1
|
Luo C, Min X, Zhang D. New insights into the mechanisms of the immune microenvironment and immunotherapy in osteosarcoma. Front Immunol 2025; 15:1539696. [PMID: 39896817 PMCID: PMC11782189 DOI: 10.3389/fimmu.2024.1539696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Osteosarcoma, a malignant bone tumor primarily affecting adolescents, is highly invasive with a poor prognosis. While surgery and chemotherapy have improved survival for localized cases, pulmonary metastasis significantly reduces survival to approximately 20%, highlighting the need for novel treatments. Immunotherapy, which leverages the immune system to target osteosarcoma cells, shows promise. This review summarizes the biological characteristics of osteosarcoma, mechanisms of pulmonary metastasis, and the tumor immune microenvironment (TME). It involves recent immunotherapy advances, including monoclonal antibodies, tumor vaccines, immune cell therapies, checkpoint inhibitors, and oncolytic viruses, and discusses combining these with standard treatments.
Collapse
Affiliation(s)
- Cong Luo
- Department of Orthopedic Trauma, Zhuji People’s Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Xingxing Min
- Department of Orthopedic Trauma, Zhuji People’s Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Danying Zhang
- Department of Emergency and Critical Care, Shanghai Changzheng Hospital, Shanghai, China
| |
Collapse
|
2
|
Olsen MB, Louwe MC, Yang K, Øgaard J, Dahl TB, Gregersen I, Alfsnes K, Lauritzen KH, Murphy SL, Ahmed MS, Aukrust P, Vinge LE, Yndestad A, Holven KB, Halvorsen B, Fosshaug LE. Continuous infusion of resolvin D2 in combination with Angiotensin-II show contrary effects on blood pressure and intracardiac artery remodeling. Biochem Biophys Res Commun 2024; 733:150706. [PMID: 39305571 DOI: 10.1016/j.bbrc.2024.150706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024]
Abstract
Specialized pro-resolving mediators (SPMs) are key effectors of resolution of inflammation. This is highly relevant for cardiac and vessel remodeling, where the net inflammatory response contributes to determine disease outcome. Herein, we used a mice model of angiotensin (Ang)-II-induced hypertension to study the effect of the SPM Resolvin D2 (RvD2), on hypertension and cardiac remodeling. By using subcutaneous osmotic minipumps, mice were treated with PBS or Ang-II in combination with or without RvD2 for two weeks. Mice receiving RvD2 gained less blood pressure increase compared to Ang-II alone. Surprisingly, however, examination of intracardiac arteries revealed that RvD2 treatment in combination with Ang-II exacerbated Ang-II-induced fibrosis. Measures of vascular smooth muscle cell dedifferentiation correlated with the level of vascular remodeling, indicating that this dedifferentiation, including increased proliferation and migration, is a contributing factor. RNA sequencing of left ventricle cardiac tissue supported these findings as pathways related to cell proliferation and cell differentiation were upregulated in mice treated with Ang-II in combination with RvD2. Additionally, the RNA sequencing also showed upregulation of pathways related to SPM metabolism. In line with this, Mass spectrometry analysis of lipid mediators showed reduced cardiac levels of the arachidonic acid derived metabolite leukotriene E4 in RvD2 treated mice. Our study suggests that continuous infusion through osmotic minipumps should not be the recommended route of RvD2 administration in future studies.
Collapse
Affiliation(s)
- Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Mieke C Louwe
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jonas Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Katrine Alfsnes
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Knut H Lauritzen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Sarah Louise Murphy
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Leif Erik Vinge
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Institute for Surgical Research, Oslo University Hospital, Oslo, Norway; Department of Medicine, Diakonhjemmet Hospital, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Linn Elisabeth Fosshaug
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
3
|
Abstract
Intracellular calcium mobilization can be measured using several methods varying in indicator dyes and devices used. In this chapter, we describe the fluorescence-based method (FLIPR Calcium 4 Assay) developed by Molecular Devices for a FlexStation and routinely used in our laboratory for detecting intracellular calcium changes. The assay is designed to study calcium mobilization induced by majority of GPCRs and calcium channels and allows for simultaneous concentration-dependent analysis of several receptor agonists and antagonists, useful in receptor characterization and drug discovery projects.
Collapse
|
4
|
Novel click modifiable thioquinazolinones as anti-inflammatory agents: Design, synthesis, biological evaluation and docking study. Eur J Med Chem 2018; 144:635-650. [DOI: 10.1016/j.ejmech.2017.12.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/02/2017] [Accepted: 12/17/2017] [Indexed: 11/19/2022]
|
5
|
Abstract
Bioactive lipids regulate most physiological processes, from digestion to blood flow and from hemostasis to labor. Lipid mediators are also involved in multiple pathologies including cancer, autoimmunity or asthma. The pathological roles of lipid mediators are based on their intricate involvement in the immune system, which comprises source and target cells of these mediators. Based on their biosynthetic origin, bioactive lipids can be grouped into different classes [e.g. sphingolipids, formed from sphingosine or eicosanoids, formed from arachidonic acid (AA)]. Owing to the complexity of different mediator classes and the prominent immunological roles of eicosanoids, this review will focus solely on the immune-regulation of eicosanoids. Eicosanoids do not only control key immune responses (e.g. chemotaxis, antigen presentation, phagocytosis), but they are also subject to reciprocal control by the immune system. Particularly, key immunoregulatory cytokines such as IL-4 and IFN-γ shape the cellular eicosanoid profile, thus providing efficient feedback regulation between cytokine and eicosanoid networks. For the purpose of this review, I will first provide a short overview of the most important immunological functions of eicosanoids with a focus on prostaglandins (PGs) and leukotrienes (LTs). Second, I will summarize the current knowledge on immunological factors that regulate eicosanoid production during infection and inflammation.
Collapse
|
6
|
Staphylococcus aureus enterotoxin sensitization involvement and its association with the CysLTR1 variant in different asthma phenotypes. Ann Allergy Asthma Immunol 2016; 118:197-203. [PMID: 28034578 DOI: 10.1016/j.anai.2016.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/10/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sensitization to Staphylococcus aureus enterotoxin (SE) is a known risk factor for asthma susceptibility and severity. However, how SE sensitization is involved in asthma, particularly nonatopic asthma and/or late-onset asthma, remains uncertain. OBJECTIVE To clarify the involvement of SE sensitization in nonatopic and/or late-onset asthma and its association with a polymorphism of the cysteinyl leukotriene receptor 1 gene (CysLTR1), which was examined because CysLT signaling is closely associated with late-onset eosinophilic asthma. METHODS We assessed associations between sensitization to SE (A and/or B) and clinical indexes in 224 patients with asthma (mean age, 62.3 years; 171 women) from a cohort of the Kinki Hokuriku Airway Disease Conference, particularly those with nonatopic asthma (not sensitized to common aeroallergens) and/or late-onset asthma. Associations between SE sensitization and CysLTR1 polymorphism (rs2806489), a potential regulatory variant for atopic predisposition in women, were also assessed in a sex-stratified manner. RESULTS A total of 105 patients (47%) with asthma were sensitized to SE. Among patients with nonatopic asthma (n = 67) or with late-onset asthma (n = 124), those sensitized to SE had significantly higher serum total IgE and periostin levels than those not sensitized. In nonatopic patients, a rapid decrease in forced expiratory volume in 1 second was associated with SE sensitization. In women with asthma, rs2806489 was associated with sensitization to SEB and age at asthma onset. CONCLUSION SE sensitization contributes to TH2 inflammation in nonatopic and/or late-onset asthma. In women with asthma, the CysLTR1 variant might be associated with sensitization to SEB and age at asthma onset.
Collapse
|
7
|
Periasamy S, Chu PY, Li YH, Hsu DZ, Liu MY. Sesamol ameliorates hypotension by modulating cytokines and PPAR-gamma in systemic inflammatory response. EXCLI JOURNAL 2016; 14:948-57. [PMID: 26839527 PMCID: PMC4732502 DOI: 10.17179/excli2015-367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/10/2015] [Indexed: 01/24/2023]
Abstract
Sepsis is one of the major causes of death reported in intensive care units. Acute kidney injury (AKI) and hypotension are important in the pathogenesis and mortality of systemic inflammatory response (SIR). Sesamol delays mortality in sepsis; however, its effects on AKI and hypotension and the role of peroxisome proliferator-activated receptor-ɣ (PPAR-γ) activation have not been established. We investigated the effect of sesamol on SIR in cecal ligation and puncture (CLP)-induced acute kidney injury and lipopolysaccharide (LPS)-induced hypotension in rats. Sesamol was subcutaneously injected 1 h after SIR. Renal function (BUN and CRE) and proinflammatory mediators interleukin (IL)-1β and IL-6 were increased after CLP. Tumor necrosis factor (TNF)-α, IL-1β, IL-10, and nitrite production were significantly increased 6 h after LPS-induced hypotension (mean arterial pressure was significantly decreased). Sesamol significantly inhibited BUN, CRE, IL-1β, IL-6, and nitrite after CLP-induced acute renal injury. In addition, sesamol increased mean arterial pressure and IL-10, inhibited TNF-α and IL-1β, but did not affect nitrite production in LPS-induced hypotension. Sesamol increased PPAR-γ in the leucocytes and peritoneal macrophages in LPS-induced SIR. We conclude that sesamol regulates leucocyte and macrophage PPAR-γ-associated systemic cytokines expression, thereby ameliorates acute kidney injury and hypotension in rats.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yi Chu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Hui Li
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Abstract
Intracellular calcium mobilization can be measured using several methods varying in indicator dyes and devices used. In this chapter, we describe the fluorescence-based method (FLIPR Calcium 4 Assay) developed by Molecular Devices for a FlexStation and routinely used in our laboratory for detecting intracellular calcium changes. The assay is designed to study calcium mobilization induced by majority of GPCRs and calcium channels and allows for simultaneous concentration-dependent analysis of several receptor agonists and antagonists, useful in receptor characterization and drug discovery projects.
Collapse
Affiliation(s)
- Grzegorz Woszczek
- Division of Asthma, Allergy and Lung Biology, King's College London, 5th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK,
| | | |
Collapse
|
9
|
Yang H, Liu HP, Weng D, Ge BX. IL-10 negatively regulates oxLDL-P38 pathway inhibited macrophage emigration. Exp Mol Pathol 2014; 97:590-9. [DOI: 10.1016/j.yexmp.2014.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 01/10/2023]
|
10
|
Liu Y, Chen LY, Sokolowska M, Eberlein M, Alsaaty S, Martinez-Anton A, Logun C, Qi HY, Shelhamer JH. The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A₂ via GPR120 receptor to produce prostaglandin E₂ and plays an anti-inflammatory role in macrophages. Immunology 2014; 143:81-95. [PMID: 24673159 DOI: 10.1111/imm.12296] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 12/13/2022] Open
Abstract
Docosahexaenoic acid (DHA) is one of the major ingredients of fish oil and has been reported to have anti-inflammatory properties mediated through the GPR120 receptor. Whether cytosolic phospholipase A2 (cPLA2 ) and lipid mediators produced from cPLA2 activation are involved in the anti-inflammatory role of DHA in macrophages has not been reported. We report here that DHA and the GPR120 agonist, GW9508, activate cPLA2 and cyclooxygenase 2 (COX-2), and cause prostaglandin E2 (PGE2) release in a murine macrophage cell line RAW264.7 and in human primary monocyte-derived macrophages. DHA and GW9508 activate cPLA2 via GPR120 receptor, G protein Gαq and scaffold protein β-arrestin 2. Extracellular signal-regulated kinase 1/2 activation is involved in DHA- and GW9508-induced cPLA2 activation, but not p38 mitogen-activated protein kinase. The anti-inflammatory role of DHA and GW9508 is in part via activation of cPLA2 , COX-2 and production of PGE2 as a cPLA2 inhibitor or a COX-2 inhibitor partially reverses the DHA- and GW9508-induced inhibition of lipopolysaccharide-induced interleukin-6 secretion. The cPLA2 product arachidonic acid and PGE2 also play an anti-inflammatory role. This effect of PGE2 is partially through inhibition of the nuclear factor-κB signalling pathway and through the EP4 receptor of PGE2 because an EP4 inhibitor or knock-down of EP4 partially reverses DHA inhibition of lipopolysaccharide-induced interleukin-6 secretion. Hence, DHA has an anti-inflammatory effect partially through induction of PGE2.
Collapse
Affiliation(s)
- Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yucel SK, Arikan H, Tugtepe H, Cakalagaoglu F, Tuglular S, Akoglu E, Ozener C. Cysteinyl 1 Receptor Antagonist Montelukast, Does Not Prevent Peritoneal Membrane Damage in Experimental Chronic Peritoneal Dialysis Model in Rats. ACTA ACUST UNITED AC 2014; 39:648-57. [DOI: 10.1159/000368477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 11/19/2022]
|
12
|
Inflammation changes the expression of leukotriene receptors in porcine uteri. J Reprod Immunol 2013; 100:93-103. [DOI: 10.1016/j.jri.2013.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/17/2013] [Accepted: 10/01/2013] [Indexed: 12/30/2022]
|
13
|
Atorvastatin Inhibits the 5-Lipoxygenase Pathway and Expression of CCL3 to Alleviate Atherosclerotic Lesions in Atherosclerotic ApoE Knockout Mice. J Cardiovasc Pharmacol 2013; 62:205-11. [DOI: 10.1097/fjc.0b013e3182967fc0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Henderson WR, Ye X, Lai Y, Ni Z, Bollinger JG, Tien YT, Chi EY, Gelb MH. Key role of group v secreted phospholipase A2 in Th2 cytokine and dendritic cell-driven airway hyperresponsiveness and remodeling. PLoS One 2013; 8:e56172. [PMID: 23451035 PMCID: PMC3581544 DOI: 10.1371/journal.pone.0056172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/07/2013] [Indexed: 11/23/2022] Open
Abstract
Background Previous work has shown that disruption of the gene for group X secreted phospholipase A2 (sPLA2-X) markedly diminishes airway hyperresponsiveness and remodeling in a mouse asthma model. With the large number of additional sPLA2s in the mammalian genome, the involvement of other sPLA2s in the asthma model is possible – in particular, the group V sPLA2 (sPLA2-V) that like sPLA2-X is highly active at hydrolyzing membranes of mammalian cells. Methodology and Principal Findings The allergen-driven asthma phenotype was significantly reduced in sPLA2-V-deficient mice but to a lesser extent than observed previously in sPLA2-X-deficient mice. The most striking difference observed between the sPLA2-V and sPLA2-X knockouts was the significant impairment of the primary immune response to the allergen ovalbumin (OVA) in the sPLA2-V−/− mice. The impairment in eicosanoid generation and dendritic cell activation in sPLA2-V−/− mice diminishes Th2 cytokine responses in the airways. Conclusions This paper illustrates the diverse roles of sPLA2s in the immunopathogenesis of the asthma phenotype and directs attention to developing specific inhibitors of sPLA2-V as a potential new therapy to treat asthma and other allergic disorders.
Collapse
Affiliation(s)
- William R Henderson
- Center for Allergy and Inflammation, UW Medicine at South Lake Union, Department of Medicine, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bisoprolol reverses epinephrine-mediated inhibition of cell emigration through increases in the expression of β-arrestin 2 and CCR7 and PI3K phosphorylation, in dendritic cells loaded with cholesterol. Thromb Res 2013; 131:230-7. [PMID: 23290307 DOI: 10.1016/j.thromres.2012.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 01/09/2023]
Abstract
The effect of bisoprolol on dendritic cell (DC) migration was investigated, including the analysis of protein expression, cytokine secretion and activation of the PI3K-pathway. The chemotactic cell numbers in cholesterol-loaded DCs treated with epinephrine were significantly decreased by 26.66±6.29% (6h), 35.67±2.91% (12h) and 29.33±1.09% (24h). This effect was significantly reversed by 46.00±10.65% (6h), 64.25±6.77% (12h) and 55.74±5.51% (24h) when bisoprolol and epinephrine were both present. In cholesterol-loaded DCs, treatment with epinephrine significantly increased AR-β1 protein expression by 56.99±4.87%, but inhibited β-arrestin 2 and CCR7 protein expression by 30.51±4.22% and 25.31±0.04%, respectively. These effects were reversed by bisoprolol by 36.87±4.40%, 41.47±3.95% and 30.14±0.54%, respectively. TNF-α and MMP9 levels were decreased by 68.33±4.00% and 39.57±9.21% in cholesterol-loaded DCs treated with epinephrine. In contrast, when bisoprolol and epinephrine were administered together, the secretion of these proteins was significantly increased by 233.81±37.06 % and 76.66±14.21%, respectively. Treatment with epinephrine decreased PI3K-phosphorylation by 31.88±2.79%, 40.24±5.69% and 30.93±4.66% at 15, 30 and 60min, respectively, whereas the effect of epinephrine on the expression of phosphorylated PI3K was reversed by 49.49±12.12%, 70.93±16.14% and 47.62±6.00%, respectively, when cells were treated with both bisoprolol and epinephrine. Wortmannin inhibited the effects of bisoprolol on PI3K-phosphorylation (38.63±6.12%), the expression of CCR7 (23.4±2.72%), the secretion of TNF-α (69.46±4.48%) and MMP9 (43.15±4.63%), and the number of chemotactic cells (36.84±5.22%). This is the first study to establish a signaling pathway, epinephrine-AR-β1-β-arrestin2-PI3K-MMP9/CCR7, which plays a critical role in the migration of DCs.
Collapse
|
16
|
Sun Z, Zhang R, Wang H, Jiang P, Zhang J, Zhang M, Gu L, Yang X, Zhang M, Ji X. Serum IL-10 from systemic lupus erythematosus patients suppresses the differentiation and function of monocyte-derived dendritic cells. J Biomed Res 2012; 26:456-66. [PMID: 23554785 PMCID: PMC3597043 DOI: 10.7555/jbr.26.20120115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 12/21/2011] [Accepted: 08/29/2012] [Indexed: 11/03/2022] Open
Abstract
The role played by cytokines, other than interferon (IFN)-α, in the differentiation and function of dendritic cells (DCs) in systemic lupus erythematosus (SLE), remains unclear. Serum interleukin-10 (IL-10) levels are generally elevated in SLE patients, which might modulate the differentiation of DCs. In this study, DCs were induced from monocytes either by transendothelial trafficking or by culture with granulocyte-macrophage colony-stimulating factor (GM-CSF) + IL-4 + tumor necrosis factor (TNF)-α. Both systems were used to investigate the effects of elevated serum IL-10 level on DC differentiation in SLE patients. The results showed that monocyte-derived DCs induced by either SLE serum or exogenous IL-10 reduced the expression of human leukocyte antigen (HLA)-DR and CD80, decreased IL-12p40 level, and increased IL-10 level, and exhibited an impaired capacity to stimulate allogenic T-cell proliferation. These results indicate that serum IL-10 may be involved in the pathogenesis of SLE by modulating the differentiation and function of DCs.
Collapse
Affiliation(s)
- Zhida Sun
- Department of Oral Mucosal Diseases, the Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu C, Gong Y, Yuan J, Zhang W, Zhao G, Li H, Sun A, Zou Y, Ge J. microRNA-181a represses ox-LDL-stimulated inflammatory response in dendritic cell by targeting c-Fos. J Lipid Res 2012; 53:2355-63. [PMID: 22956783 PMCID: PMC3466004 DOI: 10.1194/jlr.m028878] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oxidized LDL (ox-LDL) activates dendritic cells (DCs), thereby initiating
inflammation responses in atherosclerosis, yet the modulatory mechanisms remain
unclear. MicroRNAs (miRNAs) are important regulators for DC functions. This study
evaluated the regulation by miRNAs of the ox-LDL-induced DC immune response. In
CD11c+ DCs from ApoE-deficient mice with hyperlipidemia, microRNA
miR-181a was significantly up-regulated. In cultured bone marrow-derived DCs (BMDCs),
ox-LDL promoted DC maturation and up-regulated miR-181a expression. Abundance of
miR-181a attenuated ox-LDL-induced CD83 and CD40 expression, inhibited the secretion
of interleukin (IL)-6 and TNF-α, and up-regulated IL-10, an important
anti-inflammatory cytokine that was inhibited by ox-LDL. Inhibition of the endogenous
miR-181a reversed the effects on CD83 and CD40 as well as the effects on IL-6 and
TNF-α. The putative target genes of miR-181a were evaluated by gene ontology
assessment, and the c-Fos-mediated inflammation pathway was
identified. miR-181a targeted the 3′ untranslated region of
c-Fos mRNA by luciferase experiments. Thus, abundance of miR-181a
reduced c-Fos protein, whereas inhibition of miR-181a increased
c-Fos protein in BMDCs. We therefore suggest that miR-181a
attenuates ox-LDL-stimulated immune inflammation responses by targeting
c-Fos in DCs.
Collapse
Affiliation(s)
- Chaoneng Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Helmy MM, El-Gowelli HM. Montelukast abrogates rhabdomyolysis-induced acute renal failure via rectifying detrimental changes in antioxidant profile and systemic cytokines and apoptotic factors production. Eur J Pharmacol 2012; 683:294-300. [PMID: 22449377 DOI: 10.1016/j.ejphar.2012.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/22/2022]
Abstract
In addition to antiasthmatic effect, the cysteinyl leukotriene receptor 1 (CysLT₁) antagonist montelukast shows renoprotective effect during ischemia/reperfusion and cyclosporine-induced renal damage. Here, we proposed that montelukast protects against rhabdomyolysis-induced acute renal failure. Compared with saline-treated rats, at 48 h following the induction of rhabdomyolysis using intramuscular glycerol (10 ml 50% glycerol/kg), significant elevations in serum levels of urea, creatinine, phosphate and acute renal tubular necrosis were observed. This was associated with elevations in serum Fas, interleukin-10, tumor necrotic factor-alpha, and transforming growth factor-beta1 and renal malondialdehyde and nitrite and detrimental reductions in renal catalase and superoxide dismutase activities. The effects of rhabdomyolysis on renal functional, biochemical and structural integrity and the associated changes in cytokines and Fas levels were abolished upon concurrent administration of montelukast (10 mg/kg i.p.) for 3 days (1 day before and 2 days after induction of rhabdomyolysis). Alternatively, administration of the anti-oxidant, α-tocopherol (400 mg/kg i.m.) for 3 days, succeeded in alleviating renal oxidative stress, but had no significant effect on the circulating levels of most cytokines and partially restored kidney functional and structural damage. Serum level of interleukin-6 was not altered by rhabdomyolysis but showed significant elevations in rats treated with montelukast or α-tocopherol. Collectively, motelukast abrogated functional and structural renal damage induced by rhabdomyolysis via ameliorating renal oxidative stress and modulation of systemic cytokines and apoptotic factors production. The results of this work are expected to open new avenues for early prevention of rhabdomyolysis-induced acute renal failure using selective CysLT₁ antagonists such as montelukast.
Collapse
Affiliation(s)
- Mai M Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
19
|
Bäck M, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. International Union of Basic and Clinical Pharmacology. LXXXIV: leukotriene receptor nomenclature, distribution, and pathophysiological functions. Pharmacol Rev 2011; 63:539-84. [PMID: 21771892 DOI: 10.1124/pr.110.004184] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The seven-transmembrane G protein-coupled receptors activated by leukotrienes are divided into two subclasses based on their ligand specificity for either leukotriene B(4) or the cysteinyl leukotrienes (LTC(4), LTD(4), and LTE(4)). These receptors have been designated BLT and CysLT receptors, respectively, and a subdivision into BLT(1) and BLT(2) receptors and CysLT(1) and CysLT(2) receptors has been established. However, recent findings have also indicated the existence of putative additional leukotriene receptor subtypes. Furthermore, other ligands interact with the leukotriene receptors. Finally, leukotrienes may also activate other receptor classes, such as purinergic receptors. The aim of this review is to provide an update on the pharmacology, expression patterns, and pathophysiological roles of the leukotriene receptors as well as the therapeutic developments in this area of research.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
2-Polyunsaturated acyl lysophosphatidylethanolamine attenuates inflammatory response in zymosan A-induced peritonitis in mice. Lipids 2011; 46:893-906. [PMID: 21744277 DOI: 10.1007/s11745-011-3589-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/16/2011] [Indexed: 02/07/2023]
Abstract
In the present study, the anti-inflammatory action of lysophosphatidylethanolamine (lysoPtdEtn), orally administered, in zymosan A-induced peritonitis was examined. Oral administration of 2-DHA-lysoPtdEtn (ED(50), ~111 μg/kg) or 2-ARA-lysoPtdEtn (ED(50), 221 μg/kg) was found to inhibit the plasma leakage in mice treated with zymosan A. In support of this, 2-polyunsaturated acyl-lysoPtdEtn diminished the formation of LTC(4), a lipid mediator responsible for vascular permeability. Next, 2-DHA-lysoPtdEtn (ED(50), 110 μg/kg) or 2-ARA-lysoPtdEtn (ED(50), 123 μg/kg) effectively inhibited the leukocyte extravasation into the peritoneum. Consistent with this, each polyunsaturated-lysoPtdEtn diminished the formation of LTB(4) and 12-HETE, potent chemotactic factors. Additionally, the level of pro-inflammatory mediator (IL-1 β, IL-6, TNF-α or NO) was lowered remarkably in contrast to the augmentation of anti-inflammatory interleukin IL-10. Furthermore, 2-(15-HETE)-lysoPtdEtn and 2-(17-HDHE)-lysoPtdEtn, 15-lipoxygenation product of 2-ARA-lysoPtdEtn and 2-DHA-lysoPtdEtn, respectively, were more potent than corresponding lysoPtdEtn, suggesting the action of 2-acyl-lysoPtdEtn might be expressed through 15-lipoxygenation. In support of this, the formation of 15-HETE and LXA(4) was upgraded in accordance with an increasing dose of 2-ARA-lysoPtdEtn. Separately, anti-inflammatory actions, 2-polyunsaturated acyl-lysoPtdEtns also drastically diminished leukocyte infiltration in a later phase of zymosan A-induced peritonitis, indicating that these lipids also possess pro-resolving activity. Taken together, it is suggested that polyunsaturated lysoPtdEtns and their lipoxygenation derivatives, could be classified as potent anti-inflammatory lipids.
Collapse
|
21
|
Majak P, Rychlik B, Pułaski L, Błauz A, Agnieszka B, Bobrowska-Korzeniowska M, Kuna P, Stelmach I. Montelukast treatment may alter the early efficacy of immunotherapy in children with asthma. J Allergy Clin Immunol 2010; 125:1220-7. [PMID: 20434204 DOI: 10.1016/j.jaci.2010.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (SIT) is the only available potentially curative approach in the management of allergic diseases. Therapies that boost regulatory T cell induction during SIT might further enhance its effectiveness. OBJECTIVE The purpose of this study was to assess the effect of montelukast treatment on early clinical and immunologic effects of allergen-specific immunotherapy in children with asthma. METHODS It was a randomized, double-blind, placebo-controlled trial conducted in 36 children with asthma and allergy to house dust mites who required from 400 to 800 microg of inhaled budesonide per day during the 7-month run-in period. Patients were randomly allocated to receive 5 mg montelukast daily (n = 18) or placebo (n = 18) as an addition to inhaled corticosteroid (ICS) treatment during the 3-month build-up phase of SIT, when modification of ICS doses was not allowed. During the 7 months of the maintenance phase of SIT, ICS doses were adjusted to control the asthma symptoms. RESULTS After 12 months of SIT, a reduction of the median daily ICS dose, necessary to control asthma symptoms, was 16.7% grater in patients from the placebo group than in patients from the montelukast group. Intervention with montelukast significantly impaired the induction of regulatory T lymphocytes. During the build-up phase of SIT, patients in the placebo group frequently experienced an increase in asthma symptoms leading to exclusions from the per protocol population. CONCLUSION Our study failed to show a beneficial effect of montelukast on SIT. In fact, quite the opposite occurred: compared with placebo, montelukast intervention led to less effectiveness of SIT.
Collapse
Affiliation(s)
- Paweł Majak
- Department of Pediatrics and Allergy, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells with the unique ability of primary immune response initiation. DCs originate from bone marrow progenitors, which circulate in the peripheral blood and subsequently penetrate peripheral tissues, where they give rise to immature DCs. In peripheral tissues, DCs continuously monitor the microenvironment and, when the cells encounter 'danger' signals, DCs undergo differentiation and maturation. Maturing DCs usually migrate to lymphatic tissues, where they form contacts with T cells to initiate a primary immune response. DCs were identified in arteries in 1995 and since then, further knowledge has been gained about the peculiarities of vascular-associated DCs and their role in atherosclerosis. Immune reactions toward modified lipoproteins and other factors ignited by resident vascular DCs as well as by newly arrived DCs, which originate from blood monocytes, are believed to destabilize arterial homeostasis from very earlier stages of atherogenesis. There is a remarkable heterogeneity of DCs in atherosclerotic lesions. Some DCs mature and become capable of forming clusters with T cells directly within the arterial wall. The predictive value of the numbers of circulating DC precursors in coronary artery disease and in atherosclerosis has been assessed, and it has been shown that DCs have a role in plaque destabilization. Over recent decades, DCs have proven to be a valuable instrument in immunotherapy approaches against cancer and various autoimmune diseases, and this explains the demand that the accumulated knowledge be applied to the field of atherosclerosis immunotherapy.
Collapse
|
23
|
The role of RANTES as a crucial downstream cytokine in calcineurin-dependent VSMC apoptosis stimulated by INFγ and CD40L. Cell Biol Int 2010; 34:447-53. [DOI: 10.1042/cbi20090301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Woszczek G, Chen LY, Alsaaty S, Nagineni S, Shelhamer JH. Concentration-dependent noncysteinyl leukotriene type 1 receptor-mediated inhibitory activity of leukotriene receptor antagonists. THE JOURNAL OF IMMUNOLOGY 2010; 184:2219-25. [PMID: 20083671 DOI: 10.4049/jimmunol.0900071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The use of cysteinyl leukotriene receptor antagonists (LTRAs) for asthma therapy has been associated with a significant degree of interpatient variability in response to treatment. Some of that variability may be attributable to noncysteinyl leukotriene type 1 receptor (CysLT(1))-mediated inhibitory mechanisms that have been demonstrated for this group of drugs. We used a model of CysLT(1) signaling in human monocytes to characterize CysLT(1)-dependent and -independent anti-inflammatory activity of two chemically different, clinically relevant LTRAs (montelukast and zafirlukast). Using receptor-desensitization experiments in monocytes and CysLT(1)-transfected HEK293 cells and IL-10- and CysLT(1) small interfering RNA-induced downregulation of CysLT(1) expression, we showed that reported CysLT(1) agonists leukotriene D(4) and UDP signal through calcium mobilization, acting on separate receptors, and that both pathways were inhibited by montelukast and zafirlukast. However, 3-log greater concentrations of LTRAs were required for the inhibition of UDP-induced signaling. In monocytes, UDP, but not leukotriene D(4), induced IL-8 production that was significantly inhibited by both drugs at micromolar concentrations. At low micromolar concentrations, both LTRAs also inhibited calcium ionophore-induced leukotriene (leukotriene B(4) and leukotriene C(4)) production, indicating 5-lipoxygenase inhibitory activities. We report herein that montelukast and zafirlukast, acting in a concentration-dependent manner, can inhibit non-CysLT(1)-mediated proinflammatory reactions, suggesting activities potentially relevant for interpatient variability in response to treatment. Higher doses of currently known LTRAs or new compounds derived from this class of drugs may represent a new strategy for finding more efficient therapy for bronchial asthma.
Collapse
Affiliation(s)
- Grzegorz Woszczek
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Thivierge M, Stankova J, Rola-Pleszczynski M. Cysteinyl-leukotriene receptor type 1 expression and function is down-regulated during monocyte-derived dendritic cell maturation with zymosan: involvement of IL-10 and prostaglandins. THE JOURNAL OF IMMUNOLOGY 2009; 183:6778-87. [PMID: 19846883 DOI: 10.4049/jimmunol.0901800] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLRs sense microbial products and initiate adaptive immune responses by activating dendritic cells (DCs). DCs have been shown to produce leukotrienes and, conversely, leukotrienes are known to modulate several DC functions. In this study, we examined the modulation of expression and function of cysteinyl-leukotriene receptor type 1 (CysLT1) on human monocyte-derived DCs during their differentiation and subsequent maturation with zymosan, a TLR2 agonist. Maturation of DCs with zymosan reduced CysLT1 mRNA levels and protein expression in a time-dependent fashion and was associated with a diminution of functional responsiveness to leukotriene D(4) as assessed by intracellular calcium mobilization, CCL2 and CCL3 production, and chemotaxis. The effect of zymosan was mediated by both TLR2 and dectin-1 activation. Zymosan also induced a rapid expression of cyclooxygenase-2 and the production of PGE(2) and IL-10. Addition of an anti-IL-10 neutralizing Ab or inhibitors of cyclooxygenase greatly reduced the ability of zymosan to down-regulate CysLT1 expression. Down-regulation of CysLT1 expression by zymosan could be reproduced by a combination of IL-10 and PGE(2), and was dependent on MAPK activation. Taken together, our findings indicate that zymosan down-regulates CysLT1 expression in DCs with consequently reduced functional responsiveness of the cells to leukotriene D(4) stimulation. This effect is partially dependent on an endogenous production of PGs and IL-10 by DCs.
Collapse
Affiliation(s)
- Maryse Thivierge
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | |
Collapse
|
26
|
Wang Y, Qian G, Wang G, Cheng X, Bai C, Wang X. Potential therapy of Fc-antigen combination-encoding DNA vaccination in mouse allergic airway inflammation. Clin Exp Immunol 2008; 154:115-22. [PMID: 18727625 DOI: 10.1111/j.1365-2249.2008.03736.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Vaccination with allergen-encoding DNA has been proposed as having potential for allergen-specific immunotherapy. In this study, we examine the therapeutic effect of allergen-encoding DNA vaccination directly to dendritic cells (DCs) on allergen-induced allergic airway inflammation in a mouse model and explore potential mechanism. Ovalbumin (OVA)-sensitized and challenged mice were immunized with DNA vaccine and received bronchoalveolar lavage (BAL) 1 day after the last challenge, to measure BAL levels of interleukin (IL)-4, IL-5, interferon (IFN)-gamma and differential cell count. Pulmonary DCs and Spleen DCs were purified and sorted according to the expression of CD(11c) (+)CD(80) (+) and CD(11c) (+)CD(86) (+) co-stimulatory molecules. Our data demonstrated that DNA vaccine therapy with OVA-Fc-pcDNA(3.1) significantly prevented OVA-increased levels of IL-4, IL-5 and the percentage of eosinophils and OVA-decreased level of IFN-gamma. OVA-Fc-pcDNA(3.1)-treated mice had less severity of airway inflammation, and lower expression of CD(11c) (+)CD(80) (+) and CD(11c) (+)CD(86) (+) on pulmonary DCs, as compared with animals with OVA-pcDNA(3.1,) pcDNA(3.1) and OVA respectively. DNA vaccine encoding both Fc and OVA was shown to be more effective than DNA vaccine encoding OVA alone. Our data indicate that Fc-antigen combination-encoding DNA vaccination has better preventive effects on antigen-induced airway inflammation by regulating DCs, and may be a new alternative therapy for asthma.
Collapse
Affiliation(s)
- Y Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|