j.dci.2012.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
The role of lipid rafts in non-mammalian leukocytes has been scarcely investigated. We performed biochemical and functional analysis of lipid rafts in fish leukocytes. Fish Flotillin-1 and a fish GM1-like molecule (fGM1-L) were found in low density detergent-resistant membranes (LD-DRM) in goldfish macrophages and catfish B lymphocytes, similarly to mammals. The presence of flotillin-1 and fGM1-L in LD-DRM was sensitive to increased detergent concentrations, and cholesterol extraction. Confocal microscopy analysis of flotillin-1 and fGM1-L in fish leukocytes showed a distinctive punctuated staining pattern, suggestive of pre-existing rafts. Confocal microscopy analysis of macrophages showed that the membrane of phagosomes containing serum-opsonized zymosan was enriched in fGM1-L, and zymosan phagocytosis was reduced after cholesterol extraction. The presence of flotillin-1 and fGM1-L in LD-DRM, the microscopic evidence of flotillin-1 and fGM1-L on fish macrophages and B-cells, and the sensitivity of phagocytosis to cholesterol extraction, indicate that lipid rafts are biochemically and functionally similar in leukocytes from fish and mammals.
Collapse
Affiliation(s)
- Erick Garcia-Garcia
- Department of Biological Sciences, University of Alberta, Edmonton, Canada AB T6G 2E9
| | | | | | | |
Collapse
|
19
|
Clinical production and therapeutic applications of alloreactive natural killer cells. Methods Mol Biol 2012; 882:491-507. [PMID: 22665252 DOI: 10.1007/978-1-61779-842-9_28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent advances have improved our understanding of natural killer (NK) cell-mediated alloreactivity after hematopoietic cell transplantation (HCT) or with adoptive transfer. NK cells contribute to a graft-versus-leukemia effect and may play a role in preventing graft-versus-host disease or controlling infectious diseases after allogeneic HCT. New discoveries in NK cell biology, including characterization of NK cell receptors and their interactions with self-HLA molecules and a better understanding of the mechanism of NK cell education have led to the development of novel strategies to exploit NK cell alloreactivity against tumors. While early studies using autologous NK cells lacked efficacy, the use of adoptively transferred NK cells to treat hematopoietic malignancies has been expanding. The production of allogeneic donor NK cells requires efficient removal of T- and B cells from clinical-scale leukapheresis collections. The goal of this chapter is to review NK cell biology, NK cell receptors, the use of NK cells as therapy and then to discuss the clinical decisions resulting in our current good manufacturing practices processing and activation of human NK cells for therapeutic use.
Collapse
|
20
|
Garcia-Garcia E, Ge JQ, Oladiran A, Montgomery B, El-Din MG, Perez-Estrada LC, Stafford JL, Martin JW, Belosevic M. Ozone treatment ameliorates oil sands process water toxicity to the mammalian immune system. WATER RESEARCH 2011; 45:5849-5857. [PMID: 21940034 DOI: 10.1016/j.watres.2011.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 05/31/2023]
Abstract
We evaluated whether ozonation ameliorated the effects of the organic fraction of oil sands process water (OSPW) on immune functions of mice. Ozonation of OSPW eliminated the capacity of its organic fraction to affect various mouse bone marrow-derived macrophage (BMDM) functions in vitro. These included the production of nitric oxide and the expression of inducible nitric oxide synthase, the production of reactive oxygen intermediates and the expression of NADPH oxidase subunits, phagocytosis, and the expression of pro-inflammatory cytokine genes. Ozone treatment also eliminated the ability of OSPW organic fraction to down-regulate the expression of various pro-inflammatory cytokine and chemokine genes in the liver of mice, one week after oral exposure. We conclude that ozone treatment may be a valuable process for the remediation of large volumes of OSPW.
Collapse
|
21
|
Davidson CL, Li NL, Burshtyn DN. LILRB1 polymorphism and surface phenotypes of natural killer cells. Hum Immunol 2010; 71:942-9. [PMID: 20600445 DOI: 10.1016/j.humimm.2010.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/16/2010] [Accepted: 06/22/2010] [Indexed: 02/08/2023]
Abstract
Leukocyte Ig-like receptor (LIR)-1 is an inhibitory receptor that binds a broad range of class I HLA molecules and is encoded by the LILRB1 gene within the leukocyte receptor complex. In contrast to uniform expression on monocytes and B cells, LIR-1 expression on natural killer (NK) cells varies considerably between individuals. To investigate how polymorphism is related to the observed patterns of expression, we analyzed the LILRB1 gene and its transcriptional activity in a group of individuals with various levels of expression on NK cells. We found that LILRB1 transcription is correlated with surface protein expression on NK cells. In a cohort of 24 donors, we found high expression on NK cells to be associated with three linked SNPs (AGG verses GAA) within the putative regulatory region. We also identified several new protein variants and observed variants with P, T, T, and I at positions 68, 95, 142, and 155, respectively, more frequently in donors with low expression on NK cells. These results suggest that there is a significant degree of diversity within the LILRB1 locus and that it influences expression patterns on NK cells. These genetic differences may underpin variation in individual immune responses involving LIR-1 on NK cells.
Collapse
Affiliation(s)
- Chelsea L Davidson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
22
|
Fadda L, Borhis G, Ahmed P, Cheent K, Pageon SV, Cazaly A, Stathopoulos S, Middleton D, Mulder A, Claas FHJ, Elliott T, Davis DM, Purbhoo MA, Khakoo SI. Peptide antagonism as a mechanism for NK cell activation. Proc Natl Acad Sci U S A 2010; 107:10160-5. [PMID: 20439706 PMCID: PMC2890497 DOI: 10.1073/pnas.0913745107] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Inhibition of natural killer (NK) cells is mediated by MHC class I receptors including the killer cell Ig-like receptor (KIR). We demonstrate that HLA-C binding peptides can function as altered peptide ligands for KIR and antagonize the inhibition mediated by KIR2DL2/KIR2DL3. Antagonistic peptides promote clustering of KIR at the interface of effector and target cells, but do not result in inhibition of NK cells. Our data show that, as for T cells, small changes in the peptide content of MHC class I can regulate NK cell activity.
Collapse
Affiliation(s)
| | | | | | | | - Sophie V. Pageon
- Cell and Molecular Medicine, Imperial College London, London W2 1PG, United Kingdom
| | - Angelica Cazaly
- Cancer Sciences Division, University of Southampton, Southampton General Hospital, Southampton S016 6YD, United Kingdom
| | | | - Derek Middleton
- Royal Liverpool University Hospital and School of Infection and Immunity, University of Liverpool, Liverpool L7 8XP, United Kingdom; and
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Frans H. J. Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Tim Elliott
- Cancer Sciences Division, University of Southampton, Southampton General Hospital, Southampton S016 6YD, United Kingdom
| | - Daniel M. Davis
- Cell and Molecular Medicine, Imperial College London, London W2 1PG, United Kingdom
| | | | | |
Collapse
|
23
|
Zheng X, Wang Y, Wei H, Sun R, Tian Z. LFA-1 and CD2 synergize for the Erk1/2 activation in the Natural Killer (NK) cell immunological synapse. J Biol Chem 2009; 284:21280-7. [PMID: 19502238 DOI: 10.1074/jbc.m807053200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cell recognition and formation of a conjugate with target cells, followed by intracellular signal pathway activation and degradation of cytolytic granules, are essential for NK cell cytotoxicity. In this study, NK92 cells were used to investigate synapse formation and subsequent signaling after binding to the target cell. The binding rate of the NK92-target cell was associated with NK92 cell cytotoxicity. Confocal results showed that adhesion molecules, LFA-1 (CD11a) and CD2, accumulated at the interface of the NK92-K562 contact. Ligation with K562 cells activated the Erk1/2 signal pathway of NK92 cells. The blocking of the NK-target conjugate by EDTA or anti-CD11a or/and anti-CD2 antibody decreased the phosphorylation of Erk1/2 and NK cell cytotoxicity. Inhibition of Erk1/2 phosphorylation by the chemical inhibitor U0126 suppressed the cytolytic activity of NK92 cells, but had no effect on NK-target conjugate formation. Thus, conjugate formation of the NK92-target cell was prerequisite to NK cell activation, and subsequent signal transduction was also required for NK cell cytotoxicity.
Collapse
Affiliation(s)
- Xiaodong Zheng
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | |
Collapse
|
24
|
Dengue virus replicon expressing the nonstructural proteins suffices to enhance membrane expression of HLA class I and inhibit lysis by human NK cells. J Virol 2008; 82:7666-76. [PMID: 18508882 DOI: 10.1128/jvi.02274-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many viruses escape the cellular immune response by downregulating cell surface expression of major histocompatibility complex (MHC) class I molecules. However, infection of cells with flaviviruses can upregulate the expression of these molecules. In this study we analyzed the expression of MHC class I in K562 and THP-1 human cell lines that were stably transfected with self-replicating subgenomic dengue virus RNA (replicons) and express all the dengue virus nonstructural proteins together. We show that MHC class I expression is upregulated in the dengue virus replicon-expressing cells and that the binding of natural killer (NK) inhibitory receptors to these cells is augmented. This upregulation results in reduced susceptibility of the dengue virus replicon-expressing cells to NK lysis, indicating a possible mechanism for evasion of the dengue virus from NK cell recognition. Visualizing MHC class I expression in replicon-containing K562 and THP-1 cells by confocal microscopy demonstrated aggregation of MHC class I molecules on the cell surface. Finally, replicon-expressing K562 cells manifested increased TAP (transporter associated with antigen processing) and LMP (low-molecular-mass protein) gene transcription, while replicon-expressing THP-1 cells manifested increased NF-kappaB activity and MHC class I transcription. We suggest that expression of dengue virus nonstructural proteins is sufficient to induce MHC class I upregulation through both TAP-dependent and -independent mechanisms. Additionally, aggregation of MHC class I molecules on the cell membrane also contributes to significantly higher binding of low-affinity NK inhibitory receptors, resulting in lower sensitivity to lysis by NK cells.
Collapse
|
25
|
Wagner CS, Ljunggren HG, Achour A. Immune modulation by the human cytomegalovirus-encoded molecule UL18, a mystery yet to be solved. THE JOURNAL OF IMMUNOLOGY 2008; 180:19-24. [PMID: 18096997 DOI: 10.4049/jimmunol.180.1.19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human cytomegalovirus infects human populations at a high frequency worldwide. During the long coevolution of virus and host, a fine balance has developed between viral immune evasion strategies and defense mechanisms of the immune system. Human cytomegalovirus encodes multiple proteins involved in the evasion of immune recognition, among them UL18, a MHC class I homologue. Despite almost 20 years of research and the discovery of a broadly expressed inhibitory receptor for this protein, its function in immune modulation is not clear yet. Recent data suggest that besides inhibitory effects on various immune cells, UL18 may also act as an activating component during CMV infection. In this review, we provide an overview of the biology of UL18 and discuss several attempts to shed light on its function.
Collapse
Affiliation(s)
- Claudia S Wagner
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | |
Collapse
|
26
|
Kirwan SE, Burshtyn DN. Regulation of natural killer cell activity. Curr Opin Immunol 2007; 19:46-54. [PMID: 17142026 DOI: 10.1016/j.coi.2006.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 11/23/2006] [Indexed: 11/16/2022]
Abstract
Information regarding the role of natural killer (NK) cells in the response to viruses, intracellular bacteria and parasites continues to emerge. NK cells can directly lyse infected cells, secrete cytokines and interact with dendritic cells to drive the adaptive immune response. There are a large number of activating and inhibitory receptors that govern NK cell activity. Recent studies have revealed how signals are transmitted and integrated from the variety of receptors, how particular receptors influence NK development and functional status, and how NK cells access lymph nodes and sites of infection. The potential for NK cells to exhibit specific and memory-like responses has begun to blur the 'innate' definition of NK cells.
Collapse
Affiliation(s)
- Sheryl E Kirwan
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | | |
Collapse
|
27
|
Kirwan S, Merriam D, Barsby N, McKinnon A, Burshtyn DN. Vaccinia virus modulation of natural killer cell function by direct infection. Virology 2006; 347:75-87. [PMID: 16387342 DOI: 10.1016/j.virol.2005.11.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 07/29/2005] [Accepted: 11/23/2005] [Indexed: 01/19/2023]
Abstract
Natural Killer (NK) cells have been implicated in the response to poxviruses, but the interaction between NK and infected cells is not well characterized. We show that downregulation of class I major histocompatibility complex (MHC-I) molecules in human cells by vaccinia virus (VV) sensitizes the cells to lysis by NK cells. We provide evidence suggesting that NK cells are infected as a consequence of co-culture with infected target cells. We also show that infection of NK cells leads to a marked depression of cytotoxicity. Moreover, the effect on NK cytotoxicity occurs within hours of infection and is prevented by UV inactivation of the virus but is only partially prevented by blocking late gene expression. VV infection also renders the NK cells more sensitive to inhibitory signals. Together our observations suggest that VV infection of NK cells can modulate their signaling in a manner that prevents them from acting on infected target cells.
Collapse
Affiliation(s)
- Sheryl Kirwan
- Department of Medical Microbiology and Immunology, University of Alberta, 659 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | |
Collapse
|