1
|
Cocker ATH, Liu F, Djaoud Z, Guethlein LA, Parham P. CD56-negative NK cells: Frequency in peripheral blood, expansion during HIV-1 infection, functional capacity, and KIR expression. Front Immunol 2022; 13:992723. [PMID: 36211403 PMCID: PMC9539804 DOI: 10.3389/fimmu.2022.992723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Human NK cells are usually defined as CD3-CD56+ lymphocytes. However, a CD56-CD16+ (CD56neg) lymphocyte population that displays NK-associated markers expands during chronic viral infections such as HIV-1 and HCV, and, to lesser extent, in herpesvirus infections. This CD56neg NK cell subset has been understudied because it requires the exclusion of other lymphocytes to accurately identify its presence. Many questions remain regarding the origin, development, phenotype, and function of the CD56neg NK cell population. Our objective was to determine the frequency of this NK subset in healthy controls and its alteration in viral infections by performing a meta-analysis. In addition to this, we analyzed deposited CyTOF and scRNAseq datasets to define the phenotype and subsets of the CD56neg NK cell population, as well as their functional variation. We found in 757 individuals, from a combined 28 studies and 6 datasets, that the CD56neg subset constitutes 5.67% of NK cells in healthy peripheral blood, while HIV-1 infection increases this population by a mean difference of 10.69%. Meta-analysis of surface marker expression between NK subsets showed no evidence of increased exhaustion or decreased proliferation within the CD56neg subset. CD56neg NK cells have a distinctive pattern of KIR expression, implying they have a unique potential for KIR-mediated education. A perforin-CD94-NKG2C-NKp30- CD56neg population exhibited different gene expression and degranulation responses against K562 cells compared to other CD56neg cells. This analysis distinguishes two functionally distinct subsets of CD56neg NK cells. They are phenotypically diverse and have differing capacity for education by HLA class-I interactions with KIRs.
Collapse
Affiliation(s)
- Alexander T. H. Cocker
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Alexander T. H. Cocker,
| | - Fuguo Liu
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- Laboratory Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Zakia Djaoud
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Lisbeth A. Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
2
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
3
|
Manickam C, Li H, Shah SV, Kroll K, Reeves RK. Non-linear multidimensional flow cytometry analyses delineate NK cell phenotypes in normal and HIV-infected chimpanzees. Int Immunol 2019; 31:175-180. [PMID: 30418531 PMCID: PMC6400041 DOI: 10.1093/intimm/dxy076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/05/2018] [Indexed: 11/14/2022] Open
Abstract
Natural killer (NK) cells are primary immune effector cells with both innate and potentially adaptive functions against viral infections, but commonly become exhausted or dysfunctional during chronic diseases such as human immunodeficiency virus (HIV). Chimpanzees are the closest genetic relatives of humans and have been previously used in immunology, behavior and disease models. Due to their similarities to humans, a better understanding of chimpanzee immunology, particularly innate immune cells, can lend insight into the evolution of human immunology, as well as response to disease. However, the phenotype of NK cells has been poorly defined. In order to define NK cell phenotypes, we unbiasedly quantified NK cell markers among mononuclear cells in both naive and HIV-infected chimpanzees by flow cytometry. We identified NKG2D and NKp46 as the most dominant stable NK cells markers using multidimensional data reduction analyses. Other traditional NK cell markers such as CD8α, CD16 and perforin fluctuated during infection, while some such as CD56, NKG2A and NKp30 were generally unaltered by HIV infection, but did not delineate the full NK cell repertoire. Taken together, these data indicate that phenotypic dysregulation may not be pronounced during HIV infection of chimpanzees, but traditional NK cell phenotyping used for both humans and other non-human primate species may need to be revised to accurately identify chimpanzee NK cells.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Haiying Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, USA
| | - Spandan V Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, USA
| |
Collapse
|
4
|
Watanabe M, Kudo Y, Kawano M, Nakayama M, Nakamura K, Kameda M, Ebara M, Sato T, Nakamura M, Omine K, Kametani Y, Suzuki R, Ogasawara K. NKG2D functions as an activating receptor on natural killer cells in the common marmoset (Callithrix jacchus). Int Immunol 2014; 26:597-606. [PMID: 24860119 DOI: 10.1093/intimm/dxu053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The natural killer group 2 membrane D (NKG2D) receptor is an NK-activating receptor that plays an important role in host defense against tumors and viral infections. Although the marmoset is an important and reliable animal model, especially for the study of human-specific viral infections, functional characterization of NKG2D on marmoset NK cells has not previously been conducted. In the present study, we investigated a subpopulation of marmoset NK cells that express NKG2D and exhibit cytolytic potential. On the basis of their CD16 and CD56 expression patterns, marmoset NK cells can be classified into three subpopulations: CD16(+) CD56(-), CD16(-) CD56(+) and CD16(-) CD56(-) cells. NKG2D expression on marmoset CD16(+) CD56(-) and CD16(-) CD56(+) splenocytes was confirmed using an NKG2D ligand composed of an MHC class I chain-related molecule A (MICA)-Fc fusion protein. When marmoset splenocytes were cultured with IL-2 for 4 days, NKG2D expression was retained on CD16(+) CD56(-) and CD16(-) CD56(+). In addition, CD16(+) CD56(+) cells within the marmoset NK population appeared which expressed NKG2D after IL-2 stimulation. IL-2-activated marmoset NK cells showed strong cytolytic activity against K562 target cells and target cells stably expressing MICA. Further, the cytolytic activity of marmoset splenocytes was significantly reduced after addition of MICA-Fc fusion protein. Thus, NKG2D functions as an activating receptor on marmoset NK cells that possesses cytotoxic potential, and phenotypic profiles of marmoset NK cell subpopulations are similar to those seen in humans.
Collapse
Affiliation(s)
- Masamichi Watanabe
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yohei Kudo
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Mitsuko Kawano
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Masafumi Nakayama
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kyohei Nakamura
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Mai Kameda
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Masamune Ebara
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Takeki Sato
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Marina Nakamura
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kaito Omine
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yoshie Kametani
- Department of Immunology, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Sagamihara 252-0315, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
5
|
Marras F, Bozzano F, Ascierto ML, De Maria A. Baseline and Dynamic Expression of Activating NK Cell Receptors in the Control of Chronic Viral Infections: The Paradigm of HIV-1 and HCV. Front Immunol 2014; 5:305. [PMID: 25071766 PMCID: PMC4078246 DOI: 10.3389/fimmu.2014.00305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/16/2014] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cell function is regulated by a balance between the triggering of activating and inhibitory receptors expressed on their surface. A relevant effort has been focused so far on the study of KIR carriage/expression setting the basis for NK cell education and self-tolerance. Focus on the evolution and regulation of activating NK receptors has lagged behind so far. Our understanding of activating receptor expression and regulation has recently improved by evidences derived from in vitro and in vivo studies. Virus infection - either acute or chronic - determines preferential expansion of NK cells with specific phenotype, activating receptors, and with recall-like functional activity. Studies on patients with viral infection (HIV and HCV) and specific diverging clinical courses confirm that inter-individual differences may exist in baseline expression of natural cytotoxicity receptors (NKp46 and NKp30). The findings that patients with divergent clinical courses have different kinetics of activating receptor density expression upon NK cell activation in vitro provide an additional, time-dependent, functional parameter. Kinetic changes in receptor expression thus represent an additional parameter to basal receptor density expression. Different expression and inducibilities of activating receptors on NK cells contribute to the high diversity of NK cell populations and may help our understanding of the inter-individual differences in innate responses that underlie divergent disease courses.
Collapse
Affiliation(s)
| | - Federica Bozzano
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Maria Libera Ascierto
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Andrea De Maria
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
- Department of Health Sciences, University of Genova, Genova, Italy
- Clinica Malattie Infettive, IRCCS A.O.U. S. Martino-IST, Istituto Nazionale Ricerca sul Cancro, Genova, Italy
- *Correspondence: Andrea De Maria, University of Genova, Largo R. Benzi 10, Genova 16132, Italy e-mail:
| |
Collapse
|
6
|
Carville A, Evans TI, Reeves RK. Characterization of circulating natural killer cells in neotropical primates. PLoS One 2013; 8:e78793. [PMID: 24244365 PMCID: PMC3823947 DOI: 10.1371/journal.pone.0078793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/21/2013] [Indexed: 12/11/2022] Open
Abstract
Despite extensive use of nonhuman primates as models for infectious diseases and reproductive biology, imprecise phenotypic and functional definitions exist for natural killer (NK) cells. This deficit is particularly significant in the burgeoning use of small, less expensive New World primate species. Using polychromatic flow cytometry, we identified peripheral blood NK cells as CD3-negative and expressing a cluster of cell surface molecules characteristic of NK cells (i.e., NKG2A, NKp46, NKp30) in three New World primate species – common marmosets, cotton-top tamarins, and squirrel monkeys. We then assessed subset distribution using the classical NK markers, CD56 and CD16. In all species, similar to Old World primates, only a minor subset of NK cells was CD56+, and the dominant subset was CD56–CD16+. Interestingly, CD56+ NK cells were primarily cytokine-secreting cells, whereas CD56–CD16+ NK cells expressed significantly greater levels of intracellular perforin, suggesting these cells might have greater potential for cytotoxicity. New World primate species, like Old World primates, also had a minor CD56–CD16– NK cell subset that has no obvious counterpart in humans. Herein we present phenotypic profiles of New World primate NK cell subpopulations that are generally analogous to those found in humans. This conservation among species should support the further use of these species for biomedical research.
Collapse
Affiliation(s)
- Angela Carville
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
| | - Tristan I. Evans
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Natural killer cells in HIV controller patients express an activated effector phenotype and do not up-regulate NKp44 on IL-2 stimulation. Proc Natl Acad Sci U S A 2013; 110:11970-5. [PMID: 23818644 DOI: 10.1073/pnas.1302090110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Control of HIV replication in elite controller (EC) and long-term nonprogressor (LTNP) patients has been associated with efficient CD8(+)cytotoxic T-lymphocyte function. However, innate immunity may play a role in HIV control. We studied the expression of natural cytotoxicity receptors (NKp46, NKp30, and NKp44) and their induction over a short time frame (2-4 d) on activation of natural killer (NK) cells in 31 HIV controller patients (15 ECs, 16 LTNPs). In EC/LTNP, induction of NKp46 expression was normal but short (2 d), and NKp30 was induced to lower levels vs. healthy donors. Notably, in antiretroviral-treated aviremic progressor patients (TAPPs), no induction of NKp46 or NKp30 expression occurred. More importantly, EC/LTNP failed to induce expression of NKp44, a receptor efficiently induced in activated NK cells in TAPPs. The specific lack of NKp44 expression resulted in sharply decreased capability of killing target cells by NKp44, whereas TAPPs had conserved NKp44-mediated lysis. Importantly, conserved NK cell responses, accompanied by a selective defect in the NKp44-activating pathway, may result in lack of killing of uninfected CD4(+)NKp44Ligand(+) cells when induced by HIVgp41 peptide-S3, representing a relevant mechanism of CD4(+) depletion. In addition, peripheral NK cells from EC/LTNP had increased NKG2D expression, significant HLA-DR up-regulation, and a mature (NKG2A-CD57(+)killer cell Ig-like receptor(+)CD85j(+)) phenotype, with cytolytic function also against immature dendritic cells. Thus, NK cells in EC/LTNP can maintain substantially unchanged functional capabilities, whereas the lack of NKp44 induction may be related to CD4 maintenance, representing a hallmark of these patients.
Collapse
|
8
|
Bozzano F, Picciotto A, Costa P, Marras F, Fazio V, Hirsch I, Olive D, Moretta L, De Maria A. Activating NK cell receptor expression/function (NKp30, NKp46, DNAM-1) during chronic viraemic HCV infection is associated with the outcome of combined treatment. Eur J Immunol 2011; 41:2905-14. [PMID: 21695691 DOI: 10.1002/eji.201041361] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Specific NK cell killer inhibitory receptor (KIR):HLA haplotype combinations have been associated with successful clearance of acute and chronic HCV infection. Whether an imbalance of activating NK cell receptors also contributes to the outcome of treatment of chronic HCV infection, however, is not known. We studied peripheral NK cell phenotype and function in 28 chronically viraemic HCV genotype I treatment-naïve patients who underwent treatment with pegylated IFN-α and ribavirin. At baseline, chronically infected patients with sustained virological response (SVR) had reduced CD56(bright) CD16(+/-) cell populations, increased CD56(dull) CD16(+) NK cell proportions, and lower expression of NKp30, DNAM-1, and CD85j. Similarly, reduced NK cell IFN-γ production but increased degranulation was observed among nonresponding (NR) patients. After treatment, CD56(bright) CD16(+/-) NK cell numbers increased in both SVR and NR patients, with a parallel significant increase in activating NKp30 molecule densities in SVR patients only. In vitro experiments using purified NK cells in the presence of rIL-2 and IFN-α confirmed upregulation of NKp30 and also of NKp46 and DNAM-1 in patients with subsequent SVR. Thus, differences in patient NK cell receptor expression and modulation during chronic HCV-1 infection are associated with subsequent outcome of standard treatment. Individual activating receptor expression/function integrates with KIR:HLA genotype carriage to determine the clearance of HCV infection upon treatment.
Collapse
|
9
|
Kaifu T, Escalière B, Gastinel LN, Vivier E, Baratin M. B7-H6/NKp30 interaction: a mechanism of alerting NK cells against tumors. Cell Mol Life Sci 2011; 68:3531-9. [PMID: 21877119 PMCID: PMC11114815 DOI: 10.1007/s00018-011-0802-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 01/24/2023]
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that sense target cells through a panel of activating and inhibitory receptors. Together with NKG2D, the natural cytotoxicity receptors (NCRs) are major activating receptors involved in tumor cell detection. Although numerous NKG2D ligands have been identified, characterization of the molecules interacting with the NCRs is still incomplete. The identification of B7-H6 as a counter structure of the NCR NKp30 shed light on the molecular basis of NK cell immunosurveillance. We review here the current knowledge on NKp30 and B7-H6, and we discuss their potential role in anti-tumor immunity.
Collapse
Affiliation(s)
- Tomonori Kaifu
- Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo, Japan
| | - Bertrand Escalière
- Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Campus de Luminy, 13288 Marseille, France
- INSERM U631, Case 906, Campus de Luminy, 13288 Marseille, France
- Centre National de la Recherche Scientifique, UMR6102, Case 906, Campus de Luminy, 13288 Marseille, France
| | - Louis N. Gastinel
- INSERM UMR-S850, Laboratoire de Pharmacologie des Immunosuppresseurs en Transplantation, Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Eric Vivier
- Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Campus de Luminy, 13288 Marseille, France
- INSERM U631, Case 906, Campus de Luminy, 13288 Marseille, France
- Centre National de la Recherche Scientifique, UMR6102, Case 906, Campus de Luminy, 13288 Marseille, France
- Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, 147 Boulevard Baille, 13385 Marseille, France
| | - Myriam Baratin
- Centre d’Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Campus de Luminy, 13288 Marseille, France
- INSERM U631, Case 906, Campus de Luminy, 13288 Marseille, France
- Centre National de la Recherche Scientifique, UMR6102, Case 906, Campus de Luminy, 13288 Marseille, France
| |
Collapse
|
10
|
Involvement of activating NK cell receptors and their modulation in pathogen immunity. J Biomed Biotechnol 2011; 2011:152430. [PMID: 21860586 PMCID: PMC3155793 DOI: 10.1155/2011/152430] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/23/2011] [Indexed: 01/20/2023] Open
Abstract
Natural Killer (NK) cells are endowed with cell-structure-sensing receptors providing inhibitory protection from self-destruction (inhibitory NK receptors, iNKRs, including killer inhibitory receptors and other molecules) and rapid triggering potential leading to functional cell activation by Toll-like receptors (TLRs), cytokine receptors, and activating NK cell receptors including natural cytotoxicity receptors (NCRs, i.e., NKp46, NKp46, and NKp44). NCR and NKG2D recognize ligands on infected cells which may be endogenous or may directly bind to some structures derived from invading pathogens. In this paper, we address the known direct or indirect interactions between activating receptors and pathogens and their expression during chronic HIV and HCV infections.
Collapse
|
11
|
Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med 2011; 17:700-7. [PMID: 21552268 DOI: 10.1038/nm.2366] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 04/01/2011] [Indexed: 12/15/2022]
Abstract
The natural killer (NK) cell receptor NKp30 is involved in the recognition of tumor and dendritic cells (DCs). Here we describe the influence of three NKp30 splice variants on the prognosis of gastrointestinal sarcoma (GIST), a malignancy that expresses NKp30 ligands and that is treated with NK-stimulatory KIT tyrosine kinase inhibitors. Healthy individuals and those with GIST show distinct patterns of transcription of functionally different NKp30 isoforms. In a retrospective analysis of 80 individuals with GIST, predominant expression of the immunosuppressive NKp30c isoform (over the immunostimulatory NKp30a and NKp30b isoforms) was associated with reduced survival of subjects, decreased NKp30-dependent tumor necrosis factor-α (TNF-α) and CD107a release, and defective interferon-γ (IFN-γ) and interleukin-12 (IL-12) secretion in the NK-DC cross-talk that could be restored by blocking of IL-10. Preferential NKp30c expression resulted partly from a single-nucleotide polymorphism at position 3790 in the 3' untranslated region of the gene encoding NKp30. The genetically determined NKp30 status predicts the clinical outcomes of individuals with GIST independently from KIT mutation.
Collapse
|
12
|
Bozzano F, Nasi M, Bertoncelli L, Nemes E, Prati F, Marras F, Mussini C, Moretta L, Cossarizza A, De Maria A. NK-cell phenotype at interruption underlies widely divergent duration of CD4+-guided antiretroviral treatment interruption. Int Immunol 2011; 23:109-18. [PMID: 21216830 DOI: 10.1093/intimm/dxq462] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Long-term side effects may represent a relevant burden of antiretroviral treatment (ART) in HIV-infected patients with good CD4 immune reconstitution over extended time spans. CD4-guided treatment interruption (TI) has been evaluated to address this point and may result in a wide spectrum of time off ART in different patient cohorts. We studied whether differences in innate immune responses, in particular NK cells, are associated to patterns of longer (LoTI) or a shorter (ShTI) TI. Clinical cohort parameters were analyzed on a group of patients widely diverging for TI duration (<9 versus >18 months) on samples before TI, including NK-cell analysis and function by natural cytotoxicity receptor (NCR)-triggered γ-IFN production. Although persistently reduced NCR expression (NKp30) and function were observed in both LoTI and ShTI patients on ART compared with healthy donors, relevant differences were observed at baseline TI in those patients who subsequently developed LoTI course. Lower expression of NKG2D and NKp46 on NK cells. This also translates in reduced γ-IFN production in redirected functional assays. Thus, differences in innate immune balance exist during ART, may be associated to differential control of HIV infection and their understanding could explain clinical differences in individual patients that are not reflected by CD4(+) cell counts alone.
Collapse
|
13
|
Kennett SB, Porter CM, Horvath-Arcidiacono JA, Bloom ET. Characterization of baboon NK cells and their xenogeneic activity. Xenotransplantation 2010; 17:288-99. [DOI: 10.1111/j.1399-3089.2010.00591.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Rutjens E, Mazza S, Biassoni R, Koopman G, Ugolotti E, Fogli M, Dubbes R, Costa P, Mingari MC, Greenwood EJD, Moretta L, De Maria A, DeMaria A, Heeney JL. CD8+ NK cells are predominant in chimpanzees, characterized by high NCR expression and cytokine production, and preserved in chronic HIV-1 infection. Eur J Immunol 2010; 40:1440-50. [PMID: 20306468 DOI: 10.1002/eji.200940062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
HIV-1 infection in humans results in an early and progressive NK cell dysfunction and an accumulation of an "anergic" CD56- CD16+ NK subset, which is characterised by low natural cytotoxicity receptor expression and low cytokine producing capacity. In contrast to humans, chimpanzee NK cells do not display a distinguishable CD56(bright) and CD56(dim) subset but, as shown here, could be subdivided into functionally different CD8+ and CD8- subsets. The CD8+ NK cells expressed significantly higher levels of triggering receptors including NKp46 and, upon in vitro activation, produced more IFN-gamma, TNF-alpha and CD107 than their CD8- counterparts. In addition, chimpanzee CD8- NK cells had relatively high levels of HLA-DR expression, suggestive of an activated state. Killing inhibitory receptors were expressed only at low levels; however, upon in vitro stimulation, they were up-regulated in CD8+ but not in CD8- NK cells and were functionally capable of inhibiting NKp30-triggered killing. In contrast to HIV-1-infected humans, infected chimpanzees maintained their dominant CD8+ NK cell population, with high expression of natural cytotoxicity receptors.
Collapse
Affiliation(s)
- Erik Rutjens
- Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Biassoni R, Ugolotti E, De Maria A. Comparative analysis of NK-cell receptor expression and function across primate species: Perspective on antiviral defenses. SELF NONSELF 2010; 1:103-113. [PMID: 21487512 DOI: 10.4161/self.1.2.11717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/06/2010] [Indexed: 01/06/2023]
Abstract
Natural killer (NK) cells are lymphoid effectors that are involved in the innate immune surveillance against infected and/or tumor cells. Their function is under the fine-tuning control of cell surface receptors that display either inhibitory or activating function and in healthy condition, mediate self-tolerance. It is known that inhibitory receptors are characterized by clonal and stochastic distribution and are extremely sensible to any modification, downregulation or loss of MHC class I surface expression that are induced in autologous cells upon viral infection or cancer transformation. This alteration of the MHC class I expression weakens the strength of the inhibitory receptor-induced interaction, thus resulting in a prompt triggering of NK cell function, which ends up in the inhibition of tumor progression and proliferation of pathogen-infected cells. Thus, the inhibitory function of NK cells is only one face of the coin, since NK-cell activation is controlled by different arrays of activating receptors that finally are involved in the induction of cytolysis and/or cytokine release. Interestingly, the inhibitory NK-cell receptors that are involved in dampening NK cell-mediated responses evolved during speciation in different, often structurally unrelated surface-expressed molecules, all using a conserved signaling pathway. In detail, during evolution, the inhibitory receptors that assure the recognition of MHC class I molecules, originate in, at least, three different ways. This ended up in multigene families showing marked structural divergences that coevolved in a convergent way with the availability of appropriate MHC ligand molecules.
Collapse
Affiliation(s)
- Roberto Biassoni
- Molecular Medicine-Istituto Scientifico Giannina Gaslini; Genova, Italy
| | | | | |
Collapse
|
16
|
Biassoni R. Human natural killer receptors, co-receptors, and their ligands. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 14:14.10.1-14.10.40. [PMID: 19235767 DOI: 10.1002/0471142735.im1410s84] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. Our laboratory has contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. Only in the last ten years has it become possible to characterize the NK triggering receptors mediating natural cytotoxicity, leading to an appreciation of the existence of a cellular interaction network between effectors of both natural and adaptive immunity. This report reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells.
Collapse
Affiliation(s)
- Roberto Biassoni
- Instituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| |
Collapse
|
17
|
De Maria A, Ugolotti E, Rutjens E, Mazza S, Radic L, Faravelli A, Koopman G, Di Marco E, Costa P, Ensoli B, Cafaro A, Mingari MC, Moretta L, Heeney J, Biassoni R. NKp44 expression, phylogenesis and function in non-human primate NK cells. Int Immunol 2009; 21:245-55. [PMID: 19147838 DOI: 10.1093/intimm/dxn144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular and functional characterization of the natural cytotoxicity receptor (NCR) NKp44 in species other than Homo sapiens has been elusive, so far. Here, we provide complete phenotypic, molecular and functional characterization for NKp44 triggering receptor on Pan troglodytes NK cells, the closest human relative, and the analysis of NKp44-genomic locus and transcription in Macaca fascicularis. Similar to H. sapiens, NKp44 expression is detectable on chimpanzee NK cells only upon activation. However, basal NKp44 transcription is 5-fold higher in chimpanzees with lower differential increases upon cell activation compared with humans. Upon activation, an overall 12-fold lower NKp44 gene expression is observed in P. troglodytes compared with H. sapiens NK cells with only a slight reduction in NKp44 surface expression. Functional analysis of 'in vitro' activated purified NK cells confirms the NKp44 triggering potential compared with other major NCRs. These findings suggest the presence of a post-transcriptional regulation that evolved differently in H. sapiens. Analysis of cynomolgus NKp44-genomic sequence and transcription pattern showed very low levels of transcription with occurrence of out-of-frame transcripts and no surface expression. The present comparative analysis suggests that NKp44-genomic organization appears during macaque speciation, with considerable evolution of its transcriptional and post-transcriptional tuning. Thus, NKp44 may represent an NCR being only recently emerged during speciation, acquiring functional relevance only in non-human primates closest to H. sapiens.
Collapse
Affiliation(s)
- Andrea De Maria
- Centro di Eccellenza per la Ricerca Biomedica, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Into the wild: simian immunodeficiency virus (SIV) infection in natural hosts. Trends Immunol 2009; 29:419-28. [PMID: 18676179 DOI: 10.1016/j.it.2008.05.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 11/22/2022]
Abstract
Identifying distinctions between pathogenic HIV and simian immunodeficiency virus (SIV) infections and nonprogressive SIV in natural African primate hosts might provide key insights into HIV pathogenesis. Similar to pathogenic HIV infection in humans, natural SIV infections result in high viral replication and massive acute depletion of mucosal CD4(+) T cells. A key distinction of natural SIV infections is a rapidly developing anti-inflammatory milieu that prevents chronic activation, apoptosis and proliferation of T cells and preserves the function of other immune cell subsets, thus contributing to the integrity of the mucosal barrier and the lack of microbial translocation from the gut to the peritoneum. Immunologic features observed during natural SIV infections suggest approaches for designing new strategies for producing novel second-generation vaccines and therapeutic approaches to inhibit disease progression in HIV-infected humans.
Collapse
|
19
|
Biassoni R. Natural killer cell receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:35-52. [PMID: 19065782 DOI: 10.1007/978-0-387-09789-3_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells are an important arm of the innate immune response that are directly involved in the recognition and lysis of virus-infected and tumor cells. Such function is under the control of a complex array of germline-encoded receptors able to deliver either inhibitory or activating signals. The majority of inhibitory receptors expressed by NK cells are major histocompatibility complex (MHC) class I-specific and display clonal and stochastic distribution on the cell surface. Thus, a given NK cell expresses at least one self class I inhibitory receptor. Under normal conditions, the strength of inhibitory signals delivered by multiple interactions always overrides the activating signals, resulting in NK cell self-tolerance. Under certain pathological conditions, such as viral infections or tumor transformation, the delicate balance of inhibition versus activation is broken, resulting in downregulation or loss of MHC class I expression. In general, the degree of inhibition induced by class I-specific receptors is proportional to the amount of these molecules on the cell surface. Thus, in transformed cells, this inhibition can be overridden by the triggering signal cascades, leading to cell activation. The majority of triggering receptors expressed by NK cells belong to the multichain immune recognition receptor (MIRR) family and use separate signal-transducing polypeptides similar to those used by other immune receptors such as the T-cell antigen receptor, the B-cell antigen receptor and other receptors expressed by myeloid cells. Inhibitory receptors are not members of the MIRR family but they are relevant for a better understanding the exquisite equilibrium and regulatory crosstalk between positive and negative signals.
Collapse
Affiliation(s)
- Roberto Biassoni
- Molecular Medicine, Istituto Giannina Gaslini, Largo G. Gaslini 5, 16147 Genova, Italy.
| |
Collapse
|
20
|
Iannello A, Debbeche O, Samarani S, Ahmad A. Antiviral NK cell responses in HIV infection: II. viral strategies for evasion and lessons for immunotherapy and vaccination. J Leukoc Biol 2008; 84:27-49. [PMID: 18388299 DOI: 10.1189/jlb.0907649] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As is the case in other viral infections, humans respond to HIV infection by activating their NK cells. However, the virus uses several strategies to neutralize and evade the host's NK cell responses. Consequently, it is not surprising that NK cell functions become compromised in HIV-infected individuals in early stages of the infection. The compromised NK cell functions also adversely affect several aspects of the host's antiviral adaptive immune responses. Researchers have made significant progress in understanding how HIV counters NK cell responses of the host. This knowledge has opened new avenues for immunotherapy and vaccination against this infection. In the first part of this review article, we gave an overview of our current knowledge of NK cell biology and discussed how the genes encoding NK cell receptors and their ligands determine innate genetic resistance/susceptibilty of humans against HIV infections and AIDS. In this second part, we discuss NK cell responses, viral strategies to counter these responses, and finally, their implications for anti-HIV immunotherapy and vaccination.
Collapse
Affiliation(s)
- Alexandre Iannello
- Laboratory of Innate Immunity, Center of Research Ste Justine Hospital, 3175 Côte Ste-Catherine, Montreal, Qc, H3T 1C5, Canada
| | | | | | | |
Collapse
|
21
|
De Maria A. Discordant responses to HAART in HIV-1 patients: the need to focus on intervention. Expert Rev Anti Infect Ther 2007; 5:523-7. [PMID: 17678414 DOI: 10.1586/14787210.5.4.523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|