1
|
Li Z, Han B, Qi M, Li Y, Duan Y, Yao Y. Modulating macrophage-mediated programmed cell removal: An attractive strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189172. [PMID: 39151808 DOI: 10.1016/j.bbcan.2024.189172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Macrophage-mediated programmed cell removal (PrCR) is crucial for the identification and elimination of needless cells that maintain tissue homeostasis. The efficacy of PrCR depends on the balance between pro-phagocytic "eat me" signals and anti-phagocytic "don't eat me" signals. Recently, a growing number of studies have shown that tumourigenesis and progression are closely associated with PrCR. In the tumour microenvironment, PrCR activated by the "eat me" signal is counterbalanced by the "don't eat me" signal of CD47/SIRPα, resulting in tumour immune escape. Therefore, targeting exciting "eat me" signalling while simultaneously suppressing "don't eat me" signalling and eventually inducing macrophages to produce effective PrCR will be a very attractive antitumour strategy. Here, we comprehensively review the functions of PrCR-activating signal molecules (CRT, PS, Annexin1, SLAMF7) and PrCR-inhibiting signal molecules (CD47/SIRPα, MHC-I/LILRB1, CD24/Siglec-10, SLAMF3, SLAMF4, PD-1/PD-L1, CD31, GD2, VCAM1), the interactions between these molecules, and Warburg effect. In addition, we highlight the molecular regulatory mechanisms that affect immune system function by exciting or suppressing PrCR. Finally, we review the research advances in tumour therapy by activating PrCR and discuss the challenges and potential solutions to smooth the way for tumour treatment strategies that target PrCR.
Collapse
Affiliation(s)
- Zhenzhen Li
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menghui Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Raskov H, Orhan A, Agerbæk MØ, Gögenur I. The impact of platelets on the metastatic potential of tumour cells. Heliyon 2024; 10:e34361. [PMID: 39114075 PMCID: PMC11305202 DOI: 10.1016/j.heliyon.2024.e34361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
In cancer, activation of platelets by tumor cells is critical to disease progression. Development of precise antiplatelet targeting may improve outcomes from anticancer therapy. Alongside a distinct shift in functionality such as pro-metastatic and pro-coagulant properties, platelet production is often accelerated significantly early in carcinogenesis and the cancer-associated thrombocytosis increases the risk of metastasis formation and thromboembolic events. Tumor-activated platelets facilitate the proliferation of migrating tumor cells and shield them from immune surveillance and physical stress during circulation. Additionally, platelet-tumor cell interactions promote tumor cell intravasation, intravascular arrest, and extravasation through a repertoire of adhesion molecules, growth factors and angiogenic factors. Particularly, the presence of circulating tumor cell (CTC) clusters in association with platelets is a negative prognostic indicator. The contribution of platelets to the metastatic process is an area of intense investigation and this review provides an overview of the advances in understanding platelet-tumor cell interactions and their contribution to disease progression. Also, we review the potential of targeting platelets to interfere with the metastatic process.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Mette Ørskov Agerbæk
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
L’Estrange-Stranieri E, Gottschalk TA, Wright MD, Hibbs ML. The dualistic role of Lyn tyrosine kinase in immune cell signaling: implications for systemic lupus erythematosus. Front Immunol 2024; 15:1395427. [PMID: 39007135 PMCID: PMC11239442 DOI: 10.3389/fimmu.2024.1395427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.
Collapse
Affiliation(s)
- Elan L’Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Timothy A. Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mark D. Wright
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Merchand-Reyes G, Bull MF, Santhanam R, Valencia-Pena ML, Murugesan RA, Chordia A, Mo XM, Robledo-Avila FH, Ruiz-Rosado JDD, Carson WE, Byrd JC, Woyach JA, Tridandapani S, Butchar JP. NOD2 activation enhances macrophage Fcγ receptor function and may increase the efficacy of antibody therapy. Front Immunol 2024; 15:1409333. [PMID: 38919608 PMCID: PMC11196781 DOI: 10.3389/fimmu.2024.1409333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Therapeutic antibodies have become a major strategy to treat oncologic diseases. For chronic lymphocytic leukemia, antibodies against CD20 are used to target and elicit cytotoxic responses against malignant B cells. However, efficacy is often compromised due to a suppressive microenvironment that interferes with cellular immune responses. To overcome this suppression, agonists of pattern recognition receptors have been studied which promote direct cytotoxicity or elicit anti-tumoral immune responses. NOD2 is an intracellular pattern recognition receptor that participates in the detection of peptidoglycan, a key component of bacterial cell walls. This detection then mediates the activation of multiple signaling pathways in myeloid cells. Although several NOD2 agonists are being used worldwide, the potential benefit of these agents in the context of antibody therapy has not been explored. Methods Primary cells from healthy-donor volunteers (PBMCs, monocytes) or CLL patients (monocytes) were treated with versus without the NOD2 agonist L18-MDP, then antibody-mediated responses were assessed. In vivo, the Eµ-TCL1 mouse model of CLL was used to test the effects of L18-MDP treatment alone and in combination with anti-CD20 antibody. Results Treatment of peripheral blood mononuclear cells with L18-MDP led to activation of monocytes from both healthy donors and CLL patients. In addition, there was an upregulation of activating FcγR in monocytes and a subsequent increase in antibody-mediated phagocytosis. This effect required the NF-κB and p38 signaling pathways. Treatment with L18-MDP plus anti-CD20 antibody in the Eµ-TCL model of CLL led to a significant reduction of CLL load, as well as to phenotypic changes in splenic monocytes and macrophages. Conclusions Taken together, these results suggest that NOD2 agonists help overturn the suppression of myeloid cells, and may improve the efficacy of antibody therapy for CLL.
Collapse
MESH Headings
- Nod2 Signaling Adaptor Protein/agonists
- Nod2 Signaling Adaptor Protein/metabolism
- Nod2 Signaling Adaptor Protein/immunology
- Animals
- Humans
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Mice
- Macrophages/immunology
- Macrophages/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Acetylmuramyl-Alanyl-Isoglutamine/pharmacology
- Female
- Mice, Inbred C57BL
- Signal Transduction
- Phagocytosis
- Rituximab/pharmacology
- Rituximab/therapeutic use
Collapse
Affiliation(s)
- Giovanna Merchand-Reyes
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Mikayla F. Bull
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ramasamy Santhanam
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Maria L. Valencia-Pena
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | | | - Aadesh Chordia
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Xiaokui-Molly Mo
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Frank H. Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Juan De Dios Ruiz-Rosado
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Division of Pediatric Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - John C. Byrd
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jennifer A. Woyach
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Susheela Tridandapani
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan P. Butchar
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Galpin KJC, Rodriguez GM, Maranda V, Cook DP, Macdonald E, Murshed H, Zhao S, McCloskey CW, Chruscinski A, Levy GA, Ardolino M, Vanderhyden BC. FGL2 promotes tumour growth and attenuates infiltration of activated immune cells in melanoma and ovarian cancer models. Sci Rep 2024; 14:787. [PMID: 38191799 PMCID: PMC10774293 DOI: 10.1038/s41598-024-51217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
The tumour microenvironment is infiltrated by immunosuppressive cells, such as regulatory T cells (Tregs), which contribute to tumour escape and impede immunotherapy outcomes. Soluble fibrinogen-like protein 2 (sFGL2), a Treg effector protein, inhibits immune cell populations, via receptors FcγRIIB and FcγRIII, leading to downregulation of CD86 in antigen presenting cells and limiting T cell activation. Increased FGL2 expression is associated with tumour progression and poor survival in several different cancers, such as glioblastoma multiforme, lung, renal, liver, colorectal, and prostate cancer. Querying scRNA-seq human cancer data shows FGL2 is produced by cells in the tumour microenvironment (TME), particularly monocytes and macrophages as well as T cells and dendritic cells (DCs), while cancer cells have minimal expression of FGL2. We studied the role of FGL2 exclusively produced by cells in the TME, by leveraging Fgl2 knockout mice. We tested two murine models of cancer in which the role of FGL2 has not been previously studied: epithelial ovarian cancer and melanoma. We show that absence of FGL2 leads to a more activated TME, including activated DCs (CD86+, CD40+) and T cells (CD25+, TIGIT+), as well as demonstrating for the first time that the absence of FGL2 leads to more activated natural killer cells (DNAM-1+, NKG2D+) in the TME. Furthermore, the absence of FGL2 leads to prolonged survival in the B16F10 melanoma model, while the absence of FGL2 synergizes with oncolytic virus to prolong survival in the ID8-p53-/-Brca2-/- ovarian cancer model. In conclusion, targeting FGL2 is a promising cancer treatment strategy alone and in combination immunotherapies.
Collapse
Affiliation(s)
- Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Vincent Maranda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Elizabeth Macdonald
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Humaira Murshed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shan Zhao
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Andrzej Chruscinski
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gary A Levy
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
6
|
Shankar D, Merchand-Reyes G, Buteyn NJ, Santhanam R, Fang H, Kumar K, Mo X, Ganesan LP, Jarjour W, Butchar JP, Tridandapani S. Inhibition of BET Proteins Regulates Fcγ Receptor Function and Reduces Inflammation in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:7623. [PMID: 37108786 PMCID: PMC10143512 DOI: 10.3390/ijms24087623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Overactivation of immune responses is a hallmark of autoimmune disease pathogenesis. This includes the heightened production of inflammatory cytokines such as Tumor Necrosis Factor α (TNFα), and the secretion of autoantibodies such as isotypes of rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA). Fcγ receptors (FcγR) expressed on the surface of myeloid cells bind Immunoglobulin G (IgG) immune complexes. Recognition of autoantigen-antibody complexes by FcγR induces an inflammatory phenotype that results in tissue damage and further escalation of the inflammatory response. Bromodomain and extra-terminal protein (BET) inhibition is associated with reduced immune responses, making the BET family a potential therapeutic target for autoimmune diseases such as rheumatoid arthritis (RA). In this paper, we examined the BET inhibitor PLX51107 and its effect on regulating FcγR expression and function in RA. PLX51107 significantly downregulated expression of FcγRIIa, FcγRIIb, FcγRIIIa, and the common γ-chain, FcϵR1-γ, in both healthy donor and RA patient monocytes. Consistent with this, PLX51107 treatment attenuated signaling events downstream of FcγR activation. This was accompanied by a significant decrease in phagocytosis and TNFα production. Finally, in a collagen-induced arthritis model, PLX51107-treatment reduced FcγR expression in vivo accompanied by a significant reduction in footpad swelling. These results suggest that BET inhibition is a novel therapeutic approach that requires further exploration as a treatment for patients with RA.
Collapse
Affiliation(s)
- Divya Shankar
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | - Ramasamy Santhanam
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Huiqing Fang
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Krishan Kumar
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Latha P. Ganesan
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Wael Jarjour
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P. Butchar
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
7
|
Ha H, Park JY, Lee CH, Son D, Chung SW, Baek S, Lee K, Lee KS, Yi SW, Kang M, Kim D, Sung H. Vascular Cast to Program Antistenotic Hemodynamics and Remodeling of Vein Graft. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204993. [PMID: 36727829 PMCID: PMC10074125 DOI: 10.1002/advs.202204993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/28/2022] [Indexed: 05/31/2023]
Abstract
The structural stability of medical devices is established by managing stress distribution in response to organ movement. Veins abruptly dilate upon arterial grafting due to the mismatched tissue property, resulting in flow disturbances and consequently stenosis. Vascular cast is designed to wrap the vein-artery grafts, thereby adjusting the diameter and property mismatches by relying on the elastic fixity. Here, a small bridge connection in the cast structure serves as an essential element to prevent stress concentrations due to the improved elastic fixity. Consequently, the vein dilation is efficiently suppressed, healthy (laminar and helical) flow is induced effectively, and the heathy functions of vein grafting are promoted, as indicated by the flow directional alignment of endothelial cells with arterialization, muscle expansion, and improved contractility. Finally, collaborative effects of the bridge drastically suppress stenosis with patency improvement. As a key technical point, the advantages of the bridge addition are validated via the computational modeling of fluid-structure interaction, followed by a customized ex vivo set-up and analyses. The calculated effects are verified using a series of cell, rat, and canine models towards translation. The bridge acted like "Little Dutch boy" who saved the big mass using one finger by supporting the cast function.
Collapse
Affiliation(s)
- Hyunsu Ha
- Department of Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
| | - Ju Young Park
- TMD LAB Co. Ltd.6th floor, 31, Gwangnaru‐ro 8‐gil, Seongdong‐guSeoul03722Republic of Korea
| | - Chan Hee Lee
- Department of Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
| | - Deok‐Hyeon Son
- Department of Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
| | - Soon Won Chung
- Department of Plastic SurgeryKorea University Guro HospitalKorea University College of MedicineGurodong‐ro 28‐gilGuro‐guSeoul08308Republic of Korea
| | - Sewoom Baek
- Department of Brain Korea 21 FOUR Project for Medical Science and Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
| | - Kyubae Lee
- Department of Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
| | - Kang Suk Lee
- TMD LAB Co. Ltd.6th floor, 31, Gwangnaru‐ro 8‐gil, Seongdong‐guSeoul03722Republic of Korea
| | - Se Won Yi
- TMD LAB Co. Ltd.6th floor, 31, Gwangnaru‐ro 8‐gil, Seongdong‐guSeoul03722Republic of Korea
| | - Mi‐Lan Kang
- TMD LAB Co. Ltd.6th floor, 31, Gwangnaru‐ro 8‐gil, Seongdong‐guSeoul03722Republic of Korea
| | - Dae‐Hyun Kim
- Department of Veterinary SurgeryChungnam National University College of Veterinary Medicine99, Daehak‐roYuseong‐guDaejeon34134Republic of Korea
| | - Hak‐Joon Sung
- Department of Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
- TMD LAB Co. Ltd.6th floor, 31, Gwangnaru‐ro 8‐gil, Seongdong‐guSeoul03722Republic of Korea
- Department of Brain Korea 21 FOUR Project for Medical Science and Medical EngineeringYonsei University College of Medicine50–1 Yonsei‐roSeodaemun‐guSeoul03722Republic of Korea
| |
Collapse
|
8
|
Wu J, Nie Y, Wang J, Feng G, Hao L, Ma Y, Li Y, Liu Z. Fcγ receptor-mediated phagocytosis pathway was involved in phagocytosis of mIgM + B lymphocytes from largemouth bass (Micropterus salmoides). JOURNAL OF FISH BIOLOGY 2023; 102:128-140. [PMID: 36222291 DOI: 10.1111/jfb.15246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The potential for phagocytosis has been proven in teleost B cells, but the research on the regulatory mechanism of phagocytosis remains lacking. In this study, three largemouth bass (Micropterus salmoides) (15 ± 5 g) were injected intraperitoneally with Nocardia seriolae (105 CFU/100 μl/fish) in vivo, and their spleen was collected at 72 h post-infection for mRNA-seq. After the de novo assembly of the paired-end reads, 73,622 unigenes were obtained. Gene expression profiling revealed that 2043 unigenes were differentially expressed after N. seriolae infection, comprising 1285 upregulated and 758 downregulated unigenes (q-value <0.05, log2FC > |2|) of which 181 genes were involved in phagocytosis. The Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis demonstrated that 12 differentially expressed genes (DEG) associated with phagocytosis were enriched in the Fcγ receptor-mediated phagocytosis signalling pathway. In vitro, the phagocytic ability of mIgM+ B lymphocytes was validated using indirect immunofluorescence assay (IIFA) and fluorescence activating cell sorter (FACS), and the phagocytosis rates of the mIgM+ B lymphocytes incubated with a Lyn inhibitor had decreased from 18.533 ± 6.00% to 11.610 ± 4.236% compared with the unblocked group. These results suggested that the Fcγ receptor-mediated phagocytosis signalling pathway had participated in the phagocytosis of B cells and provide further insight into the role of B cells in innate immunology.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yifan Nie
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jingya Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guoqing Feng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Collaborative Innovation Center of GDAAS, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Collaborative Innovation Center of GDAAS, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Collaborative Innovation Center of GDAAS, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Collaborative Innovation Center of GDAAS, China
| |
Collapse
|
9
|
High-Frequency Nanosecond Bleomycin Electrochemotherapy and its Effects on Changes in the Immune System and Survival. Cancers (Basel) 2022; 14:cancers14246254. [PMID: 36551739 PMCID: PMC9776811 DOI: 10.3390/cancers14246254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, a time-dependent and time-independent study on bleomycin-based high-frequency nsECT (3.5 kV/cm × 200 pulses) for the elimination of LLC1 tumours in C57BL/6J mice is performed. We show the efficiency of nsECT (200 ns and 700 ns delivered at 1 kHz and 1 MHz) for the elimination of tumours in mice and increase of their survival. The dynamics of the immunomodulatory effects were observed after electrochemotherapy by investigating immune cell populations and antitumour antibodies at different timepoints after the treatment. ECT treatment resulted in an increased percentage of CD4+ T, splenic memory B and tumour-associated dendritic cell subsets. Moreover, increased levels of antitumour IgG antibodies after ECT treatment were detected. Based on the time-dependent study results, nsECT treatment upregulated PD 1 expression on splenic CD4+ Tr1 cells, increased the expansion of splenic CD8+ T, CD4+CD8+ T, plasma cells and the proportion of tumour-associated pro inflammatory macrophages. The Lin- population of immune cells that was increased in the spleens and tumour after nsECT was identified. It was shown that nsECT prolonged survival of the treated mice and induced significant changes in the immune system, which shows a promising alliance of nanosecond electrochemotherapy and immunotherapy.
Collapse
|
10
|
Response to Matters Arising: Characterization of placental fetal macrophages. Dev Cell 2022; 57:2601-2603. [PMID: 36473457 DOI: 10.1016/j.devcel.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/25/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
Chen et al.1 published a report that casts doubt on our main finding from a recent article.2 Although we acknowledge the importance of their observations, we are reserved about whether their observations would invalidate our conclusions that placental fetal macrophages are generated de novo via placental hemogenic endothelium. This Matters Arising response paper addresses the Chen et al.1 Matters Arising paper published concurrently in Developmental Cell.
Collapse
|
11
|
Yang S, Feng T, Ma C, Wang T, Chen H, Li L, Liu Y, Zhou B, Zhou R, Li H. Early Pregnancy Human Decidua Gamma/Delta T Cells Exhibit Tissue Resident and Specific Functional Characteristics. Mol Hum Reprod 2022; 28:6618535. [PMID: 35758607 DOI: 10.1093/molehr/gaac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
A successful pregnancy is a complicated process that builds upon two aspects of the maternal immune system that need to be balanced. As one of the indispensable groups of immune cell at the maternal-fetal interface, the decidual gamma/delta (γδ) T cells have attracted research attention in normal pregnancy and miscarriage. However, the role of γδ T cells in fetal growth remains poorly understood. Here we found that the γδ T cell population resident in decidua during early pregnancy was enriched and secreted growth factors including growth differentiation factor 15 (GDF15) and bone morphogenetic protein 1 (BMP1). A diminution in such growth factors may impair fetal development and result in fetal growth restriction. We also observed that early decidual γδ T cells exhibited stronger cytokine-secretion characteristics, but that their cytotoxic actions against A549 cells were weaker, compared with γδ T cells in peripheral blood mononuclear cells (PBMCs). In addition, the functional abilities of early decidual γδ T cells in promoting trophoblast cell proliferation, migration, invasion, and tube formation were also significantly more robust than in γδ T cells of PBMCs. These findings highlight the importance of γδ T cells in fetal growth and maternal immunotolerance during pregnancy, and show that they differ from γδ T cells in PBMCs. We thus recommend additional investigation in this research area to further elucidate a role for γδ T cells in pregnancy.
Collapse
Affiliation(s)
- Shuo Yang
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ting Feng
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - ChengYong Ma
- West China Hospital of Sichuan University, Chengdu, China
| | - Tiehao Wang
- West China Hospital of Sichuan University, Chengdu, China
| | - Hongqin Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital,Sichuan University, Chengdu, China
| | - Liman Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Liu
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Zhou
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital,Sichuan University, Chengdu, China
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Hegde M, Bhat SM, Guruprasad KP, Moka R, Ramachandra L, Satyamoorthy K, Joshi MB. Human breast tumor derived endothelial cells exhibit distinct biological properties. Biol Cell 2021; 114:73-85. [PMID: 34755911 DOI: 10.1111/boc.202100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND INFORMATION Excessive angiogenesis characterized by leaky, tortuous, and chaotic vasculature is one of the hallmarks of cancers and is significantly correlated to poor prognosis. Disorganized angiogenesis leads to poor perfusion of anti-cancer drugs and limits access to immune cells. Hence, impeding angiogenesis is one of the attractive therapeutic targets to inhibit progression and metastasis in several solid tumors including breast. RESULTS We have developed a robust and reproducible method for isolating and ex vivo culture of endothelial cells (EC) derived from non-malignant (Endo-N) and malignant (Endo-T) part from clinically characterized human breast tumors. RT-PCR and immunoblotting analysis indicated that these cells exhibited expression of endothelial specific genes such as PECAM-1 (CD31), Endoglin (CD105), eNOS, VE-cadherin, VCAM1, and MCAM. Vasculogenic mimicry and contamination of progenitor EC recruited in tumors was ruled out by absence of CD133 expression and normal karyotype. Both the cell types showed stable expression of CD31 and CD105 up to seven passages. Furthermore, compared to Endo-N cells, Endo-T cells showed (a) constitutively increased proliferation marked by nearly 36% of cells in mitotic phase, (b) requirement of glutamine for cell survival, (c) pro-migratory phenotype, (d) produced increased number of sprouts in 3D cultures, and (e) resistance to sorafenib. CONCLUSION Tumor derived EC showed distinct biological properties compared to normal breast EC. SIGNIFICANCE Our method for isolating endothelial cell types from human breast tumors may be explored to (a) understand cellular and molecular mechanisms, (b) screen anti-angiogenic molecules, and (c) formulate organoid cultures to develop personalized medicine facilitating better clinical management of breast cancers.
Collapse
Affiliation(s)
- Mangala Hegde
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sharath Mohan Bhat
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Kanive Parashiva Guruprasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Rajasekhar Moka
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Lingadakai Ramachandra
- Department of Surgery, Kasturba Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
13
|
Wang T, Zhou P, Xie X, Tomita Y, Cho S, Tsirukis D, Lam E, Luo HR, Sun Y. Myeloid lineage contributes to pathological choroidal neovascularization formation via SOCS3. EBioMedicine 2021; 73:103632. [PMID: 34688035 PMCID: PMC8546367 DOI: 10.1016/j.ebiom.2021.103632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
Background Pathological neovascularization in neovascular age-related macular degeneration (nAMD) is the leading cause of vision loss in the elderly. Increasing evidence shows that cells of myeloid lineage play important roles in controlling pathological endothelium formation. Suppressor of cytokine signaling 3 (SOCS3) pathway has been linked to neovascularization. Methods We utilised a laser-induced choroidal neovascularization (CNV) mouse model to investigate the neovascular aspect of human AMD. In several cell lineage reporter mice, bone marrow chimeric mice and Socs3 loss-of-function (knockout) and gain-of-function (overexpression) mice, immunohistochemistry, confocal, and choroidal explant co-culture with bone marrow-derived macrophage medium were used to study the mechanisms underlying pathological CNV formation via myeloid SOCS3. Findings SOCS3 was significantly induced in myeloid lineage cells, which were recruited into the CNV lesion area. Myeloid Socs3 overexpression inhibited laser-induced CNV, reduced myeloid lineage-derived macrophage/microglia recruitment onsite, and attenuated pro-inflammatory factor expression. Moreover, SOCS3 in myeloid regulated vascular sprouting ex vivo in choroid explants and SOCS3 agonist reduced in vivo CNV. Interpretation These findings suggest that myeloid lineage cells contributed to pathological CNV formation regulated by SOCS3. Funding This project was funded by NIH/NEI (R01EY030140, R01EY029238), BrightFocus Foundation, American Health Assistance Foundation (AHAF), and Boston Children's Hospital Ophthalmology Foundation for YS and the National Institutes of Health/National Heart, Lung and Blood Institute (U01HL098166) for PZ.
Collapse
Affiliation(s)
- Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Pingzhu Zhou
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Xuemei Xie
- Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Yohei Tomita
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Steve Cho
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Demetrios Tsirukis
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hongbo Robert Luo
- Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School, Boston, MA, USA; Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Cao S, Wang Y, Li J, Ling X, Zhang Y, Zhou Y, Zhong H. Prognostic Implication of the Expression Level of PECAM-1 in Non-small Cell Lung Cancer. Front Oncol 2021; 11:587744. [PMID: 33828969 PMCID: PMC8019905 DOI: 10.3389/fonc.2021.587744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Lung cancer is a malignant disease that threatens human health. Hence, it is crucial to identify effective prognostic factors and treatment targets. Single-cell RNA sequencing can quantify the expression profiles of transcripts in individual cells. Methods: GSE117570 profiles were downloaded from the Gene Expression Omnibus database. Key ligand-receptor genes in the tumor and the normal groups were screened to identify integrated differentially expressed genes (DEGs) from the GSE118370 and The Cancer Genome Atlas Lung Adenocarcinoma databases. DEGs associated with more ligand-receptor pairs were selected as candidate DEGs for Gene Ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and survival analysis. In addition, we conducted validation immunohistochemical experiments on postoperative specimens of 30 patients with lung cancer. Results: A total of 18 candidate DEGs were identified from the tumor and the normal groups. The analysis of the GO biological process revealed that these DEGs were mainly enriched in wound healing, in response to wounding, cell migration, cell motility, and regulation of cell motility, while the KEGG pathway analysis found that these DEGs were mainly enriched in proteoglycans in cancer, bladder cancer, malaria, tyrosine kinase inhibitor resistance in Epidermal Growth Factor Receptor (EGFR), and the ERBB signaling pathway. Survival analysis showed that a high, rather than a low, expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) was associated with improved survival. Similarly, in postoperative patients with lung cancer, we found that the overall survival of the PECAM-1 high-expression group shows a better trend than the PECAM-1 low-expression group (p = 0.172). Conclusions: The candidate DEGs identified in this study may play some important roles in the occurrence and development of lung cancer, especially PECAM-1, which may present potential prognostic biomarkers for the outcome.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhou
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hua Zhong
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
15
|
Parada N, Romero-Trujillo A, Georges N, Alcayaga-Miranda F. Camouflage strategies for therapeutic exosomes evasion from phagocytosis. J Adv Res 2021; 31:61-74. [PMID: 34194832 PMCID: PMC8240105 DOI: 10.1016/j.jare.2021.01.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background Even though exosome-based therapy has been shown to be able to control the progression of different pathologies, the data revealed by pharmacokinetic studies warn of the low residence time of exogenous exosomes in circulation that can hinder the clinical translation of therapeutic exosomes. The macrophages related to the organs of the mononuclear phagocytic system are responsible primarily for the rapid clearance and retention of exosomes, which strongly limits the amount of exosomal particles available to reach the target tissue, accumulate in it and release with high efficiency its therapeutic cargo in acceptor target cells to exert the desired biological effect. Aim of review Endowing exosomes with surface modifications to evade the immune system is a plausible strategy to contribute to the suppression of exosomal clearance and increase the efficiency of their targeted content delivery. Here, we summarize the current evidence about the mechanisms underlying the recognition and sequestration of therapeutic exosomes by phagocytic cells. Also, we propose different strategies to generate 'invisible' exosomes for the immune system, through the incorporation of different anti-phagocytic molecules on the exosomes’ surface that allow increasing the circulating half-life of therapeutic exosomes with the purpose to increase their bioavailability to reach the target tissue, transfer their therapeutic molecular cargo and improve their efficacy profile. Key scientific concepts of review Macrophage-mediated phagocytosis are the main responsible behind the short half-life in circulation of systemically injected exosomes, hindering their therapeutic effect. Exosomes ‘Camouflage Cloak’ strategy using antiphagocytic molecules can contribute to the inhibition of exosomal clearance, hence, increasing the on-target effect. Some candidate molecules that could exert an antiphagocytic role are CD47, CD24, CD44, CD31, β2M, PD-L1, App1, and DHMEQ. Pre- and post-isolation methods for exosome engineering are compatible with the loading of therapeutic cargo and the expression of antiphagocytic surface molecules.
Collapse
Affiliation(s)
- Nicol Parada
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Alfonso Romero-Trujillo
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Nicolás Georges
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisca Alcayaga-Miranda
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| |
Collapse
|
16
|
Baba T, Miyazaki D, Inata K, Uotani R, Miyake H, Sasaki SI, Shimizu Y, Inoue Y, Nakamura K. Role of IL-4 in bone marrow driven dysregulated angiogenesis and age-related macular degeneration. eLife 2020; 9:54257. [PMID: 32366355 PMCID: PMC7200155 DOI: 10.7554/elife.54257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/19/2020] [Indexed: 12/15/2022] Open
Abstract
Age-associated sterile inflammation can cause dysregulated choroidal neovascularization (CNV) as age-related macular degeneration (AMD). Intraocular fluid screening of 234 AMD patients identified high levels of IL-4. The purpose of this study was to determine the functional role of IL-4 in CNV formation using murine CNV model. Our results indicate that the IL-4/IL-4 receptors (IL4Rs) controlled tube formation and global proangiogenic responses of bone marrow cells. CCR2+ bone marrow cells were recruited to form very early CNV lesions. IL-4 rapidly induces CCL2, which enhances recruitment of CCR2+ bone marrow cells. This in vivo communication, like quorum-sensing, was followed by the induction of IL-4 by the bone marrow cells during the formation of mature CNVs. For CNV development, IL-4 in bone marrow cells are critically required, and IL-4 directly promotes CNV formation mainly by IL-4R. The IL-4/IL-4Rα axis contributes to pathological angiogenesis through communications with bone marrow cells leading to retinal degeneration.
Collapse
Affiliation(s)
- Takashi Baba
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Dai Miyazaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kodai Inata
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Ryu Uotani
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hitomi Miyake
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Shin-Ichi Sasaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yumiko Shimizu
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshitsugu Inoue
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kazuomi Nakamura
- Division of Pathological Biochemistry, Department of Biomedical Sciences, Faculty of Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
17
|
Abstract
The potential of CD31 as a therapeutic target in atherosclerosis has been considered ever since its cloning in the 1990s, but the exact role played by this molecule in the biologic events underlying atherosclerosis has remained controversial, resulting in the stalling of any therapeutic perspective. Due to the supposed cell adhesive properties of CD31, specific monoclonal antibodies and recombinant proteins were regarded as blocking agents because their use prevented the arrival of leukocytes at sites of acute inflammation. However, the observed effect of those compounds likely resulted from the engagement of the immunomodulatory function of CD31 signaling. This was acknowledged only later though, upon the discovery of CD31's 2 intracytoplasmic tyrosine residues called immunoreceptor tyrosine inhibitory motifs. A growing body of evidence currently points at a therapeutic potential for CD31 agonists in atherothrombosis. Clinical observations show that CD31 expression is altered at the surface of leukocytes infiltrating unhealed atherothrombotic lesions and that the physiological immunomodulatory functions of CD31 are lost at the surface of blood leukocytes in patients with acute coronary syndromes. On the contrary, translational studies using candidate therapeutic molecules in laboratory animals have provided encouraging results: synthetic peptides administered to atherosclerotic mice as systemic drugs in the acute phases of atherosclerotic complications favor the healing of wounded arteries, whereas the immobilization of CD31 agonist peptides onto coronary stents implanted in farm pigs favors their peaceful integration within the coronary arterial wall.
Collapse
Affiliation(s)
- Giuseppina Caligiuri
- From the Laboratory for Vascular Translational Science, Inserm U1148, Université de Paris, France; and Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Nord Val-de-Seine, Site Bichat, France
| |
Collapse
|