1
|
Morales-Martínez M, Andón-García D, Patiño-Santiago KA, Parga-Ortega JM, Hernández-Hernández A, Aquino-Jarquin G, Patino-Lopez G. Identification of potential new T cell activation molecules: a Bioinformatic Approach. Sci Rep 2024; 14:22219. [PMID: 39333573 PMCID: PMC11436975 DOI: 10.1038/s41598-024-73003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
T-cell activation is central for the initiation of T cell mediated adaptive immune response and is the result of the close communication between the Antigen Presenting Cell (APC) and the T lymphocyte. Although T-cell activation is currently well understood, and many intracellular pathways are well characterized, nevertheless new players are constantly identified, and this complements the known protein interactome. In this work we aimed to identify new proteins involved in T cell activation. We reviewed and analyzed results of microarray gene expression datasets reported in the public database GEO-NCBI. Using data from GSE136625, GSE50971, GSE13887, GSE11989 and GSE902 we performed different comparisons using R and other bioinformatic tools including GEO2R and we report here upregulated genes that have no previous reports in immune related functions and with potential participation upon T-cell activation. Our results indicate that RND3, SYT10, IgSF6 and PIN1 are potential new T-cell activation molecules.
Collapse
Affiliation(s)
- Mario Morales-Martínez
- Immunology and Proteomics Laboratory, Children's Hospital of Mexico, Mexico City, 06720, Mexico
| | - David Andón-García
- Immunology and Proteomics Laboratory, Children's Hospital of Mexico, Mexico City, 06720, Mexico
| | | | | | | | - Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section, Genomics, Genetics, and Bioinformatics Research Laboratory, 'Federico Gómez' Children's Hospital of Mexico, Mexico City, 06720, Mexico
| | - Genaro Patino-Lopez
- Immunology and Proteomics Laboratory, Children's Hospital of Mexico, Mexico City, 06720, Mexico.
| |
Collapse
|
2
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
3
|
Sun H, Wu M, Wang M, Zhang X, Zhu J. The regulatory role of endoplasmic reticulum chaperone proteins in neurodevelopment. Front Neurosci 2022; 16:1032607. [DOI: 10.3389/fnins.2022.1032607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest tubular reticular organelle spanning the cell. As the main site of protein synthesis, Ca2+ homeostasis maintenance and lipid metabolism, the ER plays a variety of essential roles in eukaryotic cells, with ER molecular chaperones participate in all these processes. In recent years, it has been reported that the abnormal expression of ER chaperones often leads to a variety of neurodevelopmental disorders (NDDs), including abnormal neuronal migration, neuronal morphogenesis, and synaptic function. Neuronal development is a complex and precisely regulated process. Currently, the mechanism by which neural development is regulated at the ER level remains under investigation. Therefore, in this work, we reviewed the recent advances in the roles of ER chaperones in neural development and developmental disorders caused by the deficiency of these molecular chaperones.
Collapse
|
4
|
Tahmaz I, Shahmoradi Ghahe S, Topf U. Prefoldin Function in Cellular Protein Homeostasis and Human Diseases. Front Cell Dev Biol 2022; 9:816214. [PMID: 35111762 PMCID: PMC8801880 DOI: 10.3389/fcell.2021.816214] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Cellular functions are largely performed by proteins. Defects in the production, folding, or removal of proteins from the cell lead to perturbations in cellular functions that can result in pathological conditions for the organism. In cells, molecular chaperones are part of a network of surveillance mechanisms that maintains a functional proteome. Chaperones are involved in the folding of newly synthesized polypeptides and assist in refolding misfolded proteins and guiding proteins for degradation. The present review focuses on the molecular co-chaperone prefoldin. Its canonical function in eukaryotes involves the transfer of newly synthesized polypeptides of cytoskeletal proteins to the tailless complex polypeptide 1 ring complex (TRiC/CCT) chaperonin which assists folding of the polypeptide chain in an energy-dependent manner. The canonical function of prefoldin is well established, but recent research suggests its broader function in the maintenance of protein homeostasis under physiological and pathological conditions. Interestingly, non-canonical functions were identified for the prefoldin complex and also for its individual subunits. We discuss the latest findings on the prefoldin complex and its subunits in the regulation of transcription and proteasome-dependent protein degradation and its role in neurological diseases, cancer, viral infections and rare anomalies.
Collapse
Affiliation(s)
- Ismail Tahmaz
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Somayeh Shahmoradi Ghahe
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ulrike Topf
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Zhao H, Chen C, Yang C, Mo S, Zhao H, Tian Y. Prefoldin and prefoldin-like complex subunits as predictive biomarkers for hepatocellular carcinoma immunotherapy. Pathol Res Pract 2022; 232:153808. [DOI: 10.1016/j.prp.2022.153808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
|
6
|
Herranz-Montoya I, Park S, Djouder N. A comprehensive analysis of prefoldins and their implication in cancer. iScience 2021; 24:103273. [PMID: 34761191 PMCID: PMC8567396 DOI: 10.1016/j.isci.2021.103273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prefoldins (PFDNs) are evolutionary conserved co-chaperones, initially discovered in archaea but universally present in eukaryotes. PFDNs are prevalently organized into hetero-hexameric complexes. Although they have been overlooked since their discovery and their functions remain elusive, several reports indicate they act as co-chaperones escorting misfolded or non-native proteins to group II chaperonins. Unlike the eukaryotic PFDNs which interact with cytoskeletal components, the archaeal PFDNs can bind and stabilize a wide range of substrates, possibly due to their great structural diversity. The discovery of the unconventional RPB5 interactor (URI) PFDN-like complex (UPC) suggests that PFDNs have versatile functions and are required for different cellular processes, including an important role in cancer. Here, we summarize their functions across different species. Moreover, a comprehensive analysis of PFDNs genomic alterations across cancer types by using large-scale cancer genomic data indicates that PFDNs are a new class of non-mutated proteins significantly overexpressed in some cancer types.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| |
Collapse
|
7
|
Oftedal BE, Maio S, Handel AE, White MPJ, Howie D, Davis S, Prevot N, Rota IA, Deadman ME, Kessler BM, Fischer R, Trede NS, Sezgin E, Maizels RM, Holländer GA. The chaperonin CCT8 controls proteostasis essential for T cell maturation, selection, and function. Commun Biol 2021; 4:681. [PMID: 34083746 PMCID: PMC8175432 DOI: 10.1038/s42003-021-02203-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
T cells rely for their development and function on the correct folding and turnover of proteins generated in response to a broad range of molecular cues. In the absence of the eukaryotic type II chaperonin complex, CCT, T cell activation induced changes in the proteome are compromised including the formation of nuclear actin filaments and the formation of a normal cell stress response. Consequently, thymocyte maturation and selection, and T cell homeostatic maintenance and receptor-mediated activation are severely impaired. In the absence of CCT-controlled protein folding, Th2 polarization diverges from normal differentiation with paradoxical continued IFN-γ expression. As a result, CCT-deficient T cells fail to generate an efficient immune protection against helminths as they are unable to sustain a coordinated recruitment of the innate and adaptive immune systems. These findings thus demonstrate that normal T cell biology is critically dependent on CCT-controlled proteostasis and that its absence is incompatible with protective immunity.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Clinical Science, University of Bergen, Bergen, Norway, K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| | - Stefano Maio
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Adam E Handel
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Duncan Howie
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Simon Davis
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Nicolas Prevot
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ioanna A Rota
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Mary E Deadman
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Nikolaus S Trede
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Georg A Holländer
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Paediatric Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
8
|
Prefoldin subunits (PFDN1-6) serve as poor prognostic markers in gastric cancer. Biosci Rep 2021; 40:221904. [PMID: 31957800 PMCID: PMC7024841 DOI: 10.1042/bsr20192712] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
Prefoldin subunits (PFDN), primarily known for co-chaperone function associated with cytoskeletal rearrangement, have been found involved in epithelial–mesenchymal transition (EMT) and cancer progression. However, studies focusing on the roles of PFDN in gastric cancer (GC) remain limited. The present study aims to evaluate the prognostic values of PFDN in GC. Prognostic roles of PFDNs were analyzed via the Kaplan–Meier platform, followed by subset analysis within various clinical parameters. High mRNA expression of PFDN2, PFDN3 and PFDN4 displayed poor overall survival (OS) while PFDN5 displayed favorable OS. In HER2+ subset, PFDN2, PFDN3, PFDN4 and PFDN6 displayed poor OS. In human epidermal growth factor receptor 2 (HER2−) subset, PFDN2, PFDN3 and PFDN4 displayed poor OS. In intestinal type subset, PFDN1 and PFDN2 displayed poor OS. In diffuse-type subset, PFDN2 and PFDN6 displayed poor OS. In moderate differentiation type subset, PFDN1 displayed poor OS. In poor differentiation type subset, PFDN2 and PFDN6 displayed poor OS. In metastasis negative subset, PFDN1, PFDN2 and PFDN6 displayed poor OS. In lymph node (LN) positive subset, PFDN2 and PFDN5 displayed poor OS. The present study provided insightful clues into the poor prognostic values of PFDNs in GC patients.
Collapse
|
9
|
Mo SJ, Zhao HC, Tian YZ, Zhao HL. The Role of Prefoldin and Its Subunits in Tumors and Their Application Prospects in Nanomedicine. Cancer Manag Res 2020; 12:8847-8856. [PMID: 33061580 PMCID: PMC7520118 DOI: 10.2147/cmar.s270237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Prefoldin (PFDN) is a hexameric chaperone complex that is widely found in eukaryotes and archaea and consists of six different subunits (PFDN1-6). Its main function is to transfer actin and tubulin monomers to the eukaryotic cell cytoplasmic chaperone protein (c-CPN) specific binding during the assembly of the cytoskeleton, to stabilize the newly synthesized peptides so that they can be folded correctly. The current study found that each subunit of PFDN has different functions, which are closely related to the occurrence, development and prognosis of tumors. However, the best characteristics of each subunit have not been fully affirmed. The connection between research and tumors can change the understanding of PFDN and further extend its potential prognostic role and structural function to cancer research and clinical practice. This article mainly reviews the role of canonical PFDN and its subunits in tumors and other diseases, and discusses the potential prospects of the unique structure and function of PFDN in nanomedicine.
Collapse
Affiliation(s)
- Shao-Jian Mo
- Department of General Surgery, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Hai-Chao Zhao
- Department of General Surgery, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Yan-Zhang Tian
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, People's Republic of China
| | - Hao-Liang Zhao
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, People's Republic of China
| |
Collapse
|
10
|
Liang J, Xia L, Oyang L, Lin J, Tan S, Yi P, Han Y, Luo X, Wang H, Tang L, Pan Q, Tian Y, Rao S, Su M, Shi Y, Cao D, Zhou Y, Liao Q. The functions and mechanisms of prefoldin complex and prefoldin-subunits. Cell Biosci 2020; 10:87. [PMID: 32699605 PMCID: PMC7370476 DOI: 10.1186/s13578-020-00446-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
The correct folding is a key process for a protein to acquire its functional structure and conformation. Prefoldin is a well-known chaperone protein that regulates the correct folding of proteins. Prefoldin plays a crucial role in the pathogenesis of common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease). The important role of prefoldin in emerging fields (such as nanoparticles, biomaterials) and tumors has attracted widespread attention. Also, each of the prefoldin subunits has different and independent functions from the prefoldin complex. It has abnormal expression in different tumors and plays an important role in tumorigenesis and development, especially c-Myc binding protein MM-1. MM-1 can inhibit the activity of c-Myc through various mechanisms to regulate tumor growth. Therefore, an in-depth analysis of the complex functions of prefoldin and their subunits is helpful to understand the mechanisms of protein misfolding and the pathogenesis of diseases caused by misfolded aggregation.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Jinguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Pin Yi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yaqian Han
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Xia Luo
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Lu Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Qing Pan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Shan Rao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yingrui Shi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| |
Collapse
|
11
|
Amaral AF, Rahman KS, Kick AR, Cortes LM, Robertson J, Kaltenboeck B, Gerdts V, O’Connell CM, Poston TB, Zheng X, Liu C, Omesi SY, Darville T, Käser T. Mucosal Vaccination with UV-Inactivated Chlamydia suis in Pre-Exposed Outbred Pigs Decreases Pathogen Load and Induces CD4 T-Cell Maturation into IFN-γ + Effector Memory Cells. Vaccines (Basel) 2020; 8:vaccines8030353. [PMID: 32630694 PMCID: PMC7564508 DOI: 10.3390/vaccines8030353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 01/04/2023] Open
Abstract
Chlamydia trachomatis (Ct) infections are the most frequent bacterial sexually transmitted disease, and they can lead to ectopic pregnancy and infertility. Despite these detrimental long-term sequelae, a vaccine is not available. Success in preclinical animal studies is essential for vaccines to move to human clinical trials. Pigs are the natural host to Chlamydia suis (Cs)-a chlamydia species closely related to Ct, and are susceptible to Ct, making them a valuable animal model for Ct vaccine development. Before making it onto market, Ct vaccine candidates must show efficacy in a high-risk human population. The high prevalence of human Ct infection combined with the fact that natural infection does not result in sterilizing immunity, results in people at risk likely having been pre-exposed, and thus having some level of underlying non-protective immunity. Like human Ct, Cs is highly prevalent in outbred pigs. Therefore, the goal of this study was to model a trial in pre-exposed humans, and to determine the immunogenicity and efficacy of intranasal Cs vaccination in pre-exposed outbred pigs. The vaccine candidates consisted of UV-inactivated Cs particles in the presence or absence of an adjuvant (TriAdj). In this study, both groups of vaccinated pigs had a lower Cs burden compared to the non-vaccinated group; especially the TriAdj group induced the differentiation of CD4+ cells into tissue-trafficking CCR7- IFN-γ-producing effector memory T cells. These results indicate that Cs vaccination of pre-exposed pigs effectively boosts a non-protective immune response induced by natural infection; moreover, they suggest that a similar approach could be applied to human vaccine trials.
Collapse
Affiliation(s)
- Amanda F. Amaral
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; (A.F.A.); (A.R.K.); (L.M.C.)
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Khondaker S. Rahman
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (K.S.R.); (B.K.)
| | - Andrew R. Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; (A.F.A.); (A.R.K.); (L.M.C.)
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Lizette M. Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; (A.F.A.); (A.R.K.); (L.M.C.)
| | - James Robertson
- College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA;
| | - Bernhard Kaltenboeck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (K.S.R.); (B.K.)
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization—International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada;
| | - Catherine M. O’Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.M.O.); (T.B.P.); (X.Z.); (S.Y.O.); (T.D.)
| | - Taylor B. Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.M.O.); (T.B.P.); (X.Z.); (S.Y.O.); (T.D.)
| | - Xiaojing Zheng
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.M.O.); (T.B.P.); (X.Z.); (S.Y.O.); (T.D.)
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599, USA;
| | - Chuwen Liu
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599, USA;
| | - Sam Y. Omesi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.M.O.); (T.B.P.); (X.Z.); (S.Y.O.); (T.D.)
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.M.O.); (T.B.P.); (X.Z.); (S.Y.O.); (T.D.)
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; (A.F.A.); (A.R.K.); (L.M.C.)
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
- Correspondence: ; Tel.: +1-919-513-6352
| |
Collapse
|
12
|
Zhou C, Guo Z, Xu L, Jiang H, Sun P, Zhu X, Mu X. PFND1 Predicts Poor Prognosis of Gastric Cancer and Promotes Cell Metastasis by Activating the Wnt/β-Catenin Pathway. Onco Targets Ther 2020; 13:3177-3186. [PMID: 32368077 PMCID: PMC7170631 DOI: 10.2147/ott.s236929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background Prefoldin (PFDN) subunits have recently been found to function importantly in various tumor types, while the role of PFDN subunit 1 (PFDN1) in gastric cancer (GC) remains largely unknown. Herein, we aimed to investigate the clinical significance, the biological role and the underlying mechanism of PFDN1 in GC development. Materials and Methods PFDN1 expression levels were measured in human GC specimens by quantitative real-time PCR (qRT-PCR), Western blot and immunohistochemistry. Furthermore, the effects of aberrant PFDN1 expression on GC cells behavior were assessed by wound-healing assay and transwell assay in vitro, and metastasis assay in nude mice, as well as Wnt/β-catenin signaling-induced epithelial-mesenchymal transition (EMT)-related markers by qRT-PCR and Western blot. Results PFDN1 levels were significantly upregulated in GC tissues compared with those in matched adjacent normal tissues. PFDN1 upregulation correlated strongly with clinical metastasis and unfavorable prognosis for GC patients. In vitro and in vivo studies revealed that PFDN1 facilitated GC cell migration, invasion and metastasis. Mechanically, PFDN1 modulated GC cell behavior by activating Wnt/β-catenin signaling-mediated EMT. Conclusion These results suggested a central role of PFDN1 in GC metastatic development via the Wnt/β-catenin pathway, thus providing a potential therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, People's Republic of China
| | - Zhiyuan Guo
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, People's Republic of China
| | - Liqun Xu
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, People's Republic of China
| | - Haohai Jiang
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, People's Republic of China
| | - Pengfei Sun
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, People's Republic of China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiangming Mu
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, People's Republic of China
| |
Collapse
|
13
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Moreira-Filho CA, Bando SY, Bertonha FB, Ferreira LR, Vinhas CDF, Oliveira LHB, Zerbini MCN, Furlanetto G, Chaccur P, Carneiro-Sampaio M. Minipuberty and Sexual Dimorphism in the Infant Human Thymus. Sci Rep 2018; 8:13169. [PMID: 30177771 PMCID: PMC6120939 DOI: 10.1038/s41598-018-31583-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
AIRE expression in thymus is downregulated by estrogen after puberty, what probably renders women more susceptible to autoimmune disorders. Here we investigated the effects of minipuberty on male and female infant human thymic tissue in order to verify if this initial transient increase in sex hormones - along the first six months of life - could affect thymic transcriptional network regulation and AIRE expression. Gene co-expression network analysis for differentially expressed genes and miRNA-target analysis revealed sex differences in thymic tissue during minipuberty, but such differences were not detected in the thymic tissue of infants aged 7-18 months, i.e. the non-puberty group. AIRE expression was essentially the same in both sexes in minipuberty and in non-puberty groups, as assessed by genomic and immunohistochemical assays. However, AIRE-interactors networks showed several differences in all groups regarding gene-gene expression correlation. Therefore, minipuberty and genomic mechanisms interact in shaping thymic sexual dimorphism along the first six months of life.
Collapse
Affiliation(s)
| | - Silvia Yumi Bando
- Departament of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | - Paulo Chaccur
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP, Brazil
| | - Magda Carneiro-Sampaio
- Departament of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
15
|
Payán-Bravo L, Peñate X, Chávez S. Functional Contributions of Prefoldin to Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:1-10. [PMID: 30484149 DOI: 10.1007/978-3-030-00737-9_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Prefoldin is a co-chaperone that evolutionarily originates in archaea, is universally present in all eukaryotes and acts as a co-chaperone by facilitating the supply of unfolded or partially folded substrates to class II chaperonins. Eukaryotic prefoldin is known mainly for its functional relevance in the cytoplasmic folding of actin and tubulin monomers during cytoskeleton assembly. However, the role of prefoldin in chaperonin-mediated folding is not restricted to cytoskeleton components, but extends to both the assembly of other cytoplasmic complexes and the maintenance of functional proteins by avoiding protein aggregation and facilitating proteolytic degradation. Evolution has favoured the diversification of prefoldin subunits, and has allowed the so-called prefoldin-like complex, with specialised functions, to appear. Subunits of both canonical and prefoldin-like complexes have also been found in the nucleus of yeast and metazoan cells, where they have been functionally connected with different gene expression steps. Plant prefoldin has also been detected in the nucleus and is physically associated with a gene regulator. Here we summarise information available on the functional involvement of prefoldin in gene expression, and discuss the implications of these results for the relationship between prefoldin structure and function.
Collapse
Affiliation(s)
- Laura Payán-Bravo
- Insitituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Xenia Peñate
- Insitituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Sebastián Chávez
- Insitituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
16
|
Otsuki Y, Saya H, Arima Y. Prospects for new lung cancer treatments that target EMT signaling. Dev Dyn 2017; 247:462-472. [PMID: 28960588 DOI: 10.1002/dvdy.24596] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common cancer worldwide. Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, molecularly targeted therapy including epidermal growth factor receptor or anaplastic lymphoma kinase inhibitors, and immunotherapy. These treatments can be administered alone or in combination. Despite therapeutic advances, however, lung cancer remains the leading cause of cancer death. Recent studies have indicated that epithelial-mesenchymal transition (EMT) is associated with malignancy in various types of cancer, and activation of EMT signaling in cancer cells is widely considered to contribute to metastasis, recurrence, or therapeutic resistance. In this review, we provide an overview of the role of EMT in the progression of lung cancer. We also discuss the prospects for new therapeutic strategies that target EMT signaling in lung cancer. Developmental Dynamics 247:462-472, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuji Otsuki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Valent D, Arroyo L, Peña R, Yu K, Carreras R, Mainau E, Velarde A, Bassols A. Effects on pig immunophysiology, PBMC proteome and brain neurotransmitters caused by group mixing stress and human-animal relationship. PLoS One 2017; 12:e0176928. [PMID: 28475627 PMCID: PMC5419571 DOI: 10.1371/journal.pone.0176928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 12/19/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMC) are an interesting sample for searching for biomarkers with proteomic techniques because they are easy to obtain and do not contain highly abundant, potentially masking proteins. Two groups of pigs (n = 56) were subjected to mixing under farm conditions and afterwards subjected to different management treatments: negative handling (NH) and positive handling (PH). Serum and PBMC samples were collected at the beginning of the experiment one week after mixing (t0) and after two months of different handling (t2). Brain areas were collected after slaughter and neurotransmitters quantified by HPLC. Hair cortisol and serum acute phase proteins decreased and serum glutathione peroxidase increased at t2, indicating a lower degree of stress at t2 after adaptation to the farm. Differential gel electrophoresis (DIGE) was applied to study the effects of time and treatment on the PBMC proteome. A total of 54 differentially expressed proteins were identified, which were involved in immune system modulation, cell adhesion and motility, gene expression, splicing and translation, protein degradation and folding, oxidative stress and metabolism. Thirty-seven protein spots were up-regulated at t2 versus t0 whereas 27 were down-regulated. Many of the identified proteins share the characteristic of being potentially up or down-regulated by cortisol, indicating that changes in protein abundance between t0 and t2 are, at least in part, consequence of lower stress upon adaptation to the farm conditions after group mixing. Only slight changes in brain neurotransmitters and PBMC oxidative stress markers were observed. In conclusion, the variation in hair cortisol and serum APPs as well as the careful analysis of the identified proteins indicate that changes in protein composition in PBMC throughout time is mainly due to a decrease in the stress status of the individuals, following accommodation to the farm and the new group.
Collapse
Affiliation(s)
- Daniel Valent
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Raquel Peña
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Kuai Yu
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Eva Mainau
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail:
| |
Collapse
|
18
|
Dehghan-Nayeri N, Rezaei-Tavirani M, Omrani MD, Gharehbaghian A, Goudarzi Pour K, Eshghi P. Identification of potential predictive markers of dexamethasone resistance in childhood acute lymphoblastic leukemia. J Cell Commun Signal 2016; 11:137-145. [PMID: 27778231 DOI: 10.1007/s12079-016-0357-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
Response to dexamethasone (DEXA), as a hallmark drug in the treatment of childhood acute lymphoblastic leukemia (ALL), is one of the pivotal prognostic factors in the prediction of outcome in ALL. Identification of predictive markers of chemoresistance is beneficial to selecting of the best therapeutic protocol with the lowest effect adverse. Hence, we aimed to find drug targets using the 2DE/MS proteomics study of a DEXA-resistant cell line (REH) as a model for poor DEXA responding patients before and after drug treatment. Using the proteomic methods, three differentially expressed proteins were detected, including voltage dependent anion channel 1 (VDAC1), sorting Nexin 3 (SNX3), and prefoldin subunit 6 (PFDN6). We observed low expression of three proteins after DEXA treatment in REH cells. We subsequently verified low expression of resulted proteins at the mRNA level using the quantitative PCR method. These proteins are promising proteins because of their important roles in drug resistance and regulation of apoptosis (VDAC1), protein trafficking (SNX3), and protein folding (PFDN6). Additionally, mRNA expression level of these proteins was assessed in 17 bone marrow samples from children with newly diagnosed ALL and 7 non-cancerous samples as controls. The results indicated that independent of the molecular subtypes of leukemia, mRNA expression of VDAC1, SNX3, and PFDN6 decreased in ALL samples compared with non-cancerous samples particularly in VDAC1 (p < 0.001). Additionally, mRNA expression of three proteins was also declined in high-risk samples compared with standard risk cases. These results demonstrated diagnostic and prognostic value of these proteins in childhood ALL. Furthermore, investigation of protein-protein interaction using STRING database indicated that these proteins involved in the signaling pathway of NR3C1 as dexamethasone target. In conclusion, our proteomic study in DEXA resistant leukemic cells revealed VDAC1, SNX3, and PFDN6 are promising proteins that might serve as potential biomarkers of prognosis and chemotherapy in childhood ALL.
Collapse
Affiliation(s)
- Nasrin Dehghan-Nayeri
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kourosh Goudarzi Pour
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Prefoldin 1 promotes EMT and lung cancer progression by suppressing cyclin A expression. Oncogene 2016; 36:885-898. [PMID: 27694898 PMCID: PMC5318667 DOI: 10.1038/onc.2016.257] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022]
Abstract
Prefoldin (PFDN) is a co-chaperone protein that is primarily known for its classic cytoplasmic functions in the folding of actin and tubulin monomers during cytoskeletal assembly. Here, we report a marked increase in prefoldin subunit 1 (PFDN1) levels during the transforming growth factor (TGF)-β1-mediated epithelial-mesenchymal transition (EMT) and in human lung tumor tissues. Interestingly, the nuclear localization of PFDN1 was also detected. These observations suggest that PFDN1 may be essential for important novel functions. Overexpression of PFDN1 induced EMT and cell invasion. In sharp contrast, knockdown of PFDN1 generated the opposite effects. Overexpression of PFDN1 was also found to induce lung tumor growth and metastasis. Further experiments showed that PFDN1 overexpression inhibits the expression of cyclin A. PFDN1 suppressed cyclin A expression by directly interacting with the cyclin A promoter at the transcriptional start site. Strikingly, cyclin A overexpression abolished the above PFDN1-mediated effects on the behavior of lung cancer cells, whereas cyclin A knockdown alone induced EMT and increased cell migration and invasion ability. This study reveals that the TGF-β1/PFDN1/cyclin A axis is essential for EMT induction and metastasis of lung cancer cells.
Collapse
|
20
|
Zhang Y, Rai M, Wang C, Gonzalez C, Wang H. Prefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation. Sci Rep 2016; 6:23735. [PMID: 27025979 PMCID: PMC4812327 DOI: 10.1038/srep23735] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/14/2016] [Indexed: 01/14/2023] Open
Abstract
Prefoldin is a molecular chaperone complex that regulates tubulin function in mitosis. Here, we show that Prefoldin depletion results in disruption of neuroblast polarity, leading to neuroblast overgrowth in Drosophila larval brains. Interestingly, co-depletion of Prefoldin and Partner of Inscuteable (Pins) leads to the formation of gigantic brains with severe neuroblast overgrowth, despite that Pins depletion alone results in smaller brains with partially disrupted neuroblast polarity. We show that Prefoldin acts synergistically with Pins to regulate asymmetric division of both neuroblasts and Intermediate Neural Progenitors (INPs). Surprisingly, co-depletion of Prefoldin and Pins also induces dedifferentiation of INPs back into neuroblasts, while depletion either Prefoldin or Pins alone is insufficient to do so. Furthermore, knocking down either α-tubulin or β-tubulin in pins- mutant background results in INP dedifferentiation back into neuroblasts, leading to the formation of ectopic neuroblasts. Overexpression of α-tubulin suppresses neuroblast overgrowth observed in prefoldin pins double mutant brains. Our data elucidate an unexpected function of Prefoldin and Pins in synergistically suppressing dedifferentiation of INPs back into neural stem cells.
Collapse
Affiliation(s)
- Yingjie Zhang
- Neuroscience &Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Madhulika Rai
- Institute for Research in Biomedicine (IRB-Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Cheng Wang
- Neuroscience &Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857
| | - Cayetano Gonzalez
- Institute for Research in Biomedicine (IRB-Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Hongyan Wang
- Neuroscience &Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456.,Dept. of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| |
Collapse
|
21
|
Cao J. Analysis of the Prefoldin Gene Family in 14 Plant Species. FRONTIERS IN PLANT SCIENCE 2016; 7:317. [PMID: 27014333 PMCID: PMC4792155 DOI: 10.3389/fpls.2016.00317] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/29/2016] [Indexed: 05/03/2023]
Abstract
Prefoldin is a hexameric molecular chaperone complex present in all eukaryotes and archaea. The evolution of this gene family in plants is unknown. Here, I identified 140 prefoldin genes in 14 plant species. These prefoldin proteins were divided into nine groups through phylogenetic analysis. Highly conserved gene organization and motif distribution exist in each prefoldin group, implying their functional conservation. I also observed the segmental duplication of maize prefoldin gene family. Moreover, a few functional divergence sites were identified within each group pairs. Functional network analyses identified 78 co-expressed genes, and most of them were involved in carrying, binding and kinase activity. Divergent expression profiles of the maize prefoldin genes were further investigated in different tissues and development periods and under auxin and some abiotic stresses. I also found a few cis-elements responding to abiotic stress and phytohormone in the upstream sequences of the maize prefoldin genes. The results provided a foundation for exploring the characterization of the prefoldin genes in plants and will offer insights for additional functional studies.
Collapse
|
22
|
Wang P, Zhao J, Yang X, Guan S, Feng H, Han D, Lu J, Ou B, Jin R, Sun J, Zong Y, Feng B, Ma J, Lu A, Zheng M. PFDN1, an indicator for colorectal cancer prognosis, enhances tumor cell proliferation and motility through cytoskeletal reorganization. Med Oncol 2015; 32:264. [PMID: 26553318 DOI: 10.1007/s12032-015-0710-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/31/2015] [Indexed: 11/24/2022]
Abstract
Prefoldin (PFDN) subunits have been reported upregulated in various tumor types, while the expression and functions of PFDN1 (PFDN subunit 1) in colorectal cancer (CRC) are not well elucidated. The aim of this study was to investigate the use of PFDN1 as a poor prognosis indicator for CRC and explore the functions of PFDN1 in CRC. The relationship between PFDN1 expression and CRC clinical-pathological statistics was detected on the tissue microarray containing 145 cases of CRC. ShRNA was used to silence PFDN1 expression in SW480 and RKO CRC cells, and these transfected cells were analyzed for changes in proliferation, colony formation, cell cycle, migration, and invasion. Immunofluorescence and immunoblot were used to determine the remodeling of the F-actin and α-tubulin. Finally, tumor growth on nude mice was observed and measured. In this study, we found PFDN1 was upregulated in CRC tissues compared with adjacent normal tissues. Also, PFDN1 expression positively correlated with tumor size and tumor invasion. Moreover, after silencing PFDN1 in SW480 and RKO cells, the proliferation and motility of CRC cells were significantly suppressed. The inhibitory effect of PFDN1 on tumor cell growth and motility was partially due to G2/M cell cycle blockage and cytoskeletal deficiency. Finally, in vivo assay showed that downregulation of PFDN1 inhibited tumor growth on nude mice and PFDN1 expression correlated with higher levels of Ki-67 staining. These findings indicate that PFDN1 was involved in the progression of CRC, and provide new insights into PFDN1 as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Puxiongzhi Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai, China.
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai, China
| | - Shaopei Guan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai, China
| | - Hao Feng
- School of Medicine, University of Munich, Munich, Germany
| | - Dingpei Han
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai, China
| | - Jun Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baochi Ou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runsen Jin
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai, China
| | - Yaping Zong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai, China
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai, China.
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai, China
| |
Collapse
|
23
|
Yamane T, Shimizu T, Takahashi-Niki K, Takekoshi Y, Iguchi-Ariga SMM, Ariga H. Deficiency of spermatogenesis and reduced expression of spermatogenesis-related genes in prefoldin 5-mutant mice. Biochem Biophys Rep 2015; 1:52-61. [PMID: 29124133 PMCID: PMC5668561 DOI: 10.1016/j.bbrep.2015.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 10/25/2022] Open
Abstract
MM-1α is a c-Myc-binding protein and acts as a transcriptional co-repressor in the nucleus. MM-1α is also PDF5, a subunit of prefoldin that is chaperon comprised of six subunits and prevents misfolding of newly synthesized nascent polypeptides. Prefoldin also plays a role in quality control against protein aggregation. It has been reported that mice harboring the missense mutation L110R of MM-1α/PFD5 exhibit neurodegeneration in the cerebellum and also male infertility, but the phenotype of infertility has not been fully characterized. In this study, we first analyzed morphology of the testis and epididymis of L110R of MM-1α mice. During differentiation of spermatogenesis, spermatogonia, spermatocytes and round spermatids were formed, but formation of elongated spermatids was compromised in L110R MM-1α mice. Furthermore, reduced number/concentration of sperm in the epididymis was observed. MM-1α was strongly expressed in the round spermatids and sperms with round spermatids, suggesting that MM-1α affects the differentiation and maturation of germ cells. Changes in expression levels of spermatogenesis-related genes in mice testes were then examined. The fatty-acid-binding protein (fabp4) gene was up-regulated and three genes, including sperm-associated glutamate (E)-rich protein 4d (speer-4d), phospholipase A2-Group 3 (pla2g3) and phospholipase A2-Group 10 (pla2g10), were down-regulated in L110R MM-1α mice. L110R MM-1α and wild-type MM-1α bound to regions of up-regulated and down-regulated genes, respectively. Since these gene products are known to play a role in maturation and motility of sperm, a defect of at least MM-1α transcriptional activity is thought to induce expressional changes of these genes, resulting in male infertility.
Collapse
Affiliation(s)
- Takuya Yamane
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Shimizu
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Kazuko Takahashi-Niki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Yuka Takekoshi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | | | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
24
|
Abstract
Prefoldin is a cochaperone, present in all eukaryotes, that cooperates with the chaperonin CCT. It is known mainly for its functional relevance in the cytoplasmic folding of actin and tubulin monomers during cytoskeleton assembly. However, both canonical and prefoldin-like subunits of this heterohexameric complex have also been found in the nucleus, and are functionally connected with nuclear processes in yeast and metazoa. Plant prefoldin has also been detected in the nucleus and physically associated with a gene regulator. In this review, we summarize the information available on the involvement of prefoldin in nuclear phenomena, place special emphasis on gene transcription, and discuss the possibility of a global coordination between gene regulation and cytoplasmic dynamics mediated by prefoldin.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Seville, Spain Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
25
|
Abe A, Takahashi-Niki K, Takekoshi Y, Shimizu T, Kitaura H, Maita H, Iguchi-Ariga SMM, Ariga H. Prefoldin plays a role as a clearance factor in preventing proteasome inhibitor-induced protein aggregation. J Biol Chem 2013; 288:27764-76. [PMID: 23946485 DOI: 10.1074/jbc.m113.476358] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prefoldin is a molecular chaperone composed of six subunits, PFD1-6, and prevents misfolding of newly synthesized nascent polypeptides. Although it is predicted that prefoldin, like other chaperones, modulates protein aggregation, the precise function of prefoldin against protein aggregation under physiological conditions has never been elucidated. In this study, we first established an anti-prefoldin monoclonal antibody that recognizes the prefoldin complex but not its subunits. Using this antibody, it was found that prefoldin was localized in the cytoplasm with dots in co-localization with polyubiquitinated proteins and that the number and strength of dots were increased in cells that had been treated with lactacystin, a proteasome inhibitor, and thapsigargin, an inducer of endoplasmic reticulum stress. Knockdown of prefoldin increased the level of SDS-insoluble ubiquitinated protein and reduced cell viability in lactacystin and thapsigargin-treated cells. Opposite results were obtained in prefoldin-overexpressed cells. It has been reported that mice harboring a missense mutation L110R of MM-1α/PFD5 exhibit neurodegeneration in the cerebellum. Although the prefoldin complex containing L110R MM-1α was properly formed in vitro and in cells derived from L110R MM-1α mice, the levels of ubiquitinated proteins and cytotoxicity were higher in L110R MM-1α cells than in wild-type cells under normal conditions and were increased by lactacystin and thapsigargin treatment, and growth of L110R MM-1α cells was attenuated. Furthermore, the polyubiquitinated protein aggregation level was increased in the brains of L110R MM-1α mice. These results suggest that prefoldin plays a role in quality control against protein aggregation and that dysfunction of prefoldin is one of the causes of neurodegenerative diseases.
Collapse
Affiliation(s)
- Akira Abe
- From the Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812 and
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tashiro E, Zako T, Muto H, Itoo Y, Sörgjerd K, Terada N, Abe A, Miyazawa M, Kitamura A, Kitaura H, Kubota H, Maeda M, Momoi T, Iguchi-Ariga SMM, Kinjo M, Ariga H. Prefoldin protects neuronal cells from polyglutamine toxicity by preventing aggregation formation. J Biol Chem 2013; 288:19958-72. [PMID: 23720755 DOI: 10.1074/jbc.m113.477984] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Huntington disease is caused by cell death after the expansion of polyglutamine (polyQ) tracts longer than ∼40 repeats encoded by exon 1 of the huntingtin (HTT) gene. Prefoldin is a molecular chaperone composed of six subunits, PFD1-6, and prevents misfolding of newly synthesized nascent polypeptides. In this study, we found that knockdown of PFD2 and PFD5 disrupted prefoldin formation in HTT-expressing cells, resulting in accumulation of aggregates of a pathogenic form of HTT and in induction of cell death. Dead cells, however, did not contain inclusions of HTT, and analysis by a fluorescence correlation spectroscopy indicated that knockdown of PFD2 and PFD5 also increased the size of soluble oligomers of pathogenic HTT in cells. In vitro single molecule observation demonstrated that prefoldin suppressed HTT aggregation at the small oligomer (dimer to tetramer) stage. These results indicate that prefoldin inhibits elongation of large oligomers of pathogenic Htt, thereby inhibiting subsequent inclusion formation, and suggest that soluble oligomers of polyQ-expanded HTT are more toxic than are inclusion to cells.
Collapse
Affiliation(s)
- Erika Tashiro
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cai X, Huang W, Qiao Y, Chen Y, Du S, Chen D, Yu S, Che R, Jiang Y. Proteomics identifies differentially expressed proteins in neonatal murine thymus compared with adults. Proteome Sci 2012; 10:65. [PMID: 23134655 PMCID: PMC3583686 DOI: 10.1186/1477-5956-10-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 11/02/2012] [Indexed: 11/14/2022] Open
Abstract
Background The thymus is an immune organ essential for life and plays a crucial role in the development of T cells. It undergoes a fetal to adult developmental maturation process occurring in mouse during the postnatal months. The molecular modifications underlying these ontogenic changes are essentially unknown. Here we used a differential proteomic-based technique (2D-Difference Gel Electrophoresis) coupled with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry to search for key proteins in the postnatal development of the thymus. Eight different BALB/c mice were used in the study: four mice aged of 1 day (neonatal) and four mice aged of 60 days (adult). Protein samples derived from thymus were labeled and run in 2D-PAGE (Two-Dimensional Polyacrylamide Gel Electrophoresis). One whole-thymus tissue from each mouse was run on gels and each gel containing a pooled sample of the eight mice was run in parallel. The pooled sample was set as the internal pool, containing equal amount of each protein extract used in the experiment. Gels were matched and compared with Difference In-gel Analysis software. Differential spots were picked, in-gel digested and peptide mass fingerprints were obtained. Results Among the differentially regulated proteins in neonatal thymus group, 111 proteins were identified by mass spectrometry, of which 95 proteins were up-regulated and 16 proteins were down-regulated. The identified proteins belong to several functional categories, including cell proliferation, cycle and apoptosis, transcription regulation, signal transduction, nucleotide processing, proteolysis and translation, protein folding, metabolism, oxidoreduction, cytoskeleton, immune response, and embryonic development. The major interaction networks comprised of cellular function and maintenance, cellular assembly and organization, and metabolism were also identified by STRING analysis. Conclusions The demonstrated molecular changes are relevant for understanding thymus development as well as neonatal immune function, and they provide the diagnostic disease markers. Further studies will be required to describe in detail the role of the identified proteins in thymus maturation and in the specific functions of neonatal thymus.
Collapse
Affiliation(s)
- Xinze Cai
- Central Laboratory, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Grantham J, Lassing I, Karlsson R. Controlling the cortical actin motor. PROTOPLASMA 2012; 249:1001-1015. [PMID: 22526202 PMCID: PMC3459087 DOI: 10.1007/s00709-012-0403-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/21/2012] [Indexed: 05/31/2023]
Abstract
Actin is the essential force-generating component of the microfilament system, which powers numerous motile processes in eukaryotic cells and undergoes dynamic remodeling in response to different internal and external signaling. The ability of actin to polymerize into asymmetric filaments is the inherent property behind the site-directed force-generating capacity that operates during various intracellular movements and in surface protrusions. Not surprisingly, a broad variety of signaling pathways and components are involved in controlling and coordinating the activities of the actin microfilament system in a myriad of different interactions. The characterization of these processes has stimulated cell biologists for decades and has, as a consequence, resulted in a huge body of data. The purpose here is to present a cellular perspective on recent advances in our understanding of the microfilament system with respect to actin polymerization, filament structure and specific folding requirements.
Collapse
Affiliation(s)
- Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Lassing
- Department of Cell Biology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Roger Karlsson
- Department of Cell Biology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
29
|
Drosophila Mgr, a Prefoldin subunit cooperating with von Hippel Lindau to regulate tubulin stability. Proc Natl Acad Sci U S A 2012; 109:5729-34. [PMID: 22451918 DOI: 10.1073/pnas.1108537109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in Drosophila merry-go-round (mgr) have been known for over two decades to lead to circular mitotic figures and loss of meiotic spindle integrity. However, the identity of its gene product has remained undiscovered. We now show that mgr encodes the Prefoldin subunit counterpart of human von Hippel Lindau binding-protein 1. Depletion of Mgr from cultured cells also leads to formation of monopolar and abnormal spindles and centrosome loss. These phenotypes are associated with reductions of tubulin levels in both mgr flies and mgr RNAi-treated cultured cells. Moreover, mgr spindle defects can be phenocopied by depleting β-tubulin, suggesting Mgr function is required for tubulin stability. Instability of β-tubulin in the mgr larval brain is less pronounced than in either mgr testes or in cultured cells. However, expression of transgenic β-tubulin in the larval brain leads to increased tubulin instability, indicating that Prefoldin might only be required when tubulins are synthesized at high levels. Mgr interacts with Drosophila von Hippel Lindau protein (Vhl). Both proteins interact with unpolymerized tubulins, suggesting they cooperate in regulating tubulin functions. Accordingly, codepletion of Vhl with Mgr gives partial rescue of tubulin instability, monopolar spindle formation, and loss of centrosomes, leading us to propose a requirement for Vhl to promote degradation of incorrectly folded tubulin in the absence of functional Prefoldin. Thus, Vhl may play a pivotal role: promoting microtubule stabilization when tubulins are correctly folded by Prefoldin and tubulin destruction when they are not.
Collapse
|
30
|
Lee Y, Smith RS, Jordan W, King BL, Won J, Valpuesta JM, Naggert JK, Nishina PM. Prefoldin 5 is required for normal sensory and neuronal development in a murine model. J Biol Chem 2010; 286:726-36. [PMID: 20956523 DOI: 10.1074/jbc.m110.177352] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones and co-chaperones are crucial for cellular development and maintenance as they assist in protein folding and stabilization of unfolded or misfolded proteins. Prefoldin (PFDN), a ubiquitously expressed heterohexameric co-chaperone, is necessary for proper folding of nascent proteins, in particular, tubulin and actin. Here we show that a genetic disruption in the murine Pfdn5 gene, a subunit of prefoldin, causes a syndrome characterized by photoreceptor degeneration, central nervous system abnormalities, and male infertility. Our data indicate that a missense mutation in Pfdn5, may cause these phenotypes through a reduction in formation of microtubules and microfilaments, which are necessary for the development of cilia and cytoskeletal structures, respectively. The diversity of phenotypes demonstrated by models carrying mutations in different PFDN subunits suggests that each PFDN subunit must confer a distinct substrate specificity to the prefoldin holocomplex.
Collapse
Affiliation(s)
- YongSuk Lee
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lundin VF, Leroux MR, Stirling PC. Quality control of cytoskeletal proteins and human disease. Trends Biochem Sci 2010; 35:288-97. [PMID: 20116259 DOI: 10.1016/j.tibs.2009.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 11/25/2022]
Abstract
Actins and tubulins are abundant cytoskeletal proteins that support diverse cellular processes. Owing to the unique properties of these filament-forming proteins, an intricate cellular machinery consisting minimally of the chaperonin CCT, prefoldin, phosducin-like proteins, and tubulin cofactors has evolved to facilitate their biogenesis. More recent evidence also suggests that regulated degradation pathways exist for actin (via TRIM32) and tubulin (via parkin or cofactor E-like). Collectively, these pathways maintain the quality control of cytoskeletal proteins ('proteostasis'), ensuring the appropriate function of microfilaments and microtubules. Here, we focus on the molecular mechanisms of the quality control of actin and tubulin, and discuss emerging links between cytoskeletal proteostasis and human diseases.
Collapse
Affiliation(s)
- Victor F Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | | |
Collapse
|
32
|
Abstract
Tubulin, the most abundant axonemal protein, is extensively modified by several highly conserved post-translational mechanisms including acetylation, detyrosination, glutamylation, and glycylation. We discuss the pathways that contribute to the assembly and maintenance of axonemal microtubules, with emphasis on the potential functions of post-translational modifications that affect tubulin. The recent identification of a number of tubulin modifying enzymes and mutational studies of modification sites on tubulin have allowed for significant functional insights. Polymeric modifications of tubulin (glutamylation and glycylation) have emerged as important determinants of the 9 + 2 axoneme assembly and motility.
Collapse
Affiliation(s)
- Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|