1
|
Naigles B, Narla AV, Soroczynski J, Tsimring LS, Hao N. Quantifying dynamic pro-inflammatory gene expression and heterogeneity in single macrophage cells. J Biol Chem 2023; 299:105230. [PMID: 37689116 PMCID: PMC10579967 DOI: 10.1016/j.jbc.2023.105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023] Open
Abstract
Macrophages must respond appropriately to pathogens and other pro-inflammatory stimuli in order to perform their roles in fighting infection. One way in which inflammatory stimuli can vary is in their dynamics-that is, the amplitude and duration of stimulus experienced by the cell. In this study, we performed long-term live cell imaging in a microfluidic device to investigate how the pro-inflammatory genes IRF1, CXCL10, and CXCL9 respond to dynamic interferon-gamma (IFNγ) stimulation. We found that IRF1 responds to low concentration or short duration IFNγ stimulation, whereas CXCL10 and CXCL9 require longer or higherconcentration stimulation to be expressed. We also investigated the heterogeneity in the expression of each gene and found that CXCL10 and CXCL9 have substantial cell-to-cell variability. In particular, the expression of CXCL10 appears to be largely stochastic with a subpopulation of nonresponding cells across all the stimulation conditions tested. We developed both deterministic and stochastic models for the expression of each gene. Our modeling analysis revealed that the heterogeneity in CXCL10 can be attributed to a slow chromatin-opening step that is on a similar timescale to that of adaptation of the upstream signal. In this way, CXCL10 expression in individual cells can remain stochastic in response to each pulse of repeated stimulation, which we also validated by experiments. Together, we conclude that pro-inflammatory genes in the same signaling pathway can respond to dynamic IFNγ stimulus with very different response features and that upstream signal adaptation can contribute to shaping heterogeneous gene expression.
Collapse
Affiliation(s)
- Beverly Naigles
- Department of Molecular Biology, University of California San Diego, La Jolla, California, USA
| | - Avaneesh V Narla
- Department of Physics, University of California San Diego, La Jolla, California, USA
| | - Jan Soroczynski
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, New York, USA
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California San Diego, La Jolla, California, USA
| | - Nan Hao
- Department of Molecular Biology, University of California San Diego, La Jolla, California, USA; Synthetic Biology Institute, University of California San Diego, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
2
|
Pioli KT, Pioli PD. Thymus antibody-secreting cells: once forgotten but not lost. Front Immunol 2023; 14:1170438. [PMID: 37122712 PMCID: PMC10130419 DOI: 10.3389/fimmu.2023.1170438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Antibody-secreting cells are essential contributors to the humoral response. This is due to multiple factors which include: 1) the ability to secrete thousands of antibodies per second, 2) the ability to regulate the immune response and 3) the potential to be long-lived. Not surprisingly, these cells can be found in numerous sites within the body which include organs that directly interface with potential pathogens (e.g., gut) and others that provide long-term survival niches (e.g., bone marrow). Even though antibody-secreting cells were first identified in the thymus of both humans and rodents in the 1960s, if not earlier, only recently has this population begun to be extensively investigated. In this article, we provide an update regarding the current breath of knowledge pertaining to thymus antibody-secreting cells and discuss the potential roles of these cells and their impact on health.
Collapse
|
3
|
Bettano K, Zielstorff M, Sevilla R, Yang R, Zhou H, Rosahl T, Zhang-Hoover J, Moy LY, Zhang W. A bioluminescence reporter mouse model for visualizing and quantifying CD8+ T cells in vivo. Neoplasia 2022; 27:100781. [PMID: 35381456 PMCID: PMC8980487 DOI: 10.1016/j.neo.2022.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
Cytotoxic CD8+ T cells are the primary effector cells mediating anti-tumor responses. In vivo monitoring of CD8+ T cells has broad implications for the development of novel cancer therapies. Here we describe the development of a genetically engineered mouse model (GEMM) in which CD8+ T cells are labeled with an optical reporter, enabling in vivo, longitudinal monitoring using bioluminescence imaging (BLI). Firefly luciferase (Luc2), human diphtheria toxin receptor (DTR), and enhanced green fluorescence protein (eGFP) cDNAs are engineered under the CD8α promoter to generate a transgenic mouse line. Luciferase mRNA and CD8α mRNA were generally correlated in various tissues from these mice. Sorted splenic CD8+ T cells, CD4+ T cells and CD3- non-T cells verified that the luciferase signal is specific to CD8+ T cells. In vivo imaging showed that luciferase signal was detected in various immune organs, such as lymph nodes, thymus, and spleen, and the detection was confirmed by ex vivo examination. Administration of diphtheria toxin markedly reduced luciferase signal systemically, confirming the function of the DTR. In the MC38 mouse syngeneic model, we observed significant increases in CD8+ T cells with mDX400 treatment, an anti PD-1 mouse monoclonal antibody that correlated with tumor growth inhibition. This novel reporter GEMM is a valuable drug discovery tool for profiling compounds and understanding mechanisms of action in immunotherapy of cancer.
Collapse
|
4
|
Chawda C, McMorrow R, Gaspar N, Zambito G, Mezzanotte L. Monitoring Immune Cell Function Through Optical Imaging: a Review Highlighting Transgenic Mouse Models. Mol Imaging Biol 2022; 24:250-263. [PMID: 34735680 PMCID: PMC8983637 DOI: 10.1007/s11307-021-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022]
Abstract
Transgenic mouse models have facilitated research of human diseases and validation of therapeutic approaches. Inclusion of optical reporter genes (fluorescent or bioluminescent genes) in the targeting vectors used to develop such models makes in vivo imaging of cellular and molecular events possible, from the microscale to the macroscale. In particular, transgenic mouse models expressing optical reporter genes allowed accurately distinguishing immune cell types from trafficking in vivo using intravital microscopy or whole-body optical imaging. Besides lineage tracing and trafficking of different subsets of immune cells, the ability to monitor the function of immune cells is of pivotal importance for investigating the effects of immunotherapies against cancer. Here, we introduce the reader to state-of-the-art approaches to develop transgenics, optical imaging techniques, and several notable examples of transgenic mouse models developed for immunology research by critically highlighting the models that allow the following of immune cell function.
Collapse
Affiliation(s)
- Chintan Chawda
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
- Percuros B.V, Leiden, The Netherlands
| | - Natasa Gaspar
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
- Percuros B.V, Leiden, The Netherlands
| | - Giorgia Zambito
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Tanaka T, Konishi Y, Ichise H, Tsukiji S, Matsuda M, Terai K. A Dual Promoter System to Monitor IFN-γ Signaling in vivo at Single-cell Resolution. Cell Struct Funct 2021; 46:103-111. [PMID: 34744115 PMCID: PMC10511040 DOI: 10.1247/csf.21052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/27/2021] [Indexed: 11/11/2022] Open
Abstract
IFN-γ secreted from immune cells exerts pleiotropic effects on tumor cells, including induction of immune checkpoint and antigen presentation, growth inhibition, and apoptosis induction. We combined a dual promoter system with an IFN-γ signaling responsive promoter to generate a reporter named the interferon sensing probe (ISP), which quantitates the response to IFN-γ by means of fluorescence and bioluminescence. The integration site effect of the transgene is compensated for by the PGK promoter-driven expression of a fluorescent protein. Among five potential IFN-γ-responsive elements, we found that the interferon γ-activated sequence (GAS) exhibited the best performance. When ISP-GAS was introduced into four cell lines and subjected to IFN-γ stimulation, dose-dependency was observed with an EC50 ranging from 0.2 to 0.9 ng/mL, indicating that ISP-GAS can be generally used as a sensitive biosensor of IFN-γ response. In a syngeneic transplantation model, the ISP-GAS-expressing cancer cells exhibited bioluminescence and fluorescence signals in an IFN-γ receptor-dependent manner. Thus, ISP-GAS could be used to quantitatively monitor the IFN-γ response both in vitro and in vivo.Key words: in vivo imaging, tumor microenvironment, interferon-gamma, dual promoter system.
Collapse
Affiliation(s)
- Taisei Tanaka
- Laboratory of Bioimaging and Cell Signaling, Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshinobu Konishi
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroshi Ichise
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shinya Tsukiji
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Dimond A, Van de Pette M, Fisher AG. Illuminating Epigenetics and Inheritance in the Immune System with Bioluminescence. Trends Immunol 2020; 41:994-1005. [PMID: 33036908 DOI: 10.1016/j.it.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
The remarkable process of light emission by living organisms has fascinated mankind for thousands of years. A recent expansion in the repertoire of catalytic luciferase enzymes, coupled with the discovery of the genes and pathways that encode different luciferin substrates, means that bioluminescence imaging (BLI) is set to revolutionize longitudinal and dynamic studies of gene control within biomedicine, including the regulation of immune responses. In this review article, we summarize recent advances in bioluminescence-based imaging approaches that promise to enlighten our understanding of in vivo gene and epigenetic control within the immune system.
Collapse
Affiliation(s)
- Andrew Dimond
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mathew Van de Pette
- Epigenetic Mechanisms of Toxicity, MRC Toxicology Unit, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
7
|
Myeloid cells activate iNKT cells to produce IL-4 in the thymic medulla. Proc Natl Acad Sci U S A 2019; 116:22262-22268. [PMID: 31611396 DOI: 10.1073/pnas.1910412116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interleukin-4 (IL-4) is produced by a unique subset of invariant natural killer T (iNKT) cells (NKT2) in the thymus in the steady state, where it conditions CD8+ T cells to become "memory-like" among other effects. However, the signals that cause NKT2 cells to constitutively produce IL-4 remain poorly defined. Using histocytometry, we observed IL-4-producing NKT2 cells localized to the thymic medulla, suggesting that medullary signals might instruct NKT2 cells to produce IL-4. Moreover, NKT2 cells receive and require T cell receptor (TCR) stimulation for continuous IL-4 production in the steady state, since NKT2 cells lost IL-4 production when intrathymically transferred into CD1d-deficient recipients. In bone marrow chimeric recipients, only hematopoietic, not stromal, antigen-presenting cells (APCs), provided such stimulation. Furthermore, using different Cre-recombinase transgenic mouse strains to specifically target CD1d deficiency to various APCs, together with the use of diphtheria toxin receptor (DTR) transgenic mouse strains to deplete various APCs, we found that macrophages were the predominant cell to stimulate NKT2 IL-4 production. Thus, NKT2 cells appear to encounter and require different activating ligands for selection in the cortex and activation in the medulla.
Collapse
|