1
|
Fang X, Kang L, Qiu YF, Li ZS, Bai Y. Yersinia enterocolitica in Crohn’s disease. Front Cell Infect Microbiol 2023; 13:1129996. [PMID: 36968108 PMCID: PMC10031030 DOI: 10.3389/fcimb.2023.1129996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Increasing attention is being paid to the unique roles gut microbes play in both physiological and pathological processes. Crohn’s disease (CD) is a chronic, relapsing, inflammatory disease of the gastrointestinal tract with unknown etiology. Currently, gastrointestinal infection has been proposed as one initiating factor of CD. Yersinia enterocolitica, a zoonotic pathogen that exists widely in nature, is one of the most common bacteria causing acute infectious gastroenteritis, which displays clinical manifestations similar to CD. However, the specific role of Y. enterocolitica in CD is controversial. In this Review, we discuss the current knowledge on how Y. enterocolitica and derived microbial compounds may link to the pathogenesis of CD. We highlight examples of Y. enterocolitica-targeted interventions in the diagnosis and treatment of CD, and provide perspectives for future basic and translational investigations on this topic.
Collapse
Affiliation(s)
| | | | | | | | - Yu Bai
- *Correspondence: Zhao-Shen Li, ; Yu Bai,
| |
Collapse
|
2
|
Abramov VM, Kosarev IV, Motin VL, Khlebnikov VS, Vasilenko RN, Sakulin VK, Machulin AV, Uversky VN, Karlyshev AV. Binding of LcrV protein from Yersinia pestis to human T-cells induces apoptosis, which is completely blocked by specific antibodies. Int J Biol Macromol 2018; 122:1062-1070. [PMID: 30218736 DOI: 10.1016/j.ijbiomac.2018.09.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 11/29/2022]
Abstract
The V antigen (LcrV) of the plague bacterium Yersinia pestis is a potent protective protein that is considered as a vaccine component for humans. LcrV mediates the delivery of Yop toxins into host cells and upregulates TLR2-dependent IL-10 production. Although LcrV can interact with the receptor-bound human interferon-γ (hIFN-γ), the significance of these interactions in plague pathogenesis is not known. In this study, we determined the parameters of specific interactions of LcrV and LcrV68-326 with primary human thymocytes and Jurkat T-leukemia cells in the presence of receptor-bound hIFN-γ. Although the C-terminal region of hIFN-γ contains a GRRA138-141 site needed for high-affinity binding of LcrV and LcrV68-326, in the hIFN-γ homodimer, these GRRA138-141 target sites becomes accessible for targeting by LcrV or LcrV68-326 only after immobilization of the hIFN-γ homodimer on the hIFN-γ receptors of thymocytes or Jurkat T-cells. The interaction of LcrV or LcrV68-326 with receptor-bound hIFN-γ on the thymocytes or Jurkat T-cells caused apoptosis of both cell types, which can be completely blocked by the addition of monoclonal antibodies specific to the LEEL32-35 and DEEI203-206 sites of LcrV. The ability of LcrV to utilize hIFN-γ is insidious and may account in part for the severe symptoms of plague in humans.
Collapse
Affiliation(s)
- Vyacheslav M Abramov
- Department of Immunology and Biodefence, Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Igor V Kosarev
- Department of Immunology and Biodefence, Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir L Motin
- Department of Pathology/Microbiology & Immunology, University of Texas Medical Branch, Galverston, TX 77555, USA
| | - Valentin S Khlebnikov
- Department of Immunology and Biodefence, Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Raisa N Vasilenko
- Department of Immunology and Biodefence, Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vadim K Sakulin
- Department of Immunology and Biodefence, Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Andrey V Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Andrey V Karlyshev
- Department of Science, Engineering and Computing, Kingston University, Kingston, UK
| |
Collapse
|
3
|
Direct Manipulation of T Lymphocytes by Proteins of Gastrointestinal Bacterial Pathogens. Infect Immun 2018; 86:IAI.00683-17. [PMID: 29339462 DOI: 10.1128/iai.00683-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal bacterial infection represents a significant threat to human health, as well as a burden on food animal production and welfare. Although there is advanced knowledge about the molecular mechanisms underlying pathogenesis, including the development of immune responses to these pathogens, gaps in knowledge persist. It is well established that gastrointestinal bacterial pathogens produce a myriad of proteins that affect the development and effectiveness of innate immune responses. However, relatively few proteins that directly affect lymphocytes responsible for humoral or cell-mediated immunity and memory have been identified. Here, we review factors produced by gastrointestinal bacterial pathogens that have direct T cell interactions and what is known about their functions and mechanisms of action. T cell-interacting bacterial proteins that have been identified to date mainly target three major T cell responses: activation and expansion, chemotaxis, or apoptosis. Further, the requirement for more focused studies to identify and understand additional mechanisms used by bacteria to directly affect the T cell immune response and how these may contribute to pathogenesis is highlighted. Increased knowledge in this area will help to drive development of better interventions in prevention and treatment of gastrointestinal bacterial infection.
Collapse
|
4
|
Priya A, Kaur K, Bhattacharyya S, Chakraborti A, Ghosh S. Cell cycle arrest and apoptosis induced by enteroaggregative Escherichia coli in cultured human intestinal epithelial cells. J Med Microbiol 2017; 66:217-225. [DOI: 10.1099/jmm.0.000405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Anshu Priya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Kiranjeet Kaur
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Anuradha Chakraborti
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
5
|
Du Z, Wang X. Pathology and Pathogenesis of Yersinia pestis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:193-222. [DOI: 10.1007/978-94-024-0890-4_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Pha K, Navarro L. Yersinia type III effectors perturb host innate immune responses. World J Biol Chem 2016; 7:1-13. [PMID: 26981193 PMCID: PMC4768113 DOI: 10.4331/wjbc.v7.i1.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.
Collapse
|
7
|
|
8
|
Bergh PV, Burr SE, Benedicenti O, von Siebenthal B, Frey J, Wahli T. Antigens of the type-three secretion system of Aeromonas salmonicida subsp. salmonicida prevent protective immunity in rainbow trout. Vaccine 2013; 31:5256-61. [DOI: 10.1016/j.vaccine.2013.08.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 11/16/2022]
|
9
|
Dewoody R, Merritt PM, Marketon MM. YopK controls both rate and fidelity of Yop translocation. Mol Microbiol 2013; 87:301-17. [PMID: 23205707 PMCID: PMC3545096 DOI: 10.1111/mmi.12099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 11/27/2022]
Abstract
Yersinia pestis, the causative agent of plague, utilizes a type III secretion system (T3SS) to intoxicate host cells. The injection of T3SS substrates must be carefully controlled, and dysregulation leads to altered infection kinetics and early clearance of Y. pestis. While the sequence of events leading up to cell contact and initiation of translocation has received much attention, the regulatory events that take place after effector translocation is less understood. Here we show that the regulator YopK is required to maintain fidelity of substrate specificity, in addition to controlling translocation rate. YopK was found to interact with YopD within targeted cells during Y. pestis infection, suggesting that YopK's regulatory mechanism involves a direct interaction with the translocation pore. In addition, we identified a single amino acid in YopK that is essential for translocation rate regulation but is dispensable for maintaining fidelity of translocation. Furthermore, we found that expression of YopK within host cells was sufficient to downregulate translocation rate, but it did not affect translocation fidelity. Together, our data support a model in which YopK is a bifunctional protein whose activities are genetically and spatially distinct such that fidelity control occurs within bacteria and rate control occurs within host cells.
Collapse
|
10
|
Zigangirova NA, Nesterenko LN, Tiganova IL, Kost EA. The role of the type-III secretion system of Gram-negative bacteria in the regulation of chronic infections. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2012. [DOI: 10.3103/s0891416812030081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
11
|
García-Callejo FJ, Minguell-González P, Benavent-Corai V, Santonja-López N, Muñoz-Fernández N, Marco-Algarra J. Amigdalitis por Yersinia enterocolitica. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2011; 62:381-4. [DOI: 10.1016/j.otorri.2011.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/28/2011] [Accepted: 01/30/2011] [Indexed: 10/18/2022]
|
12
|
García-Callejo FJ, Minguell-González P, Benavent-Corai V, Santonja-López N, Muñoz-Fernández N, Marco-Algarra J. Yersinia enterocolitica Tonsillitis. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2011. [DOI: 10.1016/j.otoeng.2011.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Staphylococcal PknB as the first prokaryotic representative of the proline-directed kinases. PLoS One 2010; 5:e9057. [PMID: 20140229 PMCID: PMC2816222 DOI: 10.1371/journal.pone.0009057] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/18/2010] [Indexed: 01/25/2023] Open
Abstract
In eukaryotic cell types, virtually all cellular processes are under control of proline-directed kinases and especially MAP kinases. Serine/threonine kinases in general were originally considered as a eukaryote-specific enzyme family. However, recent studies have revealed that orthologues of eukaryotic serine/threonine kinases exist in bacteria. Moreover, various pathogenic species, such as Yersinia and Mycobacterium, require serine/threonine kinases for successful invasion of human host cells. The substrates targeted by bacterial serine/threonine kinases have remained largely unknown. Here we report that the serine/threonine kinase PknB from the important pathogen Staphylococcus aureus is released into the external milieu, which opens up the possibility that PknB does not only phosphorylate bacterial proteins but also proteins of the human host. To identify possible human targets of purified PknB, we studied in vitro phosphorylation of peptide microarrays and detected 68 possible human targets for phosphorylation. These results show that PknB is a proline-directed kinase with MAP kinase-like enzymatic activity. As the potential cellular targets for PknB are involved in apoptosis, immune responses, transport, and metabolism, PknB secretion may help the bacterium to evade intracellular killing and facilitate its growth. In apparent agreement with this notion, phosphorylation of the host-cell response coordinating transcription factor ATF-2 by PknB was confirmed by mass spectrometry. Taken together, our results identify PknB as the first prokaryotic representative of the proline-directed kinase/MAP kinase family of enzymes.
Collapse
|
14
|
Groves E, Rittinger K, Amstutz M, Berry S, Holden DW, Cornelis GR, Caron E. Sequestering of Rac by the Yersinia effector YopO blocks Fcgamma receptor-mediated phagocytosis. J Biol Chem 2009; 285:4087-4098. [PMID: 19926792 DOI: 10.1074/jbc.m109.071035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pathogenic Yersinia species neutralize innate immune mechanisms by injecting type three secretion effectors into immune cells, altering cell signaling. Our study elucidates how one of these effectors, YopO, blocks phagocytosis. We demonstrate using different phagocytic models that YopO specifically blocks Rac-dependent Fcgamma receptor internalization pathway but not complement receptor 3-dependent uptake, which is controlled by Rho activity. We show that YopO prevents Rac activation but does not affect Rac accumulation at the phagocytic cup. In addition, we show that plasma membrane localization and the guanine-nucleotide dissociation inhibitor (GDI)-like domain of YopO cooperate for maximal anti-phagocytosis. Although YopO has the same affinity for Rac1, Rac2, and RhoA in vitro, it selectively interacts with Rac isoforms in cells. This is due to the differential localization of the Rho family G proteins in resting cells; Rac isoforms partially exist as a GDI-free pool at the membrane of resting cells, whereas RhoA is trapped in the cytosol by RhoGDIalpha. We propose that YopO exploits this basic difference in localization and availability to selectively inhibit Rac-dependent phagocytosis.
Collapse
Affiliation(s)
- Eleanor Groves
- From the Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Katrin Rittinger
- the Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, London NW7 1AA, United Kingdom, and
| | - Marlise Amstutz
- Infection Biology, Biozentrum, University of Basel, Klingenbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Sara Berry
- From the Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - David W Holden
- From the Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Guy R Cornelis
- Infection Biology, Biozentrum, University of Basel, Klingenbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Emmanuelle Caron
- From the Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
15
|
Liu T, Agar SL, Sha J, Chopra AK. Deletion of Braun lipoprotein gene (lpp) attenuates Yersinia pestis KIM/D27 strain: role of Lpp in modulating host immune response, NF-kappaB activation and cell death. Microb Pathog 2009; 48:42-52. [PMID: 19737605 DOI: 10.1016/j.micpath.2009.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 08/25/2009] [Accepted: 09/01/2009] [Indexed: 01/09/2023]
Abstract
The pathogenic species of yersiniae potently blocks immune responses in host cells by using the type III secretion apparatus and its effector proteins. In this study, we characterized potential mechanisms associated with the Braun lipoprotein (Lpp) that contributed to a further attenuation of a pigmentation locus-minus Yersinia pestis KIM/D27 mutant strain and its ability to generate immune responses in mice. The lpp gene encodes one of the major outer membrane lipoproteins that is involved in inflammatory responses and septic shock. We found that sera and splenocytes from Deltalpp mutant-immunized mice, when transferred to naïve animals, provided protection to the latter against challenge with a lethal dose of the Y. pestis parental strain. Further, the Deltalpp mutant promoted ex vivo a significantly higher interleukin (IL)-2 and interferon-gamma production from T cells of immunized mice, when compared to those from animals infected with the sub-lethal dose of the parental Y. pestis KIM/D27 strain. Likewise, murine primary macrophages infected with the mutant, when compared to those infected with the parental strain in vitro, produced significantly higher IL-12 levels. Importantly, increased nuclear factor-kappa B activation and decreased apoptosis were noted in splenocytes and primary macrophages of mice challenged with the Deltalpp mutant, when compared to those in animals infected with the parental Y. pestis KIM/D27 strain. Finally, significantly higher levels of antibodies specific for the parental Y. pestis antigens were developed in mice first immunized with the Deltalpp mutant and then challenged with the parental strain, compared to the antibody levels in animals that were immunized and then infected with the parental KIM/D27 strain. To our knowledge, this is the first report of a mechanistic basis for attenuation and immunological responses associated with deletion of the lpp gene from the Y. pestis KIM/D27 strain.
Collapse
Affiliation(s)
- Tie Liu
- Department of Microbiology & Immunology, Medical Research Building, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | |
Collapse
|
16
|
Zhan L, Yang L, Zhou L, Li Y, Gao H, Guo Z, Zhang L, Qin C, Zhou D, Yang R. Direct and negative regulation of the sycO-ypkA-ypoJ operon by cyclic AMP receptor protein (CRP) in Yersinia pestis. BMC Microbiol 2009; 9:178. [PMID: 19703315 PMCID: PMC2738681 DOI: 10.1186/1471-2180-9-178] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 08/25/2009] [Indexed: 12/02/2022] Open
Abstract
Background Pathogenic yersiniae, including Y. pestis, share a type III secretion system (T3SS) that is composed of a secretion machinery, a set of translocation proteins, a control system, and six Yop effector proteins including YpkA and YopJ. The cyclic AMP receptor protein (CRP), a global regulator, was recently found to regulate the laterally acquired genes (pla and pst) in Y. pestis. The regulation of T3SS components by CRP is unknown. Results The sycO, ypkA and yopJ genes constitute a single operon in Y. pestis. CRP specifically binds to the promoter-proximate region of sycO, and represses the expression of the sycO-ypkA-yopJ operon. A single CRP-dependent promoter is employed for the sycO-ypkA-yopJ operon, but two CRP binding sites (site 1 and site 2) are detected within the promoter region. A CRP box homologue is found in site 1 other than site 2. The determination of CRP-binding sites, transcription start site and core promoter element (-10 and -35 regions) promotes us to depict the structural organization of CRP-dependent promoter, giving a map of CRP-promoter DNA interaction for sycO-ypkA-yopJ. Conclusion The sycO-ypkA-yopJ operon is under the direct and negative regulation of CRP in Y. pestis. The sycO-ypkA-yopJ promoter-proximate regions are extremely conserved in Y. pestis, Y. pseudotuberculosis and Y. enterocolitica. Therefore, data presented here can be generally applied to the above three pathogenic yersiniae.
Collapse
Affiliation(s)
- Lingjun Zhan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shao F. Biochemical functions of Yersinia type III effectors. Curr Opin Microbiol 2008; 11:21-9. [PMID: 18299249 DOI: 10.1016/j.mib.2008.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/11/2008] [Accepted: 01/18/2008] [Indexed: 01/09/2023]
Abstract
Yersinia uses a type III secretion system (TTSS) to deliver six effector proteins into host cells. These six proteins harbor distinct activities that are mimicries of host functions but often have acquired unique biochemical features. The host targets for these effectors appear to be limited to a few key signaling components such as G proteins and kinases, whereas their models of action are diverse and sophisticated. The functions of these effectors are to subvert the host immune defense response, including alterations of the cytoskeleton structure, inhibition of phagocytic clearance, blockage of cytokine production, and induction of apoptosis. These effectors also interfere with communications between the innate and the adaptive immune response, thus aiding the establishment of a systemic infection.
Collapse
Affiliation(s)
- Feng Shao
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China.
| |
Collapse
|