1
|
De Tomaso AW, Rodriguez-Valbuena H. Histocompatibility in Botryllus schlosseri and the origins of adaptive immunity. Immunogenetics 2025; 77:22. [PMID: 40347240 PMCID: PMC12065747 DOI: 10.1007/s00251-025-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 05/03/2025] [Indexed: 05/12/2025]
Abstract
The basal chordate, Botryllus schlosseri, undergoes a natural transplantation reaction that is controlled by a single, highly polymorphic locus called the fuhc. The fuhc is one of the most polymorphic loci ever described, with most populations having hundreds of alleles, and up to a thousand found worldwide. Two individuals are compatible if they share one or both alleles, while those with no shared alleles are incompatible; thus, Botryllus uses a missing-self recognition strategy to discriminate between up to a thousand histocompatibility ligands. Remarkably, this discriminatory capability, which rivals that of vertebrate adaptive immunity, is carried out by germline-encoded receptors; thus, the mechanisms that establish and maintain this remarkable specificity are not understood. Multiple complete haplotypes of the fuhc locus have recently been sequenced, and at least seven genes with characteristics that suggest a role in allorecognition have been identified, including ligands, receptors, and intracellular proteins that likely organize and tune signal transduction complexes. This includes a new receptor family called the fester co-receptors (FcoRs) that encode ITIM and hemITAM domains, linking allorecognition in Botryllus to canonical immune transduction pathways. This review will summarize our current understanding and working hypotheses on the cellular and molecular mechanisms that control this innate, highly polymorphic allorecognition response, and how those may have been co-opted during the evolution of adaptive immunity.
Collapse
Affiliation(s)
- Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Henry Rodriguez-Valbuena
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
2
|
Fan J, Shi J, Zhang Y, Liu J, An C, Zhu H, Wu P, Hu W, Qin R, Yao D, Shou X, Xu Y, Tong Z, Wen X, Xu J, Zhang J, Fang W, Lou J, Yin W, Chen W. NKG2D discriminates diverse ligands through selectively mechano-regulated ligand conformational changes. EMBO J 2022; 41:e107739. [PMID: 34913508 PMCID: PMC8762575 DOI: 10.15252/embj.2021107739] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Stimulatory immune receptor NKG2D binds diverse ligands to elicit differential anti-tumor and anti-virus immune responses. Two conflicting degeneracy recognition models based on static crystal structures and in-solution binding affinities have been considered for almost two decades. Whether and how NKG2D recognizes and discriminates diverse ligands still remain unclear. Using live-cell-based single-molecule biomechanical assay, we characterized the in situ binding kinetics of NKG2D interacting with different ligands in the absence or presence of mechanical force. We found that mechanical force application selectively prolonged NKG2D interaction lifetimes with the ligands MICA and MICB, but not with ULBPs, and that force-strengthened binding is much more pronounced for MICA than for other ligands. We also integrated steered molecular dynamics simulations and mutagenesis to reveal force-induced rotational conformational changes of MICA, involving formation of additional hydrogen bonds on its binding interface with NKG2D, impeding MICA dissociation under force. We further provided a kinetic triggering model to reveal that force-dependent affinity determines NKG2D ligand discrimination and its downstream NK cell activation. Together, our results demonstrate that NKG2D has a discrimination power to recognize different ligands, which depends on selective mechanical force-induced ligand conformational changes.
Collapse
Affiliation(s)
- Juan Fan
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiawei Shi
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
| | - Yong Zhang
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junwei Liu
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huaying Zhu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peng Wu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Hu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Danmei Yao
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xin Shou
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Yibing Xu
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Zhou Tong
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Xue Wen
- Department of PathologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jianpo Xu
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jin Zhang
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
| | - Weijia Fang
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jizhong Lou
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Thoracic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalCollege of Biomedical Engineering and Instrument of ScienceZhejiang UniversityHangzhouChina
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- The MOE Frontier Science Center for Brain Science & Brain‐machine IntegrationZhejiang UniversityHangzhouChina
| |
Collapse
|
3
|
Grewal RK, Das J. Spatially resolved in silico modeling of NKG2D signaling kinetics suggests a key role of NKG2D and Vav1 Co-clustering in generating natural killer cell activation. PLoS Comput Biol 2022; 18:e1010114. [PMID: 35584138 PMCID: PMC9154193 DOI: 10.1371/journal.pcbi.1010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Natural Killer (NK) cells provide key resistance against viral infections and tumors. A diverse set of activating and inhibitory NK cell receptors (NKRs) interact with cognate ligands presented by target host cells, where integration of dueling signals initiated by the ligand-NKR interactions determines NK cell activation or tolerance. Imaging experiments over decades have shown micron and sub-micron scale spatial clustering of activating and inhibitory NKRs. The mechanistic roles of these clusters in affecting downstream signaling and activation are often unclear. To this end, we developed a predictive in silico framework by combining spatially resolved mechanistic agent based modeling, published TIRF imaging data, and parameter estimation to determine mechanisms by which formation and spatial movements of activating NKG2D microclusters affect early time NKG2D signaling kinetics in a human cell line NKL. We show co-clustering of NKG2D and the guanosine nucleotide exchange factor Vav1 in NKG2D microclusters plays a dominant role over ligand (ULBP3) rebinding in increasing production of phospho-Vav1(pVav1), an activation marker of early NKG2D signaling. The in silico model successfully predicts several scenarios of inhibition of NKG2D signaling and time course of NKG2D spatial clustering over a short (~3 min) interval. Modeling shows the presence of a spatial positive feedback relating formation and centripetal movements of NKG2D microclusters, and pVav1 production offers flexibility towards suppression of activating signals by inhibitory KIR ligands organized in inhomogeneous spatial patterns (e.g., a ring). Our in silico framework marks a major improvement in developing spatiotemporal signaling models with quantitatively estimated model parameters using imaging data. Natural Killer cells are lymphocytes of our innate immunity and provide important resistance against viral infections and tumors. NK cells scan the local environment with diverse activating and inhibitory NK cell receptors (NKRs) and remain tolerized or lyse target cells expressing cognate ligands to NKRs. NKRs have been found to form micron sized clusters (or microclusters) as they interact with cognate ligands, and mechanisms regarding how the formation and movements of these microclusters influence NK cell signaling and activation, specifically related to activating NKRs, are often unclear. To this end, we develop a predictive spatially resolved early-time NK cell signaling model to study the interplay between membrane-proximal biochemical signaling events and the kinetics of microclusters of activating NKG2D and inhibitory KIR2DL2 receptors. We used published TIRF imaging data to validate our in silico models and estimate model parameters. Predictions from multiple in silico models are tested against a variety of data obtained from published imaging experiments and immunoassays. Our analysis suggests co-clustering of NKG2D and the guanosine nucleotide exchange factor Vav1 in the microclusters plays a major role in enhancing downstream activating signals. The developed framework can be extended to describe spatiotemporal signaling for other activating NKRs including CD16.
Collapse
Affiliation(s)
- Rajdeep Kaur Grewal
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jayajit Das
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
4
|
Toledo E, Le Saux G, Edri A, Li L, Rosenberg M, Keidar Y, Bhingardive V, Radinsky O, Hadad U, Di Primo C, Buffeteau T, Smith AS, Porgador A, Schvartzman M. Molecular-scale spatio-chemical control of the activating-inhibitory signal integration in NK cells. SCIENCE ADVANCES 2021; 7:7/24/eabc1640. [PMID: 34117052 PMCID: PMC8195486 DOI: 10.1126/sciadv.abc1640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/21/2021] [Indexed: 05/13/2023]
Abstract
The role of juxtaposition of activating and inhibitory receptors in signal inhibition of cytotoxic lymphocytes remains strongly debated. The challenge lies in the lack of tools that allow simultaneous spatial manipulation of signaling molecules. To circumvent this, we produced a nanoengineered multifunctional platform with molecular-scale spatial control of ligands, which was applied to elucidate KIR2DL1-mediated inhibition of NKG2D signaling-receptors of natural killer cells. This platform was conceived by bimetallic nanodot patterning with molecular-scale registry, followed by a ternary functionalization with distinct moieties. We found that a 40-nm gap between activating and inhibitory ligands provided optimal inhibitory conditions. Supported by theoretical modeling, we interpret these findings as a consequence of the size mismatch and conformational flexibility of ligands in their spatial interaction. This highly versatile approach provides an important insight into the spatial mechanism of inhibitory immune checkpoints, which is essential for the rational design of future immunotherapies.
Collapse
Affiliation(s)
- Esti Toledo
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Long Li
- Department of Physics, IZNF, FAU Erlangen-Nürnberg, Erlangen 91058, Germany
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Maor Rosenberg
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yossi Keidar
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Viraj Bhingardive
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Olga Radinsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Carmelo Di Primo
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | | | - Ana-Sunčana Smith
- Department of Physics, IZNF, FAU Erlangen-Nürnberg, Erlangen 91058, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
5
|
Benjamin RN, Thomas M, Muthusamy K, Yoganathan S, Mathew V, Chacko AG, Prabhu K, Chacko G. Age-Dependent Reduction in Severity and Discrete Topographical Patterns in Rasmussen Encephalitis: A Link to Cortical Maturation? Pediatr Neurol 2020; 112:25-33. [PMID: 32911260 DOI: 10.1016/j.pediatrneurol.2020.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/30/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Autopsy studies in Rasmussen encephalitis reveal areas of sparing within the affected hemisphere. Clinical progression and inflammation are milder with an older onset. We sought to demonstrate radiological corroboration for these patterns. METHODS In our retrospective study, 38 cases were dichotomized into severe pan-hemispheric (all lobes involved) and sub-hemispheric groups (others) to identify age demographics and other severity predictors. The extent and patterns of radiological pathology in the cortex and subcortical structures were assessed by structured visual grading. Relevant clinical data were also reported. RESULTS Children with pan-hemispheric involvement were younger at onset (P < 0.001) and were more likely to present with status epilepticus (odds ratio 8.5, 95% confidence interval 1.5 to 50.0, P = 0.022). A history of perinatal asphyxia/hospitalization (P < 0.001) and delayed milestones (P = 0.013) were encountered exclusively in this group, and progression to a low-amplitude record background on electroencephalography, suggesting that cortical damage was identified frequently (P = 0.038, odds ratio = 5.7, 95% confidence interval 1.3 to 25.0). Visual grading revealed significant differences among both cortical (P < 0.001) and subcortical (P < 0.001) regions. On multivariate analysis, the odds for pan-hemispheric disease decreased per year of age at onset (P = 0.022, odds ratio 0.51, 95% confidence interval 0.085 to 0.725). Epilepsy surgery (n = 14) was associated with Engel Class 1 seizure control (P < 0.001). Immunosuppressive therapy (n = 20) did not demonstrate a significant seizure remission (P = 0.157, odds ratio 0.39, 95% confidence interval 0.10 to 1.55). CONCLUSIONS Our case series confirms the presence of specific topographical patterns of macroscopic radiological pathology over the affected hemisphere with a marked age-associated reduction in the odds for severe pan-hemispheric disease.
Collapse
Affiliation(s)
- Rohit Ninan Benjamin
- Associate Professor, Neurology, Department of Neurosciences, Christian Medical College, Vellore, India.
| | - Maya Thomas
- Professor and Head, Paediatric Neurology, Department of Neurosciences, Christian Medical College, Vellore, India
| | - Karthik Muthusamy
- Professor, Paediatric Neurology, Department of Neurosciences, Christian Medical College, Vellore, India
| | - Sangeetha Yoganathan
- Professor, Paediatric Neurology, Department of Neurosciences, Christian Medical College, Vellore, India
| | - Vivek Mathew
- Professor and Head, Neurology, Department of Neurosciences, Christian Medical College, Vellore, India
| | - Ari George Chacko
- Professor, Neurosurgery, Department of Neurosciences, Christian Medical College, Vellore, India
| | - Krishna Prabhu
- Professor, Neurosurgery, Department of Neurosciences, Christian Medical College, Vellore, India
| | - Geeta Chacko
- Professor of Neuropathology and Head, General Pathology, Department of General Pathology, Christian Medical College, Vellore, India
| |
Collapse
|
6
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
7
|
Le Saux G, Edri A, Keydar Y, Hadad U, Porgador A, Schvartzman M. Spatial and Chemical Surface Guidance of NK Cell Cytotoxic Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11486-11494. [PMID: 29557634 DOI: 10.1021/acsami.7b19643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Studying how different signaling pathways spatially integrate in cells requires selective manipulation and control of different transmembrane ligand-receptor pairs at the same time. This work explores a novel method for precisely arranging two arbitrarily chosen ligands on a micron-scale two-dimensional pattern. The approach is based on lithographic patterning of Au and TiO2 films, followed by their selective functionalization with Ni-nitrilotriacetic acid-histidine and biotin-avidin chemistries, respectively. The selectivity of chemical and biological functionalizations is demonstrated by X-ray photoelectron spectroscopy and immunofluorescence imaging, respectively. This approach is applied to produce the first type of bifunctional surfaces with controllably positioned ligands for activating the receptors of natural killer (NK) immune cells. NK cells were used as a model system to demonstrate the potency of the surface in guiding site-selective cell attachment and activation. Upon applying the suitable ligand or ligand combination, the surfaces guided the appropriate single- or bifunctional attachment and activation. These encouraging results demonstrate the effectiveness of the system as an experimental platform aimed at the comprehensive understanding of the immunological synapse. The great simplicity, modularity, and specificity of this approach make it applicable for a myriad of combinations of other biomolecules and applications, turning it into the "Swiss knife" of biointerfaces.
Collapse
|
8
|
Oberschmidt O, Kloess S, Koehl U. Redirected Primary Human Chimeric Antigen Receptor Natural Killer Cells As an "Off-the-Shelf Immunotherapy" for Improvement in Cancer Treatment. Front Immunol 2017. [PMID: 28649246 PMCID: PMC5465249 DOI: 10.3389/fimmu.2017.00654] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Primary human natural killer (NK) cells recognize and subsequently eliminate virus infected cells, tumor cells, or other aberrant cells. However, cancer cells are able to develop tumor immune escape mechanisms to undermine this immune control. To overcome this obstacle, NK cells can be genetically modified to express chimeric antigen receptors (CARs) in order to improve specific recognition of cancer surface markers (e.g., CD19, CD20, and ErbB2). After target recognition, intracellular CAR domain signaling (CD3ζ, CD28, 4-1BB, and 2B4) leads to activation of PI3K or DNAX proteins (DAP10, DAP12) and finally to enhanced cytotoxicity, proliferation, and/or interferon γ release. This mini-review summarizes both the first preclinical trials with CAR-engineered primary human NK cells and the translational implications for “off-the-shelf immunotherapy” in cancer treatment. Signal transduction in NK cells as well as optimization of CAR signaling will be described, becoming more and more a focal point of interest in addition to redirected T cells. Finally, strategies to overcome off-target effects will be discussed in order to improve future clinical trials and to avoid attacking healthy tissues.
Collapse
Affiliation(s)
- Olaf Oberschmidt
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Stephan Kloess
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Ulrike Koehl
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Collin A, Noacco A, Talvas J, Caldefie-Chézet F, Vasson MP, Farges MC. Enhancement of Lytic Activity by Leptin Is Independent From Lipid Rafts in Murine Primary Splenocytes. J Cell Physiol 2016; 232:101-9. [PMID: 27028718 DOI: 10.1002/jcp.25394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/25/2016] [Indexed: 12/13/2022]
Abstract
Leptin, a pleiotropic adipokine, is known as a regulator of food intake, but it is also involved in inflammation, immunity, cell proliferation, and survival. Leptin receptor is integrated inside cholesterol-rich microdomains called lipid rafts, which, if disrupted or destroyed, could lead to a perturbation of lytic mechanism. Previous studies also reported that leptin could induce membrane remodeling. In this context, we studied the effect of membrane remodeling in lytic activity modulation induced by leptin. Thus, primary mouse splenocytes were incubated with methyl-β-cyclodextrin (β-MCD), a lipid rafts disrupting agent, cholesterol, a major component of cell membranes, or ursodeoxycholic acid (UDCA), a membrane stabilizer agent for 1 h. These treatments were followed by splenocyte incubation with leptin (absence, 10 and 100 ng/ml). Unlike β-MCD or cholesterol, UDCA was able to block leptin lytic induction. This result suggests that leptin increased the lytic activity of primary spleen cells against syngenic EO771 mammary cancer cells independently from lipid rafts but may involve membrane fluidity. Furthermore, natural killer cells were shown to be involved in the splenocyte lytic activity. To our knowledge it is the first publication in primary culture that provides the link between leptin lytic modulation and membrane remodeling. J. Cell. Physiol. 232: 101-109, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aurore Collin
- Clermont Université, Université d'Auvergne, UFR Pharmacie, UMR 1019, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, Clermont-Ferrand, France. .,INRA, UMR 1019, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Audrey Noacco
- Clermont Université, Université d'Auvergne, UFR Pharmacie, UMR 1019, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, Clermont-Ferrand, France.,INRA, UMR 1019, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Jérémie Talvas
- Clermont Université, Université d'Auvergne, UFR Pharmacie, UMR 1019, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, Clermont-Ferrand, France.,INRA, UMR 1019, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Florence Caldefie-Chézet
- Clermont Université, Université d'Auvergne, UFR Pharmacie, UMR 1019, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, Clermont-Ferrand, France.,INRA, UMR 1019, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Marie-Paule Vasson
- Clermont Université, Université d'Auvergne, UFR Pharmacie, UMR 1019, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, Clermont-Ferrand, France.,INRA, UMR 1019, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.,Centre Jean-Perrin, CHU Gabriel-Montpied, Unité de Nutrition, Clermont-Ferrand, France
| | - Marie-Chantal Farges
- Clermont Université, Université d'Auvergne, UFR Pharmacie, UMR 1019, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, Clermont-Ferrand, France.,INRA, UMR 1019, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| |
Collapse
|
10
|
Almeida CR, Caires HR, Vasconcelos DP, Barbosa MA. NAP-2 Secreted by Human NK Cells Can Stimulate Mesenchymal Stem/Stromal Cell Recruitment. Stem Cell Reports 2016; 6:466-473. [PMID: 27052313 PMCID: PMC4834048 DOI: 10.1016/j.stemcr.2016.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
Strategies for improved homing of mesenchymal stem cells (MSCs) to a place of injury are being sought and it has been shown that natural killer (NK) cells can stimulate MSC recruitment. Here, we studied the chemokines behind this recruitment. Assays were performed with bone marrow human MSCs and NK cells freshly isolated from healthy donor buffy coats. Supernatants from MSC-NK cell co-cultures can induce MSC recruitment but not to the same extent as when NK cells are present. Antibody arrays and ELISA assays confirmed that NK cells secrete RANTES (CCL5) and revealed that human NK cells secrete NAP-2 (CXCL7), a chemokine that can induce MSC migration. Inhibition with specific antagonists of CXCR2, a receptor that recognizes NAP-2, abolished NK cell-mediated MSC recruitment. This capacity of NK cells to produce chemokines that stimulate MSC recruitment points toward a role for this immune cell population in regulating tissue repair/regeneration. Primary unstimulated human NK cells produce NAP-2 (CXCL7) NAP-2 is a chemokine that can promote recruitment of bone marrow MSCs Inhibiting the NAP-2 receptor CXCR2 abolishes NK cell-mediated MSC recruitment
Collapse
Affiliation(s)
- Catarina R Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Hugo R Caires
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniela P Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Urlaub D, Bhat R, Messmer B, Watzl C. Co-Activation of Cultured Human Natural Killer Cells: Enhanced Function and Decreased Inhibition. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:1078-1084. [PMID: 27924718 DOI: 10.1080/15287394.2016.1219587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Natural killer (NK) cells are important immune effector cells that protect the organism against viral infections and cancer. The cytotoxic activity of NK cells is induced by the engagement of a number of different activating surface receptors and controlled by inhibitory receptors to ensure self-tolerance. Resting NK cells need to be co-activated by involvement of at least two distinct activating receptors in order to induce their functional activity. However, in cultured NK cells, which have been expanded in cytokines such as interleukin (IL)-2, the engagement of a single activating receptor may be sufficient to induce their function. Data demonstrated that also cultured NK cells may be co-activated by involvement of certain combinations of activating receptors. This co-activation results in enhanced activation of Vav-1 and ERK signaling pathways and produces greater degranulation. In addition to enhanced functionality, co-activation makes NK cells more resistant to the effect of inhibitory receptors, thereby inducing more potent and efficient NK cell responses.
Collapse
Affiliation(s)
- Doris Urlaub
- a Leibniz Research Center for Working Environment and Human Factors (IfADo), TU Dortmund University , Dortmund , Germany
| | - Rauf Bhat
- b Institute for Immunology, University Hospital Heidelberg , Germany
- c German Cancer Research Centre (DKFZ) Unit F010 , Heidelberg , Germany
| | - Birgitta Messmer
- b Institute for Immunology, University Hospital Heidelberg , Germany
| | - Carsten Watzl
- a Leibniz Research Center for Working Environment and Human Factors (IfADo), TU Dortmund University , Dortmund , Germany
| |
Collapse
|
12
|
Hadad U, Thauland TJ, Martinez OM, Butte MJ, Porgador A, Krams SM. NKp46 Clusters at the Immune Synapse and Regulates NK Cell Polarization. Front Immunol 2015; 6:495. [PMID: 26441997 PMCID: PMC4585260 DOI: 10.3389/fimmu.2015.00495] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023] Open
Abstract
Natural killer (NK) cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell surface expressed inhibitory and activating receptors. NKp46 is a major NK cell-activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However, the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study, we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.
Collapse
Affiliation(s)
- Uzi Hadad
- Department of Surgery, Division of Abdominal Transplantation, Stanford University , Stanford, CA , USA ; The Shraga Segal Department of Microbiology and Immunology and Genetics, Ben-Gurion University of the Negev , Beersheba , Israel
| | - Timothy J Thauland
- Department of Pediatrics, Division of Immunology, Stanford University , Stanford, CA , USA
| | - Olivia M Martinez
- Department of Surgery, Division of Abdominal Transplantation, Stanford University , Stanford, CA , USA
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Stanford University , Stanford, CA , USA
| | - Angel Porgador
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Ben-Gurion University of the Negev , Beersheba , Israel
| | - Sheri M Krams
- Department of Surgery, Division of Abdominal Transplantation, Stanford University , Stanford, CA , USA
| |
Collapse
|
13
|
López-Cobo S, Romera-Cárdenas G, García-Cuesta EM, Reyburn HT, Valés-Gómez M. Transfer of the human NKG2D ligands UL16 binding proteins (ULBP) 1-3 is related to lytic granule release and leads to ligand retransfer and killing of ULBP-recipient natural killer cells. Immunology 2015; 146:70-80. [PMID: 25980678 DOI: 10.1111/imm.12482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 01/16/2023] Open
Abstract
After immune interactions, membrane fragments can be transferred between cells. This fast transfer of molecules is transient and shows selectivity for certain proteins; however, the constraints underlying acquisition of a protein are unknown. To characterize the mechanism and functional consequences of this process in natural killer (NK) cells, we have compared the transfer of different NKG2D ligands. We show that human NKG2D ligands can be acquired by NK cells with different efficiencies. The main findings are that NKG2D ligand transfer is related to immune activation and receptor-ligand interaction and that NK cells acquire these proteins during interactions with target cells that lead to degranulation. Our results further demonstrate that NK cells that have acquired NKG2D ligands can stimulate activation of autologous NK cells. Surprisingly, NK cells can also re-transfer the acquired molecule to autologous effector cells during this immune recognition that leads to their death. These data demonstrate that transfer of molecules occurs as a consequence of immune recognition and imply that this process might play a role in homeostatic tuning-down of the immune response or be used as marker of interaction.
Collapse
Affiliation(s)
- Sheila López-Cobo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gema Romera-Cárdenas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eva M García-Cuesta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
14
|
Gütgemann SA, Sandusky MM, Wingert S, Claus M, Watzl C. Recruitment of activating NK-cell receptors 2B4 and NKG2D to membrane microdomains in mammalian cells is dependent on their transmembrane regions. Eur J Immunol 2015; 45:1258-69. [DOI: 10.1002/eji.201444741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/21/2014] [Accepted: 12/22/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Stephan A. Gütgemann
- IfADo-Leibniz Research Centre for Working Environment and Human Factors; Dortmund Germany
| | - Mina M. Sandusky
- IfADo-Leibniz Research Centre for Working Environment and Human Factors; Dortmund Germany
| | - Sabine Wingert
- IfADo-Leibniz Research Centre for Working Environment and Human Factors; Dortmund Germany
| | - Maren Claus
- IfADo-Leibniz Research Centre for Working Environment and Human Factors; Dortmund Germany
| | - Carsten Watzl
- IfADo-Leibniz Research Centre for Working Environment and Human Factors; Dortmund Germany
| |
Collapse
|
15
|
Lagrue K, Carisey A, Oszmiana A, Kennedy PR, Williamson DJ, Cartwright A, Barthen C, Davis DM. The central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapse. Immunol Rev 2014; 256:203-21. [PMID: 24117823 DOI: 10.1111/imr.12107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells discriminate between healthy and unhealthy target cells through a balance of activating and inhibitory signals at direct intercellular contacts called immune synapses. Rearrangements in the cellular cytoskeleton have long been known to be critical in assembly of immune synapses. Here, through bringing together the vast literature on this subject, the number of different ways in which the cytoskeleton is important becomes evident. The dynamics of filamentous actin are critical in (i) creating the nanometer-scale organization of NK cell receptors, (ii) establishing cellular polarity, (iii) coordinating immune receptor and integrin-mediated signaling, and (iv) directing secretion of lytic granules and cytokines. The microtubule network also is important in the delivery of lytic granules and vesicles containing cytokines to the immune synapse. Together, these data establish that the cytoskeleton acts as a central regulator of this complex and dynamic process - and an enormous amount of NK cell biology is controlled through the cytoskeleton.
Collapse
Affiliation(s)
- Kathryn Lagrue
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK; Division of Cell and Molecular Biology, Imperial College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Serrano-Pertierra E, Cernuda-Morollón E, Brdička T, Hoøejši V, López-Larrea C. L-plastin is involved in NKG2D recruitment into lipid rafts and NKG2D-mediated NK cell migration. J Leukoc Biol 2014; 96:437-45. [PMID: 24803550 DOI: 10.1189/jlb.2a1013-564r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Membrane rafts are microdomains of the plasma membrane that have multiple biological functions. The involvement of these structures in the biology of T cells, namely in signal transduction by the TCR, has been widely studied. However, the role of membrane rafts in immunoreceptor signaling in NK cells is less well known. We studied the distribution of the activating NKG2D receptor in lipid rafts by isolating DRMs in a sucrose density gradient or by raft fractionation by β-OG-selective solubility in the NKL cell line. We found that the NKG2D-DAP10 complex and pVav are recruited into rafts upon receptor stimulation. Qualitative proteomic analysis of these fractions showed that the actin cytoskeleton is involved in this process. In particular, we found that the actin-bundling protein L-plastin plays an important role in the clustering of NKG2D into lipid rafts. Moreover, coengagement of the inhibitory receptor NKG2A partially disrupted NKG2D recruitment into rafts. Furthermore, we demonstrated that L-plastin participates in NKG2D-mediated inhibition of NK cell chemotaxis.
Collapse
Affiliation(s)
| | - Eva Cernuda-Morollón
- Neurology Departments, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Tomáš Brdička
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; and
| | - Václav Hoøejši
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; and
| | | |
Collapse
|
17
|
Mace EM, Dongre P, Hsu HT, Sinha P, James AM, Mann SS, Forbes LR, Watkin LB, Orange JS. Cell biological steps and checkpoints in accessing NK cell cytotoxicity. Immunol Cell Biol 2014; 92:245-55. [PMID: 24445602 PMCID: PMC3960583 DOI: 10.1038/icb.2013.96] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/06/2013] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cell-mediated cytotoxicity is governed by the formation of a lytic immune synapse in discrete regulated steps, which give rise to an extensive array of cellular checkpoints in accessing NK cell-mediated cytolytic defense. Appropriate progression through these cell biological steps is critical for the directed secretion of specialized secretory lysosomes and subsequent target cell death. Here we highlight recent discoveries in the formation of the NK cell cytolytic synapse as well as the molecular steps and cell biological checkpoints required for this essential host defense process.
Collapse
Affiliation(s)
- Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Prachi Dongre
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Hsiang-Ting Hsu
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Papiya Sinha
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Shaina S Mann
- Case Western Reserve Medical School, Cleveland, OH, USA
| | - Lisa R Forbes
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Levi B Watkin
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
18
|
Abstract
The functions of Natural Killer (NK) cells are regulated by a highly redundant set of germline-encoded surface receptors that can inhibit or activate NK cell activities. NK cells can be activated by cytokines or through the interaction with transformed or infected cells. This typically results in the production of cytokines, chemokines, and the induction of cellular cytotoxicity. However, the reactivity of NK cells is modulated on various levels and shaped by processes such as development, education, priming, exposure to antigens and cytokines, and the formation of memory-like phenotypes. Here, I will summarize our current understanding of these processes and describe how they influence NK cell reactivity on a molecular level.
Collapse
Affiliation(s)
- Carsten Watzl
- Leibniz Research Center for Working Environment and Human Factors, IfADo, Dortmund, Germany.
| |
Collapse
|
19
|
Huse M, Catherine Milanoski S, Abeyweera TP. Building tolerance by dismantling synapses: inhibitory receptor signaling in natural killer cells. Immunol Rev 2013; 251:143-53. [PMID: 23278746 DOI: 10.1111/imr.12014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell surface receptors bearing immunotyrosine-based inhibitory motifs (ITIMs) maintain natural killer (NK) cell tolerance to normal host tissues. These receptors are difficult to analyze mechanistically because they block activating responses in a rapid and comprehensive manner. The advent of high-resolution single cell imaging techniques has enabled investigators to explore the cell biological basis of the inhibitory response. Recent studies using these approaches indicate that ITIM-containing receptors function at least in part by structurally undermining the immunological synapse between the NK cell and its target. In this review, we discuss these new advances and how they might relate to what is known about the biochemistry of inhibitory signaling in NK cells and other cell types.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
20
|
Watzl C, Sternberg-Simon M, Urlaub D, Mehr R. Understanding natural killer cell regulation by mathematical approaches. Front Immunol 2012; 3:359. [PMID: 23264774 PMCID: PMC3525018 DOI: 10.3389/fimmu.2012.00359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/10/2012] [Indexed: 11/13/2022] Open
Abstract
The activity of natural killer (NK) cells is regulated by various processes including education/licensing, priming, integration of positive and negative signals through an array of activating and inhibitory receptors, and the development of memory-like functionality. These processes are often very complex due to the large number of different receptors and signaling pathways involved. Understanding these complex mechanisms is therefore a challenge, but is critical for understanding NK cell regulation. Mathematical approaches can facilitate the analysis and understanding of complex systems. Therefore, they may be instrumental for studies in NK cell biology. Here we provide a review of the different mathematical approaches to the analysis of NK cell signal integration, activation, proliferation, and the acquisition of inhibitory receptors. These studies show how mathematical methods can aid the analysis of NK cell regulation.
Collapse
Affiliation(s)
- Carsten Watzl
- IfADo - Leibniz Institute for Occupational Research Dortmund, Germany
| | | | | | | |
Collapse
|
21
|
Krzewski K, Coligan JE. Human NK cell lytic granules and regulation of their exocytosis. Front Immunol 2012; 3:335. [PMID: 23162553 PMCID: PMC3494098 DOI: 10.3389/fimmu.2012.00335] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells form a subset of lymphocytes that play a key role in immuno-surveillance and host defense against cancer and viral infections. They recognize stressed cells through a variety of germline-encoded activating cell surface receptors and utilize their cytotoxic ability to eliminate abnormal cells. Killing of target cells is a complex, multi-stage process that concludes in the directed secretion of lytic granules, containing perforin and granzymes, at the immunological synapse. Upon delivery to a target cell, perforin mediates generation of pores in membranes of target cells, allowing granzymes to access target cell cytoplasm and induce apoptosis. Therefore, lytic granules of NK cells are indispensable for normal NK cell cytolytic function. Indeed, defects in lytic granule secretion lead or are related to serious and often fatal diseases, such as familial hemophagocytic lymphohistiocytosis (FHL) type 2–5 or Griscelli syndrome type 2. A number of reports highlight the role of several proteins involved in lytic granule release and NK cell-mediated killing of tumor cells. This review focuses on lytic granules of human NK cells and the advancements in understanding the mechanisms controlling their exocytosis.
Collapse
Affiliation(s)
- Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health Rockville, MD, USA
| | | |
Collapse
|
22
|
Pageon SV, Rudnicka D, Davis DM. Illuminating the dynamics of signal integration in Natural Killer cells. Front Immunol 2012; 3:308. [PMID: 23060886 PMCID: PMC3463929 DOI: 10.3389/fimmu.2012.00308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 09/17/2012] [Indexed: 11/13/2022] Open
Abstract
Natural Killer (NK) cell responses are shaped by the integration of signals transduced from multiple activating and inhibitory receptors at their surface. Biochemical and genetic approaches have identified most of the key proteins involved in signal integration but a major challenge remains in understanding how the spatial and temporal dynamics of their interactions lead to NK cells responding appropriately when encountering ligands on target cells. Well over a decade of research using fluorescence microscopy has revealed much about the architecture of the NK cell immune synapse - the structured interface between NK cells and target cells - and how it varies when inhibition or activation is the outcome of signal integration. However, key questions - such as the proximity of individual activating and inhibitory receptors - have remained unanswered because the resolution of optical microscopy has been insufficient, being limited by diffraction. Recent developments in fluorescence microscopy have broken this limit, seeding new opportunities for studying the nanometer-scale organization of the NK cell immune synapse. Here, we discuss how these new technologies, super-resolution imaging and other novel light-based methods, can illuminate our understanding of NK cell biology.
Collapse
Affiliation(s)
- Sophie V Pageon
- Division of Cell and Molecular Biology, Imperial College London London, UK
| | | | | |
Collapse
|
23
|
Agüera-González S, Gross CC, Fernández-Messina L, Ashiru O, Esteso G, Hang HC, Reyburn HT, Long EO, Valés-Gómez M. Palmitoylation of MICA, a ligand for NKG2D, mediates its recruitment to membrane microdomains and promotes its shedding. Eur J Immunol 2011; 41:3667-76. [PMID: 21928280 PMCID: PMC3709245 DOI: 10.1002/eji.201141645] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/08/2011] [Accepted: 09/15/2011] [Indexed: 11/05/2022]
Abstract
MICA and MICB (MHC-class-I-related chain A/B) are transmembrane proteins expressed in pathological conditions that are ligands for NKG2D, an activating receptor found on cytotoxic lymphocytes. The recognition on target cells of NKG2D ligands leads to the activation of lysis and cytokine secretion by NK cells and T cells. Besides being expressed at the cell surface, MICA/B can be released as soluble proteins. Soluble NKG2D ligands downmodulate expression of the NKG2D receptor on lymphocytes, leading to a diminished cytotoxic response. Prior studies suggested that recruitment of MICA/B molecules to cholesterol-enriched microdomains was an important factor regulating the proteolytic release of these molecules. We now show that recruitment of MICA to these microdomains depends on palmitoylation of two cysteine residues that allow MICA molecules to reside in the membrane in the same domains as caveolin-1. Compared with WT molecules, nonpalmitoylated mutant MICA molecules were shed to the supernatant with low efficiency; however, both WT and mutant MICA were able to trigger NK cell cytotoxicity. These data suggest that the presence of NKG2D ligands at the plasma membrane is sufficient to activate cytotoxicity and reflect the need of different ligands to exploit different cellular pathways to reach the cell surface upon different stress situations.
Collapse
Affiliation(s)
- Sonia Agüera-González
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Catharina C. Gross
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Lola Fernández-Messina
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
- Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Omodele Ashiru
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Gloria Esteso
- Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Howard C. Hang
- The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Hugh T. Reyburn
- Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mar Valés-Gómez
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
- Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
24
|
Barreira da Silva R, Münz C. Natural killer cell activation by dendritic cells: balancing inhibitory and activating signals. Cell Mol Life Sci 2011; 68:3505-18. [PMID: 21861182 PMCID: PMC11114903 DOI: 10.1007/s00018-011-0801-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 01/06/2023]
Abstract
Natural killer (NK) cells have originally been identified by their spontaneous cytolytic potential against tumor cells, which, however, might result from pre-activation due to prior pathogen exposure. Resting NK cells, on the contrary, require activation by bystander antigen-presenting cells to reach their full functional competence. In this review, we will summarize studies on how dendritic cells (DCs), the most potent type of antigen-presenting cell, communicate with human NK cells to activate them in secondary lymphoid organs and to integrate signals from activated NK cells at sites of inflammation for their own maturation. Furthermore, we will review aspects of the immunological synapse, which mediates this cross-talk. These studies provide the mechanistic understanding of how mature DCs can activate NK cells and survive to go on for the activation of adaptive immunity. This feature of DCs, to activate different waves of immune responses, could be harnessed for immunotherapies, including vaccinations.
Collapse
Affiliation(s)
- Rosa Barreira da Silva
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Instituto de Ciências Biomédicas Abel Salazar and Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, Portugal
| | - Christian Münz
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
25
|
Almeida CR, Ashkenazi A, Shahaf G, Kaplan D, Davis DM, Mehr R. Human NK cells differ more in their KIR2DL1-dependent thresholds for HLA-Cw6-mediated inhibition than in their maximal killing capacity. PLoS One 2011; 6:e24927. [PMID: 21949790 PMCID: PMC3176315 DOI: 10.1371/journal.pone.0024927] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/19/2011] [Indexed: 01/15/2023] Open
Abstract
In this study we have addressed the question of how activation and inhibition of human NK cells is regulated by the expression level of MHC class I protein on target cells. Using target cell transfectants sorted to stably express different levels of the MHC class I protein HLA-Cw6, we show that induction of degranulation and that of IFN-γ secretion are not correlated. In contrast, the inhibition of these two processes by MHC class-I occurs at the same level of class I MHC protein. Primary human NK cell clones were found to differ in the amount of target MHC class I protein required for their inhibition, rather than in their maximum killing capacity. Importantly, we show that KIR2DL1 expression determines the thresholds (in terms of MHC I protein levels) required for NK cell inhibition, while the expression of other receptors such as LIR1 is less important. Furthermore, using mathematical models to explore the dynamics of target cell killing, we found that the observed delay in target cell killing is exhibited by a model in which NK cells require some activation or priming, such that each cell can lyse a target cell only after being activated by a first encounter with the same or a different target cell, but not by models which lack this feature.
Collapse
Affiliation(s)
- Catarina R. Almeida
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Amit Ashkenazi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Gitit Shahaf
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Deborah Kaplan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Daniel M. Davis
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
26
|
Kaplan A, Kotzer S, Almeida CR, Kohen R, Halpert G, Salmon-Divon M, Köhler K, Höglund P, Davis DM, Mehr R. Simulations of the NK cell immune synapse reveal that activation thresholds can be established by inhibitory receptors acting locally. THE JOURNAL OF IMMUNOLOGY 2011; 187:760-73. [PMID: 21690326 DOI: 10.4049/jimmunol.1002208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cell activation is regulated by a balance between activating and inhibitory signals. To address the question of how these signals are spatially integrated, we created a computer simulation of activating and inhibitory NK cell immunological synapse (NKIS) assembly, implementing either a "quantity-based" inhibition model or a "distance-based" inhibition model. The simulations mimicked the observed molecule distributions in inhibitory and activating NKIS and yielded several new insights. First, the total signal is highly influenced by activating complex dissociation rates but not by adhesion and inhibitory complex dissociation rates. Second, concerted motion of receptors in clusters significantly accelerates NKIS maturation. Third, when the potential of a cis interaction between Ly49 receptors and MHC class I on murine NK cells was added to the model, the integrated signal as a function of receptor and ligand numbers was only slightly increased, at least up to the level of 50% cis-bound Ly49 receptors reached in the model. Fourth, and perhaps most importantly, the integrated signal behavior obtained when using the distance-based inhibition signal model was closer to the experimentally observed behavior, with an inhibition radius of the order 3-10 molecules. Microscopy to visualize Vav activation in NK cells on micropatterned surfaces of activating and inhibitory strips revealed that Vav is only locally activated where activating receptors are ligated within a single NK cell contact. Taken together, these data are consistent with a model in which inhibitory receptors act locally; that is, that every bound inhibitory receptor acts on activating receptors within a certain radius around it.
Collapse
Affiliation(s)
- Asya Kaplan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mesecke S, Urlaub D, Busch H, Eils R, Watzl C. Integration of activating and inhibitory receptor signaling by regulated phosphorylation of Vav1 in immune cells. Sci Signal 2011; 4:ra36. [PMID: 21632469 DOI: 10.1126/scisignal.2001325] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Natural killer (NK) cells are effector cells of the immune system whose activation is carefully regulated by the interplay of signals from activating and inhibitory receptors. Signals from activating receptors induce phosphorylation of the guanine nucleotide exchange factor Vav1, whereas those from inhibitory receptors lead to the dephosphorylation of Vav1 by the Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1). Here, we used mathematical modeling and experiments with NK cells to gain insight into this integration of positive and negative signals at a molecular level. Our data showed a switch-like regulation of Vav1 phosphorylation, the extent of which correlated with the cytotoxic activity of NK cells. Comparison of our experimental results with the predictions that we derived from an ensemble of 72 mathematical models showed that a physical association between Src family kinases and activating receptors on NK cells was essential to generate the cytotoxic response. Our data support a central role for Vav1 in determining the cytotoxic activity of NK cells and provide insight into the molecular mechanism of the integration of positive and negative signals during lymphocyte activation.
Collapse
Affiliation(s)
- Sven Mesecke
- Division of Theoretical Bioinformatics, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
28
|
Abeyweera TP, Merino E, Huse M. Inhibitory signaling blocks activating receptor clustering and induces cytoskeletal retraction in natural killer cells. ACTA ACUST UNITED AC 2011; 192:675-90. [PMID: 21339333 PMCID: PMC3044118 DOI: 10.1083/jcb.201009135] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) lymphocytes use a variety of activating receptors to recognize and kill infected or tumorigenic cells during an innate immune response. To prevent targeting healthy tissue, NK cells also express numerous inhibitory receptors that signal through immunotyrosine-based inhibitory motifs (ITIMs). Precisely how signals from competing activating and inhibitory receptors are integrated and resolved is not understood. To investigate how ITIM receptor signaling impinges on activating pathways, we developed a photochemical approach for stimulating the inhibitory receptor KIR2DL2 during ongoing NK cell-activating responses in high-resolution imaging experiments. Photostimulation of KIR2DL2 induces the rapid formation of inhibitory receptor microclusters in the plasma membrane and the simultaneous suppression of microclusters containing activating receptors. This is followed by the collapse of the peripheral actin cytoskeleton and retraction of the NK cell from the source of inhibitory stimulation. These results suggest a cell biological basis for ITIM receptor signaling and establish an experimental framework for analyzing it.
Collapse
Affiliation(s)
- Thushara P Abeyweera
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
29
|
Pérez-Oliva AB, Martínez-Esparza M, Vicente-Fernández JJ, Corral-San Miguel R, García-Peñarrubia P, Hernández-Caselles T. Epitope mapping, expression and post-translational modifications of two isoforms of CD33 (CD33M and CD33m) on lymphoid and myeloid human cells. Glycobiology 2011; 21:757-70. [PMID: 21278227 DOI: 10.1093/glycob/cwq220] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have tested the usefulness of several commercial anti-CD33 monoclonal antibodies (mAb) to determine the expression and localization of the two CD33 isoforms on several hematopoietic cell lines. The expression of the isoform CD33m, a CD33 transmembrane splice variant lacking the ligand-binding V immunoglobulin (Ig)-like domain, was detected by RT-polymerase chain reaction, western blot, confocal microscopy and flow cytometry on the membrane of several human cell types. CD33m was only detected by the anti-CD33 mAb HIM3-4 on the cell surface, whereas WM53, P67.6, 4D3, HIM3-4, WM54, D3HL60.251 or MY9 detected the CD33M isoform, indicating that HIM3-4 is the only mAb recognizing CD33 C(2) Ig domain. Accordingly, HIM3-4 binding to CD33 did not interfere with the binding of other antibodies against the CD33 V-domain. P67.6 mAb interfered with recognition by the rest of antibodies specific for the V domain. HIM3-4 staining could be increased after the sialidase treatment of all CD33(+) cells. However, this increase was stronger in activated T cells, suggesting a CD33 masking state in this cell population. Confocal microscopy analysis of CD33m HEK 293T-transfected cells revealed that this protein is expressed on the cell membrane and also detected in the Golgi compartment. CD33 is constitutively located outside the lipid raft domains, whereas cross-linked CD33 is highly recruited to this signaling platform. The unique ability of HIM3-4 mAb to detect the masking state of CD33 on different cell lineages makes it a good tool to improve the knowledge of the biological role of this sialic acid-binding Ig-like lectin.
Collapse
Affiliation(s)
- Ana B Pérez-Oliva
- Department of Biochemistry and Molecular Biology, School of Medicine, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Anal Biochem 2011; 412:123-5. [PMID: 21241653 DOI: 10.1016/j.ab.2011.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
Quantitative proteomics has increasingly gained impact in life science research as a tool to describe changes in protein expression between different cellular states. Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful technique for relative quantification of proteins. However, the accuracy of quantification is impaired by the metabolic conversion of arginine to proline resulting in additional heavy labeled proline peptide satellites. Here we reinvestigated the addition of unlabeled proline during cell cultivation under SILAC conditions considering several thousand peptides and demonstrated that the arginine-to-proline conversion is prevented independent of the cell line used.
Collapse
|
31
|
Watzl C, Long EO. Signal transduction during activation and inhibition of natural killer cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2010; Chapter 11:Unit 11.9B. [PMID: 20814939 PMCID: PMC3857016 DOI: 10.1002/0471142735.im1109bs90] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Natural killer (NK) cells are important for early immune responses to viral infections and cancer. Upon activation, NK cells secrete cytokines and chemokines, and kill sensitive target cells by releasing the content of cytolytic granules. This unit is focused on the signal transduction pathways that regulate NK cell activities in response to contact with other cells. We will highlight signals regulating NK cell adhesion to target cells and describe the induction of cellular cytotoxicity by the engagement of different NK cell activation receptors. Negative signaling induced by inhibitory receptors opposes NK cell activation and provides an important safeguard from NK cell reactivity toward normal, healthy cells. We will discuss the complex integration of the different signals that occur during interaction of NK cells with target cells.
Collapse
Affiliation(s)
- Carsten Watzl
- Institute for Immunology, University Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
32
|
Abstract
Cell contact-dependent inhibition and regulation of immune responses play an essential role in balancing the need for rapid and efficient responses to a wide variety of pathological challenges, while at the same time maintaining self-tolerance. Much attention has been given to immune synapses that lead to the activation of, for example, cell-mediated cytotoxicity, and here we compare the supramolecular dynamics of synapses that lead to inhibition or regulatory functions. We focus on natural killer cells where such different synapses have been best studied. An emergent principle is that inhibition or regulatory responses are commonly achieved by selective recruitment of signalling proteins to the synapse and exclusion of membrane-proximal intracellular proteins needed for activation. We also discuss evidence that an inhibitory synapse triggers or maintains effector cells in a migratory configuration, which serves to break the synapse before the steps needed for effector cell activation can be completed. This model implies that the concept of kinetic-proofreading, previously used to describe activation of individual T-cell receptors, can also apply in determining the outcome of intercellular conjugation.
Collapse
|
33
|
Dayanc BE, Beachy SH, Ostberg JR, Repasky EA. Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int J Hyperthermia 2009; 24:41-56. [DOI: 10.1080/02656730701858297] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
34
|
Raemer PC, Kohl K, Watzl C. Statins inhibit NK‐cell cytotoxicity by interfering with LFA‐1‐mediated conjugate formation. Eur J Immunol 2009; 39:1456-65. [DOI: 10.1002/eji.200838863] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Biassoni R. Human natural killer receptors, co-receptors, and their ligands. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 14:14.10.1-14.10.40. [PMID: 19235767 DOI: 10.1002/0471142735.im1410s84] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. Our laboratory has contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. Only in the last ten years has it become possible to characterize the NK triggering receptors mediating natural cytotoxicity, leading to an appreciation of the existence of a cellular interaction network between effectors of both natural and adaptive immunity. This report reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells.
Collapse
Affiliation(s)
- Roberto Biassoni
- Instituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| |
Collapse
|
36
|
Grimm MJ, Zynda ER, Repasky EA. Temperature Matters: Cellular Targets of Hyperthermia in Cancer Biology and Immunology. HEAT SHOCK PROTEINS 2009. [DOI: 10.1007/978-90-481-2976-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Abstract
Receptors carrying immunoreceptor tyrosine-based inhibition motifs (ITIMs) in their cytoplasmic tail control a vast array of cellular responses, ranging from autoimmunity, allergy, phagocytosis of red blood cells, graft versus host disease, to even neuronal plasticity in the brain. The inhibitory function of many receptors has been deduced on the basis of cytoplasmic ITIM sequences. Tight regulation of natural killer (NK) cell cytotoxicity and cytokine production by inhibitory receptors specific for major histocompatibility complex class I molecules has served as a model system to study the negative signaling pathway triggered by an ITIM-containing receptor in the physiological context of NK-target cell interactions. Advances in our understanding of the molecular details of inhibitory signaling in NK cells have provided a conceptual framework to address how ITIM-mediated regulation controls cellular reactivity in diverse cell types.
Collapse
Affiliation(s)
- Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
38
|
Peterson ME, Long EO. Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. Immunity 2008; 29:578-88. [PMID: 18835194 PMCID: PMC2639764 DOI: 10.1016/j.immuni.2008.07.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 06/25/2008] [Accepted: 07/30/2008] [Indexed: 01/10/2023]
Abstract
Many cellular responses, such as autoimmunity and cytotoxicity, are controlled by receptors with cytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs). Here, we showed that binding of inhibitory natural killer (NK) cell receptors to human leukocyte antigen (HLA) class I on target cells induced tyrosine phosphorylation of the adaptor Crk, concomitant with dephosphorylation of the guanine exchange factor Vav1. Furthermore, Crk dissociated from the guanine exchange factor C3G and bound to the tyrosine kinase c-Abl during inhibition. Membrane targeting of a tyrosine-mutated form of Crk could overcome inhibition of NK cell cytotoxicity, providing functional evidence that Crk phosphorylation contributes to inhibition. The specific phosphorylation of Crk and its dissociation from a signaling complex, observed here with two types of inhibitory receptors, expands the signaling potential of the large ITIM-receptor family and reveals an unsuspected component of the inhibitory mechanism.
Collapse
Affiliation(s)
- Mary E. Peterson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
39
|
Recruitment of activation receptors at inhibitory NK cell immune synapses. PLoS One 2008; 3:e3278. [PMID: 18818767 PMCID: PMC2538587 DOI: 10.1371/journal.pone.0003278] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 09/03/2008] [Indexed: 11/19/2022] Open
Abstract
Natural killer (NK) cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR) family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.
Collapse
|
40
|
Abstract
The natural killer (NK)-cell immunological synapse is the dynamic interface formed between an NK cell and its target cell. Formation of the NK-cell immunological synapse involves several distinct stages, from the initiation of contact with a target cell to the directed delivery of lytic-granule contents for target-cell lysis. Progression through the individual stages is regulated, and this tight regulation underlies the precision with which NK cells select and kill susceptible target cells (including virally infected cells and cancerous cells) that they encounter during their routine surveillance of the body.
Collapse
Affiliation(s)
- Jordan S Orange
- University of Pennsylvania School of Medicine, Joseph Stokes Jr Research Institute of The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, ARC 1016H, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
41
|
Krzewski K, Strominger JL. The killer's kiss: the many functions of NK cell immunological synapses. Curr Opin Cell Biol 2008; 20:597-605. [PMID: 18639449 DOI: 10.1016/j.ceb.2008.05.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 01/18/2023]
Abstract
Natural killer (NK) cells comprise a subset of lymphocytes involved in protection against microbial pathogens and tumors. NK cells recognize host cells that are missing MHC class I molecules and eliminate them through localized delivery of lytic granules. The majority of NK cell effector functions require direct cell-to-cell contact. Binding to a target cell is accompanied by creation of complex structures at the cell-cell interface known as immunological synapses. Recent studies have contributed immensely to the characterization of several types of NK cell immunological synapses and understanding of the variety of processes originating at this intriguing place. The emerging picture illustrates NK cell immune synapses as the sites of highly complex regulation of NK cell activity.
Collapse
Affiliation(s)
- Konrad Krzewski
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
42
|
Bryceson YT, Long EO. Line of attack: NK cell specificity and integration of signals. Curr Opin Immunol 2008; 20:344-52. [PMID: 18439809 DOI: 10.1016/j.coi.2008.03.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 03/09/2008] [Accepted: 03/10/2008] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells possess potent cytolytic activity and secrete immune modulating cytokines. The large repertoire of NK cell receptors provides versatility for the identification of infected and transformed cells and for their elimination by NK cells. NK cell responses also stimulate and regulate the adaptive arm of the immune system. We review current knowledge about the molecular specificity of NK cell receptors and about the regulation of NK cell effector functions upon encounter with target cells. Mechanisms of recognition, interplay among receptors, signal integration, and the dynamic fine-tuning of NK cell responses are discussed. New insights into the molecular checkpoints for NK cell effector function are highlighted, and underlying reasons for the complexity in NK cell recognition and signaling are proposed.
Collapse
Affiliation(s)
- Yenan T Bryceson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | | |
Collapse
|
43
|
López-Larrea C, Suárez-Alvarez B, López-Soto A, López-Vázquez A, Gonzalez S. The NKG2D receptor: sensing stressed cells. Trends Mol Med 2008; 14:179-89. [PMID: 18353724 DOI: 10.1016/j.molmed.2008.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 02/13/2008] [Accepted: 02/13/2008] [Indexed: 12/22/2022]
Abstract
The activating killer cell lectin-like receptor NKG2D plays a key role in the natural killer (NK) cell-mediated lysis of tumours and infected cells. Unlike other receptors, the ligands recognised by NKG2D are 'induced-self' ligands on stressed cells. This system requires precise regulation because inappropriate expression of NKG2D ligands might compromise NK cell activation. For therapeutic purposes it is essential to understand the mechanisms that regulate the expression and function of the NKG2D system. This review focuses on the importance of the signalling pathways involved in the regulation of the NKG2D receptor and its ligand expression in arming the immune response against infected or tumour cells and for the identification of new molecular targets and therapeutic strategies.
Collapse
Affiliation(s)
- Carlos López-Larrea
- Department of Immunology, Histocompatibility Unit, Hospital Universitario Central de Asturias, Julian Claveria Street, 33006 Oviedo, Spain.
| | | | | | | | | |
Collapse
|
44
|
Phosphatidylinositol 3-kinase activation is required to form the NKG2D immunological synapse. Mol Cell Biol 2007; 27:8583-99. [PMID: 17923698 DOI: 10.1128/mcb.01477-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The receptor NKG2D allows natural killer (NK) cells to detect virally infected, stressed, and tumor cells. In human cells, NKG2D signaling is mediated through the associated DAP10 adapter. Here we show that engagement of NKG2D by itself is sufficient to stimulate the formation of the NK immunological synapse (NKIS), with recruitment of NKG2D to the center synapse. Mutagenesis studies of DAP10 revealed that the phosphatidylinositol 3-kinase binding site, but not the Grb2 binding site, was required and sufficient for recruitment of DAP10 to the NKIS. Surprisingly, we found that in the absence of the Grb2 binding site, Grb2 was still recruited to the NKIS. Since the recruitment of Grb2 was dependent on phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), we explored the possibility that recruitment to the NKIS is mediated by a pleckstrin homology (PH) domain-containing binding partner for Grb2. We found that the PH domain of SOS1, but not that of Vav1, was able to be recruited by PIP3. These results provide new insights into the mechanism of immunological synapse formation and also demonstrate how multiple mechanisms can be used to recruit the same signaling proteins to the plasma membrane.
Collapse
|