1
|
Challagundla N, Shah D, Yadav S, Agrawal-Rajput R. Saga of monokines in shaping tumour-immune microenvironment: Origin to execution. Cytokine 2022; 157:155948. [PMID: 35764025 DOI: 10.1016/j.cyto.2022.155948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Cellular communication mediated by cytokines is an important mechanism dictating immune responses, their cross talk and final immune output. Cytokines play a major role in dictating the immune outcome to cancer by regulating the events of development, differentiation and activation of innate immune cells. Cytokines are pleiotropic in nature, hence understanding their role individually or as member of network cytokines is critical to delineate their role in tumour immunity. Tumour systemically manipulates the immune system to evade and escape immune recognition for their uncontrollable growth and metastasis. The developing tumour comprise a large and diverse set of myeloid cells which are vulnerable to manipulation by the tumour-microenvironment. The innate immune cells of the monocytic lineage skew the fate of the adaptive immune cells and thus dictating cancer elimination or progression. Targeting cells at tumour cite is preposterous owing to their tight network, poor reach and abundance of immunosuppressive mechanisms. Monocytic lineage-derived cytokines (monokines) play crucial role in tumour regression or progression by either directly killing the tumour cells with TNFα or promoting its growth by TGFβ. In addition, the monokines like IL-12, IL-1β, IL-6, IL-10 and TGFβ direct the adaptive immune cells to secrete anti-tumour cytokines, TNFα, IFNγ, perforin and granzyme or pro-tumour cytokines, IL-10 and TGFβ. In this review, we elucidate the roles of monokines in dictating the fate of tumour by regulating responses at various stages of generation, differentiation and activation of immune cells along with the extensive cross talk. We have attempted to delineate the synergy and antagonism of major monokines among themselves or with tumour-derived or adaptive immune cytokines. The review provides an update on the possibilities of placing monokines to potential practical use as cytokine therapy against cancer.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Dhruvi Shah
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
2
|
Olguín-Contreras LF, Mendler AN, Popowicz G, Hu B, Noessner E. Double Strike Approach for Tumor Attack: Engineering T Cells Using a CD40L:CD28 Chimeric Co-Stimulatory Switch Protein for Enhanced Tumor Targeting in Adoptive Cell Therapy. Front Immunol 2021; 12:750478. [PMID: 34912334 PMCID: PMC8666660 DOI: 10.3389/fimmu.2021.750478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Activation of co-stimulatory pathways in cytotoxic T lymphocytes expressing chimeric antigen receptors (CARs) have proven to boost effector activity, tumor rejection and long-term T cell persistence. When using antigen-specific T cell receptors (TCR) instead of CARs, the lack of co-stimulatory signals hampers robust antitumoral response, hence limiting clinical efficacy. In solid tumors, tumor stroma poses an additional hurdle through hindrance of infiltration and active inhibition. Our project aimed at generating chimeric co-stimulatory switch proteins (CSP) consisting of intracellular co-stimulatory domains (ICD) fused to extracellular protein domains (ECD) for which ligands are expressed in solid tumors. The ECD of CD40L was selected for combination with the ICD from the CD28 protein. With this approach, it was expected to not only provide co-stimulation and strengthen the TCR signaling, but also, through the CD40L ECD, facilitate the activation of tumor-resident antigen-presenting cells (APCs), modulate activation of tumor endothelium and induce TCR-MHC independent apoptotic effect on tumor cells. Since CD28 and CD40L belong to different classes of transmembrane proteins (type I and type II, respectively), creating a chimeric protein presented a structural and functional challenge. We present solutions to this challenge describing different CSP formats that were successfully expressed in human T cells along with an antigen-specific TCR. The level of surface expression of the CSPs depended on their distinct design and the state of T cell activation. In particular, CSPs were upregulated by TCR stimulation and downregulated following interaction with CD40 on target cells. Ligation of the CSP in the context of TCR-stimulation modulated intracellular signaling cascades and led to improved TCR-induced cytokine secretion and cytotoxicity. Moreover, the CD40L ECD exhibited activity as evidenced by effective maturation and activation of B cells and DCs. CD40L:CD28 CSPs are a new type of switch proteins designed to exert dual beneficial antitumor effect by acting directly on the gene-modified T cells and simultaneously on tumor cells and tumor-supporting cells of the TME. The observed effects suggest that they constitute a promising tool to be included in the engineering process of T cells to endow them with complementary features for improved performance in the tumor milieu.
Collapse
Affiliation(s)
| | - Anna N. Mendler
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Grzegorz Popowicz
- Institute of Structural Biology, Helmholtz Center Munich, Munich, Germany
| | - Bin Hu
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
- Immunoanalytics Research Group - Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
3
|
Sarode AY, Jha MK, Zutshi S, Ghosh SK, Mahor H, Sarma U, Saha B. Residue-Specific Message Encoding in CD40-Ligand. iScience 2020; 23:101441. [PMID: 32827854 PMCID: PMC7452233 DOI: 10.1016/j.isci.2020.101441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 11/15/2022] Open
Abstract
CD40-Ligand (CD40L)-CD40 interaction regulates immune responses against pathogens, autoantigens, and tumor and transplantation antigens. Single amino acid mutations within the 115-155 amino acids stretch, which is responsible for CD40L functions, result in XIgM syndrome. We hypothesize that each of these amino acids of CD40L encodes specific message that, when decoded by CD40 signaling, induces a specific profile of functions. We observed that every single substitution in the XIgM-related amino acids in the 115-155 41-mer peptide in CD40L selectively altered CD40 signaling and effector functions-cytokine productions, HMGCoA reductase, ceramide synthase, inducible nitric oxide synthase and arginase expression, survival of B cells, and control of Leishmania infection and anti-leishmanial T cell response-suggesting residue-specific encoding of a distinct set of messages that collectively define CD40L pleiotropy, serve as a target for engineering the ligand to generate superagonists as immunotherapeutic, and implicate the evolutionary diversification of functions among the ligands in a protein superfamily.
Collapse
Affiliation(s)
- Aditya Yashwant Sarode
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Mukesh Kumar Jha
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Shubhranshu Zutshi
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Soumya Kanti Ghosh
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Hima Mahor
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Uddipan Sarma
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Pathogenesis and Cellular Response, Ganeshkhind, Pune, Maharashtra 411007, India
- Trident Academy of Creative Technology, Bhubaneswar, Orissa 751024, India
| |
Collapse
|
4
|
Patidar A, Selvaraj S, Chauhan P, Guzman CA, Ebensen T, Sarkar A, Chattopadhyay D, Saha B. Peptidoglycan-treated tumor antigen-pulsed dendritic cells impart complete resistance against tumor rechallenge. Clin Exp Immunol 2020; 201:279-288. [PMID: 32443171 DOI: 10.1111/cei.13468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022] Open
Abstract
Solid tumors elicit suppressive T cell responses which impair antigen-presenting cell (APC) functions. Such immune suppression results in uncontrolled tumor growth and mortality. Addressing APC dysfunction, dendritic cell (DC)-mediated anti-tumor vaccination was extensively investigated in both mice and humans. These studies never achieved full resistance to tumor relapse. Herein, we describe a repetitive RM-1 murine tumor rechallenge model for recurrence in humans. Using this newly developed model, we show that priming with tumor antigen-pulsed, Toll-like receptor (TLR)2 ligand-activated DCs elicits a host-protective anti-tumor immune response in C57BL/6 mice. Upon stimulation with the TLR2 ligand peptidoglycan (PGN), the tumor antigen-pulsed DCs induce complete resistance to repetitive tumor challenges. Intra-tumoral injection of PGN reduces tumor growth. The tumor resistance is accompanied by increased expression of interleukin (IL)-27, T-box transcription factor TBX21 (T-bet), IL-12, tumor necrosis factor (TNF)-α and interferon (IFN)-γ, along with heightened cytotoxic T lymphocyte (CTL) functions. Mice primed four times with PGN-stimulated tumor antigen-pulsed DCs remain entirely resistant to repeat challenges with RM-1 tumor cells, suggesting complete prevention of relapse and recurrence of tumor. Adoptive transfer of T cells from these mice, which were fully protected from RM-1 rechallenge, confers anti-tumor immunity to syngeneic naive recipient mice upon RM-1 challenge. These observations indicate that PGN-activated DCs induce robust host-protective anti-tumor T cells that completely resist tumor growth and recurrence.
Collapse
Affiliation(s)
- A Patidar
- National Centre for Cell Science, Pune, India
| | - S Selvaraj
- National Centre for Cell Science, Pune, India
| | - P Chauhan
- National Centre for Cell Science, Pune, India
| | - C A Guzman
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - T Ebensen
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - A Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, India
| | | | - B Saha
- National Centre for Cell Science, Pune, India.,Trident Academy of Creative Technology, Bhubaneswar, India.,National Institute of Traditional Medicine, Belagavi, India
| |
Collapse
|
5
|
Wang Q, Yang M, Zhang Y, Zhong L, Zheng X. Novel Combination Oncolytic Adenoviral Gene Therapy Armed with Dm-dNK and CD40L for Breast Cancer. Curr Gene Ther 2020; 19:54-65. [PMID: 30848201 DOI: 10.2174/1566523219666190307094713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Both Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) suicide gene therapy and exogenous CD40 ligand (CD40L)-CD40 interaction in cancer via conditionally replicating adenovirus can selectively kill tumors without damaging normal tissues. OBJECTIVE To further improve the cancer killing effect, we investigated the therapeutic effect of combined cancer gene therapy based on a selective oncolytic adenovirus vector containing Dm-dNK suicide gene and exogenous CD40L on breast carcinoma cells in vitro and in vivo. METHODS A series of conditionally replicating adenoviruses using adenovirus vector P74 were generated: P74-dNK, P74-CD40L (expressing Dm-dNK or CD40L respectively), and P74-dNK-CD40L (expressing combined Dm-dNK and CD40L). Breast cancer cell lines (MDA-MB-231, MCF-7) and non-tumor cell line (MRC5) were treated with adenovirus and cytotoxicity determined by MTT assay, and apoptosis assessed by flow cytometry after 72h. We also assessed in vivo cell killing efficiency using a mouse xenograft model with MDA-MB-231 cells. RESULTS AND DISCUSSION Co-expression of Dm-dNK and CD40L reduced cell proliferation of MDAMB- 231 or MCF7 cancer cells, and induced more apoptosis in TERT and CD40 positive cancer cells, but not normal MRC5 cells. Significant reduction in tumor volume was also seen in combined treatment arms as compared to any single treatment. CONCLUSION Our data suggest enhanced, selective tumor cell killing using combined gene therapy with conditionally replicating adenovirus containing Dm-dNK suicide gene and exogenous CD40 ligation (CD40L-CD40).
Collapse
Affiliation(s)
- Qiuli Wang
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Muwen Yang
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Ye Zhang
- Lab 1, Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Li Zhong
- Hebei University College of Life Sciences, Baoding, Hebei, China.,College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Xinyu Zheng
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.,Lab 1, Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Liao P, Wang H, Tang YL, Tang YJ, Liang XH. The Common Costimulatory and Coinhibitory Signaling Molecules in Head and Neck Squamous Cell Carcinoma. Front Immunol 2019; 10:2457. [PMID: 31708918 PMCID: PMC6819372 DOI: 10.3389/fimmu.2019.02457] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are closely linked with immunosuppression, accompanied by complex immune cell functional activities. The abnormal competition between costimulatory and coinhibitory signal molecules plays an important role in the malignant progression of HNSCC. This review will summarize the features of costimulatory molecules (including CD137, OX40 as well as CD40) and coinhibitory molecules (including CTLA-4, PD-1, LAG3, and TIM3), analyze the underlying mechanism behind these molecules' regulation of the progression of HNSCC, and introduce the clinic application. Vaccines, such as those targeting STING while working synergistically with monoclonal antibodies, are also discussed. A deep understanding of the tumor immune landscape will help find new and improved tumor immunotherapy for HNSCC.
Collapse
Affiliation(s)
- Peng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haofan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Trella E, Raafat N, Mengus C, Traunecker E, Governa V, Heidtmann S, Heberer M, Oertli D, Spagnoli GC, Zajac P. CD40 ligand-expressing recombinant vaccinia virus promotes the generation of CD8(+) central memory T cells. Eur J Immunol 2015; 46:420-31. [PMID: 26561341 DOI: 10.1002/eji.201545554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 10/05/2015] [Accepted: 11/05/2015] [Indexed: 01/17/2023]
Abstract
Central memory CD8(+) T cells (TCM ) play key roles in the protective immunity against infectious agents, cancer immunotherapy, and adoptive treatments of malignant and viral diseases. CD8(+) TCM cells are characterized by specific phenotypes, homing, and proliferative capacities. However, CD8(+) TCM -cell generation is challenging, and usually requires CD4(+) CD40L(+) T-cell "help" during the priming of naïve CD8(+) T cells. We have generated a replication incompetent CD40 ligand-expressing recombinant vaccinia virus (rVV40L) to promote the differentiation of human naïve CD8(+) T cells into TCM specific for viral and tumor-associated antigens. Soluble CD40 ligand recombinant protein (sCD40L), and vaccinia virus wild-type (VV WT), alone or in combination, were used as controls. Here, we show that, in the absence of CD4(+) T cells, a single "in vitro" stimulation of naïve CD8(+) T cells by rVV40L-infected nonprofessional CD14(+) antigen presenting cells promotes the rapid generation of viral or tumor associated antigen-specific CD8(+) T cells displaying TCM phenotypic and functional properties. These observations demonstrate the high ability of rVV40L to fine tune CD8(+) mediated immune responses, and strongly support the use of similar reagents for clinical immunization and adoptive immunotherapy purposes.
Collapse
Affiliation(s)
- Emanuele Trella
- Institute of Surgical Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nermin Raafat
- Institute of Surgical Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Chantal Mengus
- Institute of Surgical Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Valeria Governa
- Institute of Surgical Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Michael Heberer
- Institute of Surgical Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel Oertli
- Department of Surgery, University Hospital, Basel, Switzerland
| | - Giulio C Spagnoli
- Institute of Surgical Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Paul Zajac
- Institute of Surgical Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Lipopolysaccharide from Rhodobacter sphaeroides Attenuates Microglia-Mediated Inflammation and Phagocytosis and Directs Regulatory T Cell Response. Int J Inflam 2015; 2015:361326. [PMID: 26457222 PMCID: PMC4589630 DOI: 10.1155/2015/361326] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022] Open
Abstract
Microglia activation and neuroinflammation are key events during the progression of neurodegenerative disorders. Microglia exhibits toll-like receptors (TLRs), with predominant expression of TLR4, inducing aberrant neuroinflammation and exacerbated neurotoxicity. Studies suggest that microglia initiate infiltration of T cells into the brain that critically influence disease conditions. We report that LPS-Rs, through TLR4 antagonism, significantly inhibit TLR4 mediated inflammatory molecules like IL-1β, IL-6, TNF-α, COX-2, iNOS, and NO. LPS-Rs regulates JNK/p38 MAPKs and p65-NF-κB signaling pathways, which we report as indispensible for LPS induced neuroinflammation. LPS-Rs mitigates microglial phagocytic activity and we are first to report regulatory role of LPS-Rs which blocked microglia mediated inflammation and apoptotic cell death. LPS-Rs significantly inhibits expression of costimulatory molecules CD80, CD86, and CD40. Chemokine receptor, CCR5, and T cell recruitment chemokines, MIP-1α and CCL5, were negatively regulated by LPS-Rs. Furthermore, LPS-Rs significantly inhibited lymphocyte proliferation with skewed regulatory T (Treg) cell response as evidenced by increased FOXP3, IL-10, and TGF-β. Additionally, LPS-Rs serves to induce coordinated immunosuppressive response and confer tolerogenic potential to activated microglia extending neurosupportive microenvironment. TLR4 antagonism can be a strategy providing neuroprotection through regulation of microglia as well as the T cells.
Collapse
|
9
|
The prognostic value of plasma soluble CD40 ligand levels in patients with nasopharyngeal carcinoma. Clin Chim Acta 2015; 447:66-70. [DOI: 10.1016/j.cca.2015.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023]
|
10
|
Pandey SP, Chandel HS, Srivastava S, Selvaraj S, Jha MK, Shukla D, Ebensen T, Guzman CA, Saha B. Pegylated bisacycloxypropylcysteine, a diacylated lipopeptide ligand of TLR6, plays a host-protective role against experimental Leishmania major infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:3632-43. [PMID: 25194056 DOI: 10.4049/jimmunol.1400672] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TLRs recognize pathogen-expressed Ags and elicit host-protective immune response. Although TLR2 forms heterodimers with TLR1 or TLR6, recognizing different ligands, differences in the functions of these heterodimers remain unknown. In this study, we report that in Leishmania major-infected macrophages, the expression of TLR1 and TLR2, but not TLR6, increased; TLR2-TLR2 association increased, but TLR2-TLR6 association diminished. Lentivirus-expressed TLR1-short hairpin RNA (shRNA) or TLR2-shRNA administration reduced, but TLR6-shRNA increased L. major infection in BALB/c mice. Corroboratively, Pam3CSK4 (TLR1-TLR2 ligand) and peptidoglycan (TLR2 ligand) increased L. major infection but reduced TLR9 expression, whereas pegylated bisacycloxypropylcysteine (BPPcysMPEG; TLR2-TLR6 ligand) reduced L. major number in L. major-infected macrophages, accompanied by increased TLR9 expression, higher IL-12 production, and inducible NO synthase expression. Whereas MyD88, Toll/IL-1R adaptor protein, and TNFR-α-associated factor 6 recruitments to TLR2 were not different in Pam3CSK4-, peptidoglycan-, or BPPcysMPEG-treated macrophages, only BPPcysMPEG enhanced p38MAPK and activating transcription factor 2 activation. BPPcysMPEG conferred antileishmanial functions to L. major-infected BALB/c-derived T cells in a macrophage-T cell coculture and in BALB/c mice; the protection was TLR6 dependent and IL-12 dependent, and it was accompanied by reduced regulatory T cell number. BPPcysMPEG administration during the priming with fixed L. major protected BALB/c mice against challenge L. major infection; the protection was accompanied by low IL-4 and IL-10, but high IFN-γ productions and reduced regulatory T cells. Thus, BPPcysMPEG, a novel diacylated lipopeptide ligand for TLR2-TLR6 heterodimer, induces IL-12-dependent, inducible NO synthase-dependent, T-reg-sensitive antileishmanial protection. The data reveal a novel dimerization partner-dependent duality in TLR2 function.
Collapse
Affiliation(s)
| | | | - Sunit Srivastava
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; and
| | | | - Mukesh Kumar Jha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; and
| | - Divanshu Shukla
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; and
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, 38124 Braunschweig, Germany
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, 38124 Braunschweig, Germany
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; and
| |
Collapse
|
11
|
Khan TH, Srivastava N, Srivastava A, Sareen A, Mathur RK, Chande AG, Musti KV, Roy S, Mukhopadhyaya R, Saha B. SHP-1 Plays a Crucial Role in CD40 Signaling Reciprocity. THE JOURNAL OF IMMUNOLOGY 2014; 193:3644-53. [DOI: 10.4049/jimmunol.1400620] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Transglutaminase 2 on the surface of dendritic cells is proposed to be involved in dendritic cell-T cell interaction. Cell Immunol 2014; 289:55-62. [PMID: 24727157 DOI: 10.1016/j.cellimm.2014.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 11/20/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitous enzyme involved in diverse biological processes. Recently, its function in adaptive immune responses has begun to emerge. Its presence and functions in B cells and T cells, for example, have been reported. However, those in dendritic cells (DCs), the principal antigen-presenting cells, are as yet unexplored in murine system. In this study, we first investigated the expression of TG2 in murine bone marrow-derived DCs, and then compared the functioning of these cells in the presence or absence of this enzyme using wild-type (WT) and TG2(-/-) mice. We found that the WT DCs expressed TG2 both in the cytoplasm and on the cell surface, both of which were elevated after LPS stimulation. Unexpectedly, between WT and TG2(-/-) DCs, there were no remarkable differences in cytokine secretion, IL-10 and IL-12, and neither in the expression of surface molecules CD80, CD86, and MHC II, excepting a moderate decrease of CD40 expression on the TG2(-/-) DCs. However, when T cells were stimulated with TG2(-/-) DCs, they showed decreased levels of proliferation, CD69 and CD25 expression, and IFN-γ secretion. The addition of anti-TG2 antibody to the WT DC-T cell co-culture resulted in decreased T cell activation. By immunofluorescence staining, TG2 was observed at DC-T cell interface (contact point). Taken together, we propose that TG2 on the surface of DCs modulates the DC-T cell interaction.
Collapse
|
13
|
Selvaraj S, Raundhal M, Patidar A, Saha B. Anti-VEGF antibody enhances the antitumor effect of CD40. Int J Cancer 2014; 135:1983-8. [PMID: 24604357 DOI: 10.1002/ijc.28833] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 11/05/2022]
Abstract
As its central immunomodulatory effects, CD40 induces interleukin (IL)-12-dependent antitumor immune responses; as its local protumor effects, CD40 induces the expression of vascular endothelial growth factor (VEGF) that promotes tumor angiogenesis and growth. Therefore, using a previously established tumor model in mouse, we examined if the antitumor functions of CD40 are self-limited by VEGF induction. We observed that as the tumor mass grew during day 6 to day 18, VEGF expression in the tumor peaked with concomitant decrease in expressions of CD40 and IL-12 but not of IL-10. Among the angiogenic factors, VEGF-B, VEGFR-1, VEGFR-2, angiopoietin-1 and Tie2 expressions decreased, whereas the expressions of angiopoietin-2 and angiopoietin-3 increased with tumor growth. As significant changes in the expressions of these factors were observed on day 6, we treated the tumor-bearing mice with the agonistic anti-CD40 antibody or neutralizing anti-VEGF antibody-alone or in combination-from the fifth day after the injection of tumor cells. The anti-VEGF antibody significantly enhanced the antitumor effects of the anti-CD40 antibody, as observed through increased survival of the mice, accompanied by reduced angiogenesis and angiopoietin-2 expression but higher T-cell proliferation in response to tumor antigens, increased interferon-γ production and tumor cell cytotoxicity and higher levels of tumor antigen-specific serum IgM, IgG1 and IgG2a, indicating B-cell activation. Thus, our data show for the first time that the combined treatment with an agonistic anti-CD40 antibody and a neutralizing anti-VEGF antibody, which increases antitumor immune response or reduces local angiogenesis, respectively, is a novel antitumor strategy.
Collapse
|
14
|
|
15
|
Hirbod-Mobarakeh A, Aghamohammadi A, Rezaei N. Immunoglobulin class switch recombination deficiency type 1 or CD40 ligand deficiency: from bedside to bench and back again. Expert Rev Clin Immunol 2013; 10:91-105. [PMID: 24308834 DOI: 10.1586/1744666x.2014.864554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The immunoglobulin class switch recombination deficiency or hyper-IgM syndrome is characterized by normal or elevated serum IgM and low serum levels of other immunoglobulins. Since the first reported patient with hyper-IgM, more than 200 patients with this phenotype resulted from CD40 ligand deficiency have been reported. However, in addition to this common finding, they presented with different manifestations like opportunistic infections, autoimmunity and malignancies each of them are worth a detailed look. In this review, we will focus on different underlying mechanisms of these presentations to review what we have learned from our patients. In the end, we will discuss different treatment options available for these patients using this knowledge.
Collapse
Affiliation(s)
- Armin Hirbod-Mobarakeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
16
|
Umeshappa CS, Nanjundappa RH, Xie Y, Freywald A, Xu Q, Xiang J. Differential requirements of CD4(+) T-cell signals for effector cytotoxic T-lymphocyte (CTL) priming and functional memory CTL development at higher CD8(+) T-cell precursor frequency. Immunology 2013; 138:298-306. [PMID: 23113741 DOI: 10.1111/imm.12033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 02/02/2023] Open
Abstract
Increased CD8(+) T-cell precursor frequency (PF) precludes the requirement of CD4(+) helper T (Th) cells for primary CD8(+) cytotoxic T-lymphocyte (CTL) responses. However, the key questions of whether unhelped CTLs generated at higher PF are functional effectors, and whether unhelped CTLs can differentiate into functional memory cells at higher PF are unclear. In this study, ovalbumin (OVA) -pulsed dendritic cells (DC(OVA)) derived from C57BL/6, CD40 knockout (CD40(-/-)) or CD40 ligand knockout (CD40L(-/-)) mice were used to immunize C57BL/6, Ia(b-/-), CD40(-/-) or CD40L(-/-) mice, whose PF was previously increased with transfer of 1 × 10(6) CD8(+) T cells derived from OVA-specific T-cell receptor (TCR) transgenic OTI, OTI(CD40(-/-)) or OTI(CD40L(-/-)) mice. All the immunized mice were then assessed for effector and memory CTL responses. Following DC immunization, relatively comparable CTL priming occurred without CD4(+) T-cell help and Th-provided CD40/CD40L signalling. In addition, the unhelped CTLs were functional effectors capable of inducing therapeutic immunity against established OVA-expressing tumours. In contrast, the functional memory development of CTLs was severely impaired in the absence of CD4(+) T-cell help and CD40/CD40L signalling. Finally, unhelped memory CTLs failed to protect mice against lethal tumour challenge. Taken together, these results demonstrate that CD4(+) T-cell help at higher PF, is not required for effector CTL priming, but is required for functional memory CTL development against cancer. Our data may impact the development of novel preventive and therapeutic approaches in cancer patients with compromised CD4(+) T-cell functions.
Collapse
Affiliation(s)
- Channakeshava S Umeshappa
- Cancer Research Unit, Department of Oncology, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Hubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H. Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Front Immunol 2013; 4:82. [PMID: 23565116 PMCID: PMC3615188 DOI: 10.3389/fimmu.2013.00082] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/20/2013] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are sentinels of immunity, essential for homeostasis of T cell-dependent immune responses. Both functions of DC, initiation of antigen-specific T cell immunity and maintenance of tissue-specific tolerance originate from distinct stages of differentiation, immunogenic versus tolerogenic. Dependent on local micro milieu and inflammatory stimuli, tissue resident immature DC with functional plasticity differentiate into tolerogenic or immunogenic DC with stable phenotypes. They efficiently link innate and adaptive immunity and are ideally positioned to modify T cell-mediated immune responses. Since the T cell stimulatory properties of DC are significantly influenced by their expression of signal II ligands, it is critical to understand the impact of distinct costimulatory pathways on DC function. This review gives an overview of functional different human DC subsets with unique profiles of costimulatory molecules and outlines how different costimulatory pathways together with the immunosuppressive cytokine IL-10 bias immunogenic versus tolerogenic DC functions. Furthermore, we exemplarily describe protocols for the generation of two well-defined monocyte-derived DC subsets for their clinical use, immunogenic versus tolerogenic.
Collapse
Affiliation(s)
- Mario Hubo
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz Mainz, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Murugaiyan G, Saha B. IL-27 in tumor immunity and immunotherapy. Trends Mol Med 2013; 19:108-16. [DOI: 10.1016/j.molmed.2012.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 01/23/2023]
|
19
|
Sathawane D, Kharat RS, Halder S, Roy S, Swami R, Patel R, Saha B. Monocyte CD40 expression in head and neck squamous cell carcinoma (HNSCC). Hum Immunol 2012; 74:1-5. [PMID: 23000501 DOI: 10.1016/j.humimm.2012.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/22/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
CD40, an antigen-presenting cell expressed costimulatory receptor molecule, binds to T cell expressed CD40-ligand (CD40-L). Using a mouse tumor model, we showed previously that lower CD40/CD40-L expression levels promoted tumor growth whereas higher CD40/CD40-L expression levels led to tumor regression indicating duality in CD40 functions. Whether CD40/CD40-L expressions are regulated in cancer patients is unknown. Herein, we show that the CD40 and CD40-L expressions on monocytes and T cells, respectively, decrease as the head and neck squamous cell carcinoma (HNSCC) patients progress from stage-I through stage-IV suggesting a novel CD40/CD40-L expression based staging of HNSCC tumor. The staging is confirmed by TNM and histo-pathological staging. The levels of soluble CD40 (sCD40) and sCD40-L are also modulated in patients' plasma. As CD40 expressing monocytes increase in the post-operative patients, CD40 expression levels are possibly regulated by tumor load. This change is accompanied by increased IL-12 expressing monocytes and decreased IL-10 expression levels. Thus, our findings on CD40/CD40-L expression in HNSCC patients bear significant implications.
Collapse
|
20
|
Burocchi A, Pittoni P, Gorzanelli A, Colombo MP, Piconese S. Intratumor OX40 stimulation inhibits IRF1 expression and IL-10 production by Treg cells while enhancing CD40L expression by effector memory T cells. Eur J Immunol 2012; 41:3615-26. [PMID: 22229156 DOI: 10.1002/eji.201141700] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Treg cells maintain the tumor microenvironment in an immunosuppressive state preventing an effective anti-tumor immune response. A possible strategy to overcome Treg-cell suppression focuses on OX40, a costimulatory molecule expressed constitutively by Treg cells while being induced in activated effector T cells. OX40 stimulation, by the agonist mAb OX86, inhibits Treg-cell suppression and boosts effector T-cell activation. Here we uncover the mechanisms underlying the therapeutic activity of OX86 treatment dissecting its distinct effects on Treg and on effector memory T (Tem) cells, the most abundant CD4+ populations strongly expressing OX40 at the tumor site. In response to OX86, tumor-infiltrating Treg cells produced significantly less interleukin 10 (IL-10), possibly in relation to a decrease in the transcription factor interferon regulatory factor 1 (IRF1). Tem cells responded to OX86 by upregulating surface CD40L expression, providing a licensing signal to DCs. The CD40L/CD40 axis was required for Tem-cell-mediated in vitro DC maturation and in vivo DC migration. Accordingly, OX86 treatment was no longer therapeutic in CD40 KO mice. In conclusion, following OX40 stimulation, blockade of Treg-cell suppression and enhancement of the Tem-cell adjuvant effect both concurred to free DCs from immunosuppression and activate the immune response against the tumor.
Collapse
Affiliation(s)
- Alessia Burocchi
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | |
Collapse
|
21
|
Sierro S, Romero P, Speiser DE. The CD4-like molecule LAG-3, biology and therapeutic applications. Expert Opin Ther Targets 2011; 15:91-101. [PMID: 21142803 DOI: 10.1517/14712598.2011.540563] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
IMPORTANCE OF THE FIELD Promising immunotherapeutic agents targeting co-stimulatory pathways are currently being tested in clinical trials. One player in this array of regulatory pathways is the LAG-3/MHC class II axis. The lymphocyte activation gene-3 (LAG-3) is a negative co-stimulatory receptor that modulates T cell homeostasis, proliferation and activation. A recombinant soluble dimeric form of LAG-3 (sLAG-3-Ig, IMP321) shows adjuvant properties and enhances immunogenicity of tumor vaccines. Recent clinical trials produced encouraging results, especially when the human dimeric soluble form of LAG-3 (hLAG-3-Ig) was used in combination with chemotherapy. AREAS COVERED IN THIS REVIEW The biological relevance of LAG-3 in vivo. Pre-clinical data demonstrating adjuvant properties, as well as the improvement of tumor immunity by sLAG-3-Ig. Recent advances in the clinical development of the therapeutic reagent IMP321, hLAG-3-Ig, for cancer treatment. WHAT THE READER WILL GAIN This review summarizes preclinical and clinical data on the biological functions of LAG-3. TAKE HOME MESSAGE The LAG-3 inhibitory pathway is attracting attention, in the light of recent studies demonstrating its role in T cell unresponsiveness, and Treg function after chronic antigen stimulation. As a soluble recombinant dimer, the sLAG-3-Ig protein acts as an adjuvant for therapeutic induction of T cell responses, and may be beneficial to cancer patients when used in combination therapies.
Collapse
Affiliation(s)
- Sophie Sierro
- Ludwig Institute for Cancer Research Ltd, Epalinges, Switzerland
| | | | | |
Collapse
|
22
|
Neem leaf glycoprotein partially rectifies suppressed dendritic cell functions and associated T cell efficacy in patients with stage IIIB cervical cancer. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:571-9. [PMID: 21307275 DOI: 10.1128/cvi.00499-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myeloid-derived dendritic cells (DCs) generated from monocytes obtained from stage IIIB cervical cancer (CaCx IIIB) patients show dysfunctional maturation; thus, antitumor T cell functions are dysregulated. In an objective to optimize these dysregulated immune functions, the present study is focused on the ability of neem leaf glycoprotein (NLGP), a nontoxic preparation of the neem leaf, to induce optimum maturation of dendritic cells from CaCx IIIB patients. In vitro NLGP treatment of immature DCs (iDCs) obtained from CaCx IIIB patients results in upregulated expression of various cell surface markers (CD40, CD83, CD80, CD86, and HLA-ABC), which indicates DC maturation. Consequently, NLGP-matured DCs displayed balanced cytokine secretions, with type 1 bias and noteworthy functional properties. These DCs displayed substantial T cell allostimulatory capacity and promoted the generation of cytotoxic T lymphocytes (CTLs). Although NLGP-matured DCs derived from CaCx monocytes are generally subdued compared to those with a healthy monocyte origin, considerable revival of the suppressed DC-based immune functions is noted in vitro at a fairly advanced stage of CaCx, and thus, further exploration of ex vivo and in vivo DC-based vaccines is proposed. Moreover, the DC maturating efficacy of NLGP might be much more effective in the earlier stages of CaCx, where the extent of immune dysregulation is less and, thus, the scope of further investigation may be explored.
Collapse
|
23
|
Identification of an IL-27/osteopontin axis in dendritic cells and its modulation by IFN-gamma limits IL-17-mediated autoimmune inflammation. Proc Natl Acad Sci U S A 2010; 107:11495-500. [PMID: 20534530 DOI: 10.1073/pnas.1002099107] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) play a central role in determining the induction of T cell responses. IL-27 production by DCs favors induction of IL-10-producing regulatory T cells, whereas osteopontin (OPN) promotes pathogenic IL-17 T cell responses. The regulatory mechanisms in DCs that control these two cells types are not understood well. Here, we show that IFN-gamma induces IL-27 while inhibiting OPN expression in DCs both in vitro and in vivo and that engagement of IFN-gammaR expressed by DCs leads to suppression of IL-17 production while inducing IL-10 from T cells. DCs modified by IFN-gamma acquire IL-27-dependent regulatory function, promote IL-10-mediated T cell tolerance, and suppress autoimmune inflammation. Thus, our results identify a previously unknown pathway by which IFN-gamma limits IL-17-mediated autoimmune inflammation through differential regulation of OPN and IL-27 expression in DCs.
Collapse
|
24
|
Martin S, Agarwal R, Murugaiyan G, Saha B. CD40 expression levels modulate regulatory T cells in Leishmania donovani infection. THE JOURNAL OF IMMUNOLOGY 2010; 185:551-9. [PMID: 20525887 DOI: 10.4049/jimmunol.0902206] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dendritic cell (DC)-expressed CD40 is shown to play crucial roles in eliciting effector T cell responses, primarily the proinflammatory CD4(+) Th subsets and cytotoxic CD8(+) T cells that eliminate various infections and tumors, respectively. In contrast, DCs are also implied in the generation of regulatory T cells (Tregs) that counteract the functions of the proinflammatory Th subsets and exacerbate infections. However, the role of DC-expressed CD40 in the generation of Tregs is unknown. In this study, we generated bone marrow-derived DCs from mice (on a BALB/c background) expressing different levels of CD40 and tested their relative efficiency in generating Tregs. We observed that low levels of CD40 expression were required for efficient Treg generation. DCs expressing low levels of CD40 induced Tregs, whereas DCs expressing high levels of CD40 induced effector T cells, possibly CD8(+)CD40(+) T cells with a contraregulatory activity; the adoptive transfer of the former DC exacerbated whereas the latter significantly reduced Leishmania donovani infection in BALB/c mice. Similarly, priming of mice with leishmanial Ag-pulsed DCs expressing high levels of CD40 induced host protection against L. donovani challenge infection. In contrast, priming with the low CD40-expressing DC resulted in aggravated infection as compared with the control mice. The results establish that CD40 can play differential roles in Treg differentiation and determine the course of infection. We demonstrate that the knowledge can be efficiently used in adoptive cell transfer therapy against an infectious disease.
Collapse
Affiliation(s)
- Sunil Martin
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | | | | |
Collapse
|
25
|
Martin S, Pahari S, Sudan R, Saha B. CD40 Signaling in CD8+CD40+ T Cells Turns On Contra-T Regulatory Cell Functions. THE JOURNAL OF IMMUNOLOGY 2010; 184:5510-8. [DOI: 10.4049/jimmunol.0902762] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Leishmania interferes with host cell signaling to devise a survival strategy. J Biomed Biotechnol 2010; 2010:109189. [PMID: 20396387 PMCID: PMC2852600 DOI: 10.1155/2010/109189] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/21/2009] [Accepted: 01/28/2010] [Indexed: 01/24/2023] Open
Abstract
The protozoan parasite Leishmania spp. exists as extracellular promastigotes in its vector whereas it resides and replicates as amastigotes within the macrophages of its mammalian host. As a survival strategy, Leishmania modulates macrophage functions directly or indirectly. The direct interference includes prevention of oxidative burst and the effector functions that lead to its elimination. The indirect effects include the antigen presentation and modulation of T cell functions in such a way that the effector T cells help the parasite survive by macrophage deactivation. Most of these direct and indirect effects are regulated by host cell receptor signaling that occurs through cycles of phosphorylation and dephosphorylation in cascades of kinases and phosphatases. This review highlights how Leishmania selectively manipulates the different signaling pathways to ensure its survival.
Collapse
|
27
|
Tuettenberg A, Fondel S, Steinbrink K, Enk AH, Jonuleit H. CD40 signalling induces IL-10-producing, tolerogenic dendritic cells. Exp Dermatol 2010; 19:44-53. [DOI: 10.1111/j.1600-0625.2009.00975.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Hui Q, Yu X, Hui Z, Zuohua F. Inhibition Growth and Metastasis of Melanoma by 4-1BBL Expressed in Normal Tissue Cells by Regulating the Function of Immune Cells. Cancer Biother Radiopharm 2009; 24:597-605. [PMID: 19877890 DOI: 10.1089/cbr.2009.0642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Qiu Hui
- Department of Oncology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China.
| | | | | | | |
Collapse
|
29
|
Murugaiyan G, Saha B. Protumor vs Antitumor Functions of IL-17. THE JOURNAL OF IMMUNOLOGY 2009; 183:4169-75. [DOI: 10.4049/jimmunol.0901017] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Wadhone P, Maiti M, Agarwal R, Kamat V, Martin S, Saha B. Miltefosine promotes IFN-gamma-dominated anti-leishmanial immune response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:7146-54. [PMID: 19454711 DOI: 10.4049/jimmunol.0803859] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Leishmania donovani, a protozoan parasite, resides and replicates as amastigotes within macrophages. The parasite inflicts the disease visceral leishmaniasis by suppressing host cell function. Neither a therapeutic vaccine nor an effective anti-leishmanial drug to reverse the immunosuppression is available. Although miltefosine (hexadecylphosphocholine or HPC) is a promising orally bioavailable anti-leishmanial drug, its efficacy is seriously compromised by contra-indications in pregnant women. Further rational redesigning of the drug requires studies on its mechanism of action, which is unknown at present. Because miltefosine is proposed to have immunomodulatory functions, we examined whether miltefosine exerts its anti-leishmanial functions by activating macrophages. We observed that miltefosine's anti-leishmanial function was significantly compromised in IFN-gamma-deficient macrophages suggesting the importance of endogenous IFN-gamma in miltefosine-induced anti-leishmanial functions of macrophages. Miltefosine induced IFN-gamma, neutralization of which reduced the anti-leishmanial functions of macrophages. IFN-gamma responsiveness is reduced in L. donovani-infected macrophages but is significantly restored by miltefosine, as it enhances IFN-gamma receptors and IFN-gamma induced STAT-1 phosphorylation but reduced activation of SHP-1, the phosphatase implicated in the down-regulation of STAT-1 phosphorylation. Miltefosine induced protein kinase C-dependent and PI3K-dependent p38MAP kinase phosphorylation and anti-leishmanial function. Miltefosine promotes p38MAP kinase-dependent anti-leishmanial functions and IL-12-dependent Th1 response. Leishmania donovani-infected macrophages induced Th2 response but miltefosine treatment reversed the response to Th1-type. Thus, our data define for the first time the mechanistic basis of host cell-dependent anti-leishmanial function of miltefosine.
Collapse
|
31
|
Rub A, Dey R, Jadhav M, Kamat R, Chakkaramakkil S, Majumdar S, Mukhopadhyaya R, Saha B. Cholesterol depletion associated with Leishmania major infection alters macrophage CD40 signalosome composition and effector function. Nat Immunol 2009; 10:273-80. [PMID: 19198591 DOI: 10.1038/ni.1705] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 01/20/2009] [Indexed: 11/09/2022]
Abstract
CD40, a costimulatory molecule expressed on macrophages, induces expression of interleukin 12 (IL-12) in uninfected macrophages and IL-10 in macrophages infected with Leishmania major. IL-12 suppresses, whereas IL-10 enhances, L. major infection. The mechanisms that regulate this difference in CD40-induced cytokine production remain unclear, but it is known that L. major depletes cholesterol. Here we show that cholesterol influenced the assembly of distinct CD40 signalosomes. Depletion of membrane cholesterol inhibited the assembly of an IL-12-inducing CD40 signalosome containing the adaptors TRAF2, TRAF3 and TRAF5 and the kinase Lyn and promoted the assembly of an IL-10-inducing CD40 signalosome containing the adaptor TRAF6 and the kinase Syk. Thus, cholesterol depletion might represent an immune-evasion strategy used by L. major.
Collapse
Affiliation(s)
- Abdur Rub
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Casati C, Camisaschi C, Novellino L, Mazzocchi A, Triebel F, Rivoltini L, Parmiani G, Castelli C. Human lymphocyte activation gene-3 molecules expressed by activated T cells deliver costimulation signal for dendritic cell activation. THE JOURNAL OF IMMUNOLOGY 2008; 180:3782-8. [PMID: 18322184 DOI: 10.4049/jimmunol.180.6.3782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Data have been reported on the in vivo adjuvant role of soluble lymphocyte activation gene-3 (LAG-3) recombinant protein in mouse models and on its ability to support the in vitro generation of human, tumor-specific CTLs. In this study, we show that soluble human rLAG-3 protein (hLAG-3Ig) used in vitro as a single maturation agent induces phenotypic maturation of monocyte-derived dendritic cells and promoted the production of chemokines and TNF-alpha inflammatory cytokine. When given in association with optimal or suboptimal doses of CD40/CD40L, hLAG-3Ig functions as a strong costimulatory factor and induces full functional activation of monocyte-derived dendritic cells that includes the production of high level of IL-12p70. Moreover, evidence is here provided that this costimulatory function licensing dendritic cells to produce IL-12p70 is also a functional property of LAG-3 molecules when expressed in a physiological context by CD4(+) activated T cells. Altogether, these data show for the first time a role of LAG-3 in mediating dendritic cell activation when expressed on the T cell surface or released after specific Ag stimulation in the interspaces of immunological synapses.
Collapse
Affiliation(s)
- Chiara Casati
- Unit of Immunotherapy of Human Tumor, Fondazione Instituto di Ricerca e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Murugaiyan G, Martin S, Saha B. CD40-induced countercurrent conduits for tumor escape or elimination? Trends Immunol 2007; 28:467-73. [DOI: 10.1016/j.it.2007.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/08/2007] [Accepted: 08/08/2007] [Indexed: 12/14/2022]
|
34
|
Elpek KG, Lacelle C, Singh NP, Yolcu ES, Shirwan H. CD4+CD25+ T regulatory cells dominate multiple immune evasion mechanisms in early but not late phases of tumor development in a B cell lymphoma model. THE JOURNAL OF IMMUNOLOGY 2007; 178:6840-8. [PMID: 17513732 DOI: 10.4049/jimmunol.178.11.6840] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumors use a complex set of direct and indirect mechanisms to evade the immune system. Naturally arising CD4(+)CD25(+)FoxP3(+) T regulatory (Treg) cells have been implicated recently in tumor immune escape mechanism, but the relative contribution of these cells to overall tumor progression compared with other immune evasion mechanisms remains to be elucidated. Using the A20 B cell lymphoma as a transplantable tumor model, we demonstrate that this tumor employs multiple direct (expression of immunoinhibitory molecule PD-L1, IDO, and IL-10, and lack of expression of CD80 costimulatory molecule) and indirect (down-regulation of APC function and induction of Treg cells) immune evasion mechanisms. Importantly, Treg cells served as the dominant immune escape mechanism early in tumor progression because the physical elimination of these cells before tumor challenge resulted in tumor-free survival in 70% of mice, whereas their depletion in animals with established tumors had no therapeutic effect. Therefore, our data suggest that Treg cells may serve as an important therapeutic target for patients with early stages of cancer and that more vigorous combinatorial approaches simultaneously targeting multiple immune evasion as well as immunosurveillance mechanisms for the generation of a productive immune response against tumor may be required for effective immunotherapy in patients with advanced disease.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation
- Disease Models, Animal
- Disease Progression
- Disease-Free Survival
- Forkhead Transcription Factors/biosynthesis
- Lymphocyte Depletion
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/prevention & control
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Kutlu G Elpek
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
35
|
Hao S, Yuan J, Xiang J. Nonspecific CD4(+) T cells with uptake of antigen-specific dendritic cell-released exosomes stimulate antigen-specific CD8(+) CTL responses and long-term T cell memory. J Leukoc Biol 2007; 82:829-38. [PMID: 17626150 DOI: 10.1189/jlb.0407249] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dendritic cell (DC) and DC-derived exosomes (EXO) have been used extensively for tumor vaccination. However, its therapeutic efficiency is limited to only production of prophylactic immunity against tumors. T cells can uptake DC-released EXO. However, the functional effect of transferred exosomal molecules on T cells is unclear. In this study, we demonstrated that OVA protein-pulsed DC-derived EXO (EXO(OVA)) can be taken up by Con A-stimulated, nonspecific CD4(+) T cells derived from wild-type C57BL/6 mice. The active EXO-uptaken CD4(+) T cells (aT(EXO)), expressing acquired exosomal MHC I/OVA I peptide (pMHC I) complexes and costimulatory CD40 and CD80 molecules, can act as APCs capable of stimulating OVA-specific CD8(+) T cell proliferation in vitro and in vivo and inducing efficient CD4(+) Th cell-independent CD8(+) CTL responses in vivo. The EXO(OVA)-uptaken CD4(+) aT(EXO) cell vaccine induces much more efficient CD8(+) T cell responses and immunity against challenge of OVA-transfected BL6-10 melanoma cells expressing OVA in wild-type C57BL/6 mice than EXO(OVA). The in vivo stimulatory effect of the CD4(+) aT(EXO) cell to CD8(+) T cell responses is mediated and targeted by its CD40 ligand signaling/acquired exosomal CD80 and pMHC I complexes, respectively. In addition, CD4(+) aT(EXO) vaccine stimulates a long-term, OVA-specific CD8(+) T cell memory. Therefore, the EXO(OVA)-uptaken CD4(+) T cells may represent a new, effective, EXO-based vaccine strategy in induction of immune responses against tumors and other infectious diseases.
Collapse
Affiliation(s)
- Siguo Hao
- Research Unit, Division of Health Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|