1
|
Allyn BM, Hayer KE, Oyeniran C, Nganga V, Lee K, Mishra B, Sacan A, Oltz EM, Bassing CH. Locus folding mechanisms determine modes of antigen receptor gene assembly. J Exp Med 2024; 221:e20230985. [PMID: 38189780 PMCID: PMC10772921 DOI: 10.1084/jem.20230985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vβ segment (Trbv1) impaired loop extrusion originating locally and extending to DβJβ CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DβJβ-bound RAG as the sole mechanism of Vβ recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vβ and DβJβ segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.
Collapse
Affiliation(s)
- Brittney M. Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina E. Hayer
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | - Clement Oyeniran
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Vincent Nganga
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kyutae Lee
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bikash Mishra
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Ahmet Sacan
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Craig H. Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Zhao JY, Osipovich O, Koues OI, Majumder K, Oltz EM. Activation of Mouse Tcrb: Uncoupling RUNX1 Function from Its Cooperative Binding with ETS1. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28637900 DOI: 10.4049/jimmunol.1700146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T lineage commitment requires the coordination of key transcription factors (TFs) in multipotent progenitors that transition them away from other lineages and cement T cell identity. Two important TFs for the multipotent progenitors to T lineage transition are RUNX1 and ETS1, which bind cooperatively to composite sites throughout the genome, especially in regulatory elements for genes involved in T lymphopoiesis. Activation of the TCR β (Tcrb) locus in committed thymocytes is a critical process for continued development of these cells, and is mediated by an enhancer, Eβ, which harbors two RUNX-ETS composite sites. An outstanding issue in understanding T cell gene expression programs is whether RUNX1 and ETS1 have independent functions in enhancer activation that can be dissected from cooperative binding. We now show that RUNX1 is sufficient to activate the endogenous mouse Eβ element and its neighboring 25 kb region by independently tethering this TF without coincidental ETS1 binding. Moreover, RUNX1 is sufficient for long-range promoter-Eβ looping, nucleosome clearance, and robust transcription throughout the Tcrb recombination center, spanning both DβJβ clusters. We also find that a RUNX1 domain, termed the negative regulatory domain for DNA binding, can compensate for the loss of ETS1 binding at adjacent sites. Thus, we have defined independent roles for RUNX1 in the activation of a T cell developmental enhancer, as well as its ability to mediate specific changes in chromatin landscapes that accompany long-range induction of recombination center promoters.
Collapse
Affiliation(s)
- Jiang-Yang Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Oleg Osipovich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Olivia I Koues
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Kinjal Majumder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
3
|
Proudhon C, Hao B, Raviram R, Chaumeil J, Skok JA. Long-Range Regulation of V(D)J Recombination. Adv Immunol 2015; 128:123-82. [PMID: 26477367 DOI: 10.1016/bs.ai.2015.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Given their essential role in adaptive immunity, antigen receptor loci have been the focus of analysis for many years and are among a handful of the most well-studied genes in the genome. Their investigation led initially to a detailed knowledge of linear structure and characterization of regulatory elements that confer control of their rearrangement and expression. However, advances in DNA FISH and imaging combined with new molecular approaches that interrogate chromosome conformation have led to a growing appreciation that linear structure is only one aspect of gene regulation and in more recent years, the focus has switched to analyzing the impact of locus conformation and nuclear organization on control of recombination. Despite decades of work and intense effort from numerous labs, we are still left with an incomplete picture of how the assembly of antigen receptor loci is regulated. This chapter summarizes our advances to date and points to areas that need further investigation.
Collapse
Affiliation(s)
- Charlotte Proudhon
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Bingtao Hao
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Ramya Raviram
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Julie Chaumeil
- Institut Curie, CNRS UMR3215, INSERM U934, Paris, France
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, USA.
| |
Collapse
|
4
|
Majumder K, Bassing CH, Oltz EM. Regulation of Tcrb Gene Assembly by Genetic, Epigenetic, and Topological Mechanisms. Adv Immunol 2015; 128:273-306. [PMID: 26477369 DOI: 10.1016/bs.ai.2015.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adaptive immune system endows mammals with an ability to recognize nearly any foreign invader through antigen receptors that are expressed on the surface of all lymphocytes. This defense network is generated by V(D)J recombination, a set of sequentially controlled DNA cleavage and repair events that assemble antigen receptor genes from physically separated variable (V), joining (J), and sometimes diversity (D) gene segments. The recombination process itself must be stringently regulated to minimize oncogenic translocations involving chromosomes that harbor immunoglobulin and T cell receptor loci. Indeed, V(D)J recombination is controlled at several levels, including tissue-, developmental stage-, allele-, and gene segment-specificity. These levels of control are imposed by a collection of architectural and regulatory elements that are distributed throughout each antigen receptor locus. Together, the genetic elements regulate developmental changes in chromatin, transcription, and locus topology that promote or disfavor long-range recombination. This chapter focuses on the cross talk between these mechanisms at the T cell receptor beta (Tcrb) locus, and how they sculpt a diverse TCRβ repertoire while maintaining monospecificity of this antigen receptor on each mature T lymphocyte. We also discuss how insights obtained from studies of Tcrb are more generally relevant to our understanding of gene regulation strategies employed by mammals.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Institute, Cell and Molecular Biology Graduate Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
5
|
Shrimali S, Srivastava S, Varma G, Grinberg A, Pfeifer K, Srivastava M. An ectopic CTCF-dependent transcriptional insulator influences the choice of Vβ gene segments for VDJ recombination at TCRβ locus. Nucleic Acids Res 2012; 40:7753-65. [PMID: 22718969 PMCID: PMC3439925 DOI: 10.1093/nar/gks556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insulators regulate transcription as they modulate the interactions between enhancers and promoters by organizing the chromatin into distinct domains. To gain better understanding of the nature of chromatin domains defined by insulators, we analyzed the ability of an insulator to interfere in VDJ recombination, a process that is critically dependent on long-range interactions between diverse types of cis-acting DNA elements. A well-established CTCF-dependent transcriptional insulator, H19 imprint control region (H19-ICR), was inserted in the mouse TCRβ locus by genetic manipulation. Analysis of the mutant mice demonstrated that the insulator retains its CTCF and position-dependent enhancer-blocking potential in this heterologous context in vivo. Remarkably, the inserted H19-ICR appears to have the ability to modulate cis-DNA interactions between recombination signal sequence elements of the TCRβ locus leading to a dramatically altered usage of Vβ segments for Vβ-to-DβJβ recombination in the mutant mice. This reveals a novel ability of CTCF to govern long range cis-DNA interactions other than enhancer-promoter interactions and suggests that CTCF-dependent insulators may play a diverse and complex role in genome organization beyond transcriptional control. Our functional analysis of mutated TCRβ locus supports the emerging role of CTCF in governing VDJ recombination.
Collapse
Affiliation(s)
- Sweety Shrimali
- National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
6
|
Stone JL, McMillan RE, Skaar DA, Bradshaw JM, Jirtle RL, Sikes ML. DNA double-strand breaks relieve USF-mediated repression of Dβ2 germline transcription in developing thymocytes. THE JOURNAL OF IMMUNOLOGY 2012; 188:2266-75. [PMID: 22287717 DOI: 10.4049/jimmunol.1002931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of germline promoters is central to V(D)J recombinational accessibility, driving chromatin remodeling, nucleosome repositioning, and transcriptional read-through of associated DNA. We have previously shown that of the two TCRβ locus (Tcrb) D segments, Dβ1 is flanked by an upstream promoter that directs its transcription and recombinational accessibility. In contrast, transcription within the DJβ2 segment cluster is initially restricted to the J segments and only redirected upstream of Dβ2 after D-to-J joining. The repression of upstream promoter activity prior to Tcrb assembly correlates with evidence that suggests DJβ2 recombination is less efficient than that of DJβ1. Because inefficient DJβ2 assembly offers the potential for V-to-DJβ2 recombination to rescue frameshifted V-to-DJβ1 joints, we wished to determine how Dβ2 promoter activity is modulated upon Tcrb recombination. In this study, we show that repression of the otherwise transcriptionally primed 5'Dβ2 promoter requires binding of upstream stimulatory factor (USF)-1 to a noncanonical E-box within the Dβ2 12-recombination signal sequence spacer prior to Tcrb recombination. USF binding is lost from both rearranged and germline Dβ2 sites in DNA-dependent protein kinase, catalytic subunit-competent thymocytes. Finally, genotoxic dsDNA breaks lead to rapid loss of USF binding and gain of transcriptionally primed 5'Dβ2 promoter activity in a DNA-dependent protein kinase, catalytic subunit-dependent manner. Together, these data suggest a mechanism by which V(D)J recombination may feed back to regulate local Dβ2 recombinational accessibility during thymocyte development.
Collapse
Affiliation(s)
- Jennifer L Stone
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | |
Collapse
|
7
|
Kondilis-Mangum HD, Shih HY, Mahowald G, Sleckman BP, Krangel MS. Regulation of TCRβ allelic exclusion by gene segment proximity and accessibility. THE JOURNAL OF IMMUNOLOGY 2011; 187:6374-81. [PMID: 22079986 DOI: 10.4049/jimmunol.1102611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ag receptor loci are regulated to promote allelic exclusion, but the mechanisms are not well understood. Assembly of a functional TCR β-chain gene triggers feedback inhibition of V(β)-to-DJ(β) recombination in double-positive (DP) thymocytes, which correlates with reduced V(β) chromatin accessibility and a locus conformational change that separates V(β) from DJ(β) gene segments. We previously generated a Tcrb allele that maintained V(β) accessibility but was still subject to feedback inhibition in DP thymocytes. We have now further analyzed the contributions of chromatin accessibility and locus conformation to feedback inhibition using two novel TCR alleles. We show that reduced V(β) accessibility and increased distance between V(β) and DJ(β) gene segments both enforce feedback inhibition in DP thymocytes.
Collapse
|
8
|
Schatz DG, Ji Y. Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 2011; 11:251-63. [PMID: 21394103 DOI: 10.1038/nri2941] [Citation(s) in RCA: 420] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The initiation of V(D)J recombination by the recombination activating gene 1 (RAG1) and RAG2 proteins is carefully orchestrated to ensure that antigen receptor gene assembly occurs in the appropriate cell lineage and in the proper developmental order. Here we review recent advances in our understanding of how DNA binding and cleavage by the RAG proteins are regulated by the chromatin structure and architecture of antigen receptor genes. These advances suggest novel mechanisms for both the targeting and the mistargeting of V(D)J recombination, and have implications for how these events contribute to genome instability and lymphoid malignancy.
Collapse
Affiliation(s)
- David G Schatz
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
9
|
Abstract
Vertebrate development requires the formation of multiple cell types from a single genetic blueprint, an extraordinary feat that is guided by the dynamic and finely tuned reprogramming of gene expression. The sophisticated orchestration of gene expression programs is driven primarily by changes in the patterns of covalent chromatin modifications. These epigenetic changes are directed by cis elements, positioned across the genome, which provide docking sites for transcription factors and associated chromatin modifiers. Epigenetic changes impact all aspects of gene regulation, governing association with the machinery that drives transcription, replication, repair and recombination, a regulatory relationship that is dramatically illustrated in developing lymphocytes. The program of somatic rearrangements that assemble antigen receptor genes in precursor B and T cells has proven to be a fertile system for elucidating relationships between the genetic and epigenetic components of gene regulation. This chapter describes our current understanding of the cross-talk between key genetic elements and epigenetic programs during recombination of the Tcrb locus in developing T cells, how each contributes to the regulation of chromatin accessibility at individual DNA targets for recombination, and potential mechanisms that coordinate their actions.
Collapse
|
10
|
Sikes ML, McMillan RE, Bradshaw JM. The center of accessibility: Dβ control of V(D)J recombination. Arch Immunol Ther Exp (Warsz) 2010; 58:427-33. [PMID: 20890731 PMCID: PMC3077077 DOI: 10.1007/s00005-010-0101-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/23/2010] [Indexed: 12/26/2022]
Abstract
Developmental patterning of antigen receptor gene assembly in lymphocyte precursors correlates with decondensation of the chromatin surrounding individual gene segments. Ongoing V(D)J recombination is associated with hyperacetylation of histones H3 and H4 and the expression of sterile germline transcripts across the region of recombinational accessibility. Likewise, histone acetyltransferase and SWI/SNF chromatin remodeling complexes each appear to be required for recombination, and the PHD-finger of RAG-2 preferentially associates with recombination signal sequence (RSS) chromatin that contains H3 trimethylated on lysine 4. However, the regulatory mechanisms that direct chromatin alteration and rearrangement have proven elusive, due in large part to the interdependency of individual stages in gene activation, our limited understanding of functional significance of changes to the histone code, and the difficulty of modeling recombinational accessibility in existing experimental systems. Examining Tcrb assembly in developing thymocytes, we review the central roles of RSS elements and germline promoters as foci for epigenetic reorganization of recombinationally accessible gene segments in light of recent findings and persistent questions.
Collapse
Affiliation(s)
- Michael L Sikes
- Department of Microbiology, North Carolina State University, 100 Derieux Place, Campus Box 7615, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
11
|
Osipovich O, Oltz EM. Regulation of antigen receptor gene assembly by genetic-epigenetic crosstalk. Semin Immunol 2010; 22:313-22. [PMID: 20829065 PMCID: PMC2981692 DOI: 10.1016/j.smim.2010.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/08/2010] [Indexed: 02/05/2023]
Abstract
Many aspects of gene function are coordinated by changes in the epigenome, which include dynamic revisions of chromatin modifications, genome packaging, subnuclear localization, and chromosome conformation. All of these mechanisms are used by developing lymphocytes to regulate the assembly of functional antigen receptor genes by V(D)J recombination. This somatic rearrangement of the genome must be tightly regulated to ensure proper B and T cell development and to avoid chromosomal translocations that cause lymphoid tumors. V(D)J recombination is controlled by a complex interplay between cis-acting regulatory elements that use transcription factors as liaisons to communicate with epigenetic pathways. Genetic-epigenetic crosstalk is a key strategy employed by precursor lymphocytes to modulate chromatin configurations at Ig and Tcr loci and thereby permit or deny access to a single V(D)J recombinase complex. This article describes our current knowledge of how genetic elements orchestrate crosstalk with epigenetic mechanisms to regulate recombinase accessibility via localized, regional, or long-range changes in chromatin.
Collapse
Affiliation(s)
- Oleg Osipovich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene M. Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Abstract
V(D)J recombination assembles antigen receptor genes from germline V, D and J segments during lymphocyte development. In αβT-cells, this leads to the subsequent expression of T-cell receptor (TCR) β and α chains. Generally, V(D)J recombination is closely controlled at various levels, including cell-type and cell-stage specificities, order of locus/gene segment recombination, and allele usage to mediate allelic exclusion. Many of these controls rely on the modulation of gene accessibility to the recombination machinery, involving not only biochemical changes in chromatin arrangement and structural modifications of chromosomal organization and positioning, but also the refined composition of the recombinase targets, the so-called recombination signal sequences. Here, we summarize current knowledge regarding the regulation of V(D)J recombination at the Tcrb gene locus, certainly one for which these various levels of control and regulatory components have been most extensively investigated.
Collapse
|
13
|
Farcot E, Bonnet M, Jaeger S, Spicuglia S, Fernandez B, Ferrier P. TCR beta allelic exclusion in dynamical models of V(D)J recombination based on allele independence. THE JOURNAL OF IMMUNOLOGY 2010; 185:1622-32. [PMID: 20585038 DOI: 10.4049/jimmunol.0904182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Allelic exclusion represents a major aspect of TCRbeta gene assembly by V(D)J recombination in developing T lymphocytes. Despite recent progress, its comprehension remains problematic when confronted with experimental data. Existing models fall short in terms of incorporating into a unique distribution all the cell subsets emerging from the TCRbeta assembly process. To revise this issue, we propose dynamical, continuous-time Markov chain-based modeling whereby essential steps in the biological procedure (D-J and V-DJ rearrangements and feedback inhibition) evolve independently on the two TCRbeta alleles in every single cell while displaying random modes of initiation and duration. By selecting parameters via fitting procedures, we demonstrate the capacity of the model to offer accurate fractions of all distinct TCRbeta genotypes observed in studies using developing and mature T cells from wild-type or mutant mice. Selected parameters in turn afford relative duration for each given step, hence updating TCRbeta recombination distinctive timings. Overall, our dynamical modeling integrating allele independence and noise in recombination and feedback-inhibition events illustrates how the combination of these ingredients alone may enforce allelic exclusion at the TCRbeta locus.
Collapse
Affiliation(s)
- Etienne Farcot
- Centre de Physique Théorique, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6207, Université de la Méditerranée-Université de Provence-Université Sud Toulon Var, Centre National de la Recherche Scientifique Luminy Case 907, France
| | | | | | | | | | | |
Collapse
|
14
|
Kondilis-Mangum HD, Cobb RM, Osipovich O, Srivatsan S, Oltz EM, Krangel MS. Transcription-dependent mobilization of nucleosomes at accessible TCR gene segments in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:6970-7. [PMID: 20483751 PMCID: PMC2909652 DOI: 10.4049/jimmunol.0903923] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accessibility of chromosomal recombination signal sequences to the RAG protein complex is known to be essential for V(D)J recombination at Ag receptor loci in vivo. Previous studies have addressed the roles of cis-acting regulatory elements and germline transcription in the covalent modification of nucleosomes at Ag receptor loci. However, a detailed picture of nucleosome organization at accessible and inaccessible recombination signal sequences has been lacking. In this study, we have analyzed the nucleosome organization of accessible and inaccessible Tcrb and Tcra alleles in primary murine thymocytes in vivo. We identified highly positioned arrays of nucleosomes at Dbeta, Jbeta, and Jalpha segments and obtained evidence indicating that positioning is established at least in part by the regional DNA sequence. However, we found no consistent positioning of nucleosomes with respect to recombination signal sequences, which could be nucleosomal or internucleosomal even in their inaccessible configurations. Enhancer- and promoter-dependent accessibility was characterized by diminished abundance of certain nucleosomes and repositioning of others. Moreover, some changes in nucleosome positioning and abundance at Jalpha61 were shown to be a direct consequence of germline transcription. We suggest that enhancer- and promoter-dependent transcription generates optimal recombinase substrates in which some nucleosomes are missing and others are covalently modified.
Collapse
Affiliation(s)
| | - Robin Milley Cobb
- Department of Microbiology and Immunology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Oleg Osipovich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sruti Srivatsan
- Department of Immunology, Duke University Medical Center, Durham NC 27710
| | - Eugene M. Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael S. Krangel
- Department of Immunology, Duke University Medical Center, Durham NC 27710
| |
Collapse
|
15
|
Noro R, Miyanaga A, Minegishi Y, Okano T, Seike M, Soeno C, Kataoka K, Matsuda K, Yoshimura A, Gemma A. Histone deacetylase inhibitor enhances sensitivity of non-small-cell lung cancer cells to 5-FU/S-1 via down-regulation of thymidylate synthase expression and up-regulation of p21(waf1/cip1) expression. Cancer Sci 2010; 101:1424-30. [PMID: 20384633 PMCID: PMC11159244 DOI: 10.1111/j.1349-7006.2010.01559.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 02/07/2010] [Accepted: 02/24/2010] [Indexed: 11/29/2022] Open
Abstract
It is desirable to find more appropriate therapeutic opportunities in non-small-cell lung cancer (NSCLC) due to the current poor prognosis of affected patients. Recently, several histone deacetylase (HDAC) inhibitors, including suberoylanilide hydroxamic acid (SAHA), have been reported to exhibit antitumor activities against NSCLC. S-1, a novel oral fluorouracil anticancer drug, has been developed for clinical use in the treatment of NSCLC in Japan. Using an MTT assay, we analyzed the growth-inhibitory effect of 5-fluorouracil (5-FU), S-1, and SAHA against three NSCLC cell lines, as well as the breast cancer cell line MCF7 which is known to be highly sensitive to 5-FU. Combined treatment with low-dose SAHA enhanced 5-FU- and S-1-mediated cytotoxicity and resulted in synergistic effects, especially in 5-FU-resistant cells. Both the mRNA and protein expression levels of thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), and orotate phosphoribosyltransferase (OPRT), which are associated with 5-FU sensitivity/response, were analyzed in the cells undergoing treatment. 5-Fluorouracil-resistant lung cancer cells displayed high expression of TS mRNA and protein. Suberoylanilide hydroxamic acid down-regulated TS mRNA and protein expression, as well as repressed the rapid induction of this factor during 5-FU treatment, in all examined cell types. We also examined the status of the Rb-E2F1 pathway, with SAHA up-regulating p21(waf1/cip1) expression via promoter histone acetylation; this, in turn, blocked the Rb-E2F1 pathway. We conclude that combination therapy with SAHA and S-1 in lung cancer may be promising due to its potential to overcome S-1 resistance via modulation of 5-FU/S-1 sensitivity-associated biomarker (TS) by HDAC inhibitor.
Collapse
Affiliation(s)
- Rintaro Noro
- Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
McMillan RE, Sikes ML. Promoter activity 5' of Dbeta2 is coordinated by E47, Runx1, and GATA-3. Mol Immunol 2009; 46:3009-17. [PMID: 19592096 PMCID: PMC2732994 DOI: 10.1016/j.molimm.2009.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
V(D)J recombination involves the stepwise assembly of B and T cell receptor genes as lymphocytes progress through the early stages of development. While the mechanisms that restrict each step in recombination to its appropriate developmental stage are largely unknown, they share many of the components that regulate transcription. For example, enhancer-dependent modifications in histone acetylation and methylation are essential for both germline transcription and rearrangement of antigen receptor genes. Promoters positioned proximal to individual D and J gene segments in Tcra, Tcrb, Tcrd, IgH, and Igk also contribute to antigen receptor gene assembly, though their effects appear more localized than those of enhancers. Tcrb assembly initiates with D-to-J joining at each of the two D-J-C gene segment clusters in DN1/2 thymocytes. DJ joints are fused with Vbeta elements to complete Tcrb recombination in DN3 cells. We have previously shown that Dbeta2 is flanked by upstream and downstream promoters, with the 5' promoter being held inactive until D-to-J recombination deletes the NFkappaB-dependent 3' promoter. We now report that activity of the 5' promoter reflects a complex interplay among Runx1, GATA-3, and E47 transcription factors. In particular, while multiple E47 and Runx1 binding sites clustered near the Dbeta2 5'RS and overlapping inr elements define the core 5'PDbeta2, they act in concert with an array of upstream GATA-3 sites to overcome the inhibitory effects of a 110bp distal polypurine.polypyrimidine (R.Y) tract. The dependence of 5'PDbeta2 on E47 is consistent with the reported role of E proteins in post-DN1 thymocyte development and V-to-DJbeta recombination.
Collapse
Affiliation(s)
- Ruth E. McMillan
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael L. Sikes
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
17
|
Carpenter AC, Yang-Iott KS, Chao LH, Nuskey B, Whitlow S, Alt FW, Bassing CH. Assembled DJ beta complexes influence TCR beta chain selection and peripheral V beta repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5586-95. [PMID: 19380806 PMCID: PMC5703067 DOI: 10.4049/jimmunol.0803270] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCRbeta chain repertoire of peripheral alphabeta T cells is generated through the stepwise assembly and subsequent selection of TCRbeta V region exons during thymocyte development. To evaluate the influence of a two-step recombination process on Vbeta rearrangement and selection, we generated mice with a preassembled Dbeta1Jbeta1.1 complex on the Jbeta1(omega) allele, an endogenous TCRbeta allele that lacks the Dbeta2-Jbeta2 cluster, creating the Jbeta1(DJbeta) allele. As compared with Jbeta1(omega/omega) mice, both Jbeta1(DJbeta/omega) and Jbeta1(DJbeta/DJbeta) mice exhibited grossly normal thymocyte development and TCRbeta allelic exclusion. In addition, Vbeta rearrangements on Jbeta1(DJbeta) and Jbeta1(omega) alleles were similarly regulated by TCRbeta-mediated feedback regulation. However, in-frame VbetaDJbeta rearrangements were present at a higher level on the Jbeta1(DJbeta) alleles of Jbeta1(DJbeta/omega) alphabeta T cell hybridomas, as compared with on the Jbeta1(omega) alleles. This bias was most likely due to both an increased frequency of Vbeta-to-DJbeta rearrangements on Jbeta1(DJbeta) alleles and a preferential selection of cells with in-frame VbetaDJbeta exons assembled on Jbeta1(DJbeta) alleles during the development of Jbeta1(DJbeta/omega) alphabeta T cells. Consistent with the differential selection of in-frame VbetaDJbeta rearrangements on Jbeta1(DJbeta) alleles, the Vbeta repertoire of alphabeta T cells was significantly altered during alphabeta TCR selection in Jbeta1(DJbeta/omega) and Jbeta1(DJbeta/DJbeta) mice, as compared with in Jbeta1(omega/omega) mice. Our data indicate that the diversity of DJbeta complexes assembled during thymocyte development influences TCRbeta chain selection and peripheral Vbeta repertoire.
Collapse
MESH Headings
- Alleles
- Animals
- Antibody Diversity/genetics
- Antibody Diversity/immunology
- Base Sequence
- Cell Line, Tumor
- Cells, Cultured
- Gene Rearrangement, T-Lymphocyte/immunology
- Gene Targeting
- Immunoglobulin Joining Region/biosynthesis
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recombination, Genetic
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Andrea C. Carpenter
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Katherine S. Yang-Iott
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Linda H. Chao
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Beth Nuskey
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Scott Whitlow
- Howard Hughes Medical Institute, The Children's Hospital, Immune Disease Institute, and Department of Genetics, Harvard University Medical School, Boston, MA 02115
| | - Frederick W. Alt
- Howard Hughes Medical Institute, The Children's Hospital, Immune Disease Institute, and Department of Genetics, Harvard University Medical School, Boston, MA 02115
| | - Craig H. Bassing
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| |
Collapse
|
18
|
Abstract
The four T cell receptor genes (Tcra, Tcrb, Tcrg, Tcrd) are assembled by V(D)J recombination according to distinct programs during intrathymic T cell development. These programs depend on genetic factors, including gene segment order and recombination signal sequences. They also depend on epigenetic factors. Regulated changes in chromatin structure, directed by enhancers and promoter, can modify the availability of recombination signal sequences to the RAG recombinase. Regulated changes in locus conformation may control the synapsis of distant recombination signal sequences, and regulated changes in subnuclear positioning may influence locus recombination events by unknown mechanisms. Together these influences may explain the ordered activation and inactivation of T cell receptor locus recombination events and the phenomenon of Tcrb allelic exclusion.
Collapse
Affiliation(s)
- Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
19
|
Khor B, Mahowald G, Khor K, Sleckman BP. Functional overlap in the cis-acting regulation of the V(D)J recombination at the TCRbeta locus. Mol Immunol 2009; 46:321-6. [PMID: 19070901 PMCID: PMC2688395 DOI: 10.1016/j.molimm.2008.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 10/27/2008] [Accepted: 10/29/2008] [Indexed: 01/25/2023]
Abstract
The second exon of lymphocyte antigen receptor genes is assembled in developing lymphocytes from component V, J and, in some cases, D gene segments through the process of V(D)J recombination. This process is initiated by an endonuclease comprised of the Rag-1 and Rag-2 proteins, collectively referred to as Rag. Rag binds to recombination signals (RSs) and catalyzes the pair-wise introduction of DNA double strand breaks (DSBs) at recombining gene segments. DNA cleavage by Rag is restricted both by intrinsic features of RSs, as well as the activity of other cis-acting elements, such as promoters and enhancers that regulate the accessibility of gene segments to Rag. In the TCRbeta locus, accessibility of the Dbeta1-Jbeta1 gene segment cluster relies on the function of an enhancer, Ebeta, and a promoter, PDbeta1. Here we demonstrate that deletion of a small genomic region containing five of the six Jbeta1 gene segments, but no known transcriptional regulatory elements, leads to a marked decrease in transcription and rearrangements involving the Dbeta1 and Jbeta1.1 gene segments. Surprisingly, point mutations in the RS of the Jbeta1.1 gene segment not only impact Rag cleavage, but also lead to diminished transcription through the Dbeta1-Jbeta1 gene segment cluster. Our findings demonstrate that cis-acting elements that regulate transcription and accessibility of the TCRbeta locus may functionally overlap with RS sequences, which are known primarily to direct Rag-mediated cleavage.
Collapse
Affiliation(s)
- Bernard Khor
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Grace Mahowald
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Katrina Khor
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Barry P. Sleckman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
20
|
Dynamic regulation of antigen receptor gene assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:103-15. [PMID: 19731805 DOI: 10.1007/978-1-4419-0296-2_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A hallmark feature of adaptive immunity is the production of lymphocytes bearing an enormous repertoire of receptors for foreign antigens. This repertoire is generated early in B and T-cell development by the process of V(D)J recombination, which randomly assembles functional immunoglobulin (Ig) and T-cell receptor (TCR) genes from large arrays of DNA segments. Precursor lymphocytes must target then retarget a single V(D)J recombinase enzyme to distinct regions within antigen receptor loci to guide lymphocyte development and to ensure that each mature B and T-cell expresses only a single antigen receptor specificity. Proper targeting of V(D)J recombinase is also essential to avoid chromosomal aberrations that result in lymphoid malignancies. Early studies suggested that changes in the specificity of V(D)J recombination are achieved by differentially opening or closing chromatin associated with Ig and TCR gene segments at the proper developmental time point. This accessibility model has been extended significantly in recent years and it has become clear that control mechanisms governing antigen receptor gene assembly are multifaceted and vary from locus to locus. In this chapter we review how genetic and epigenetic mechanisms as well as widespread changes in chromosomal conformation synergize to orchestrate the diversification of genes encoding B and T-cell antigen receptors.
Collapse
|