1
|
Wu Y, Sun Z, Xia L, Tian P, Jiao L, Li Y, Wei Z, Wang X, Li X, Zhang G. MHC-I pathway disruption by viruses: insights into immune evasion and vaccine design for animals. Front Immunol 2025; 16:1540159. [PMID: 40406104 PMCID: PMC12095009 DOI: 10.3389/fimmu.2025.1540159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/11/2025] [Indexed: 05/26/2025] Open
Abstract
Among various pathogens, viruses pose significant threats to the livestock and poultry industry, resulting in substantial annual costs due to production losses and vaccination. The MHC-I presentation pathway is a crucial surveillance mechanism for preventing viral infections. Consequently, many viruses have evolved sophisticated strategies to inhibit the presentation of viral peptides by MHC-I to CD8+ T-cells, thereby evading the immune system. Understanding the mechanisms that suppress the MHC-I pathway and identifying specific binding peptides are essential for comprehending viral immune evasion and developing effective animal vaccines. This review summarizes the viral strategies for evading immune recognition, including the inhibition of MHC-I molecules synthesis, degradation, transport, and assembly, which affect MHC-I surface expression during viral infections. We also present evidence that MHC-I surface expression is frequently lost during numerous viral infections in livestock and poultry and offer new insights into the underlying mechanisms through which viruses inactivate the MHC-I antigen presentation pathway. Collectively, these advanced findings on viral evasion from the MHC-I pathway could inform the development of more effectives strategies to restore immunological control over viral infections and improve vaccines for the livestock and poultry industry.
Collapse
Affiliation(s)
- Yanan Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhuoya Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lu Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Panpan Tian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Liuyang Jiao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanze Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xuannian Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory of Advanced Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory of Advanced Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
He K, Shinzawa Y, Iwabuchi S, Hashimoto S, Sasaki SI, Hayakawa Y. Homeostatic self-MHC-I recognition regulates anti-metastatic function of mature lung natural killer cells. Biochem Biophys Res Commun 2024; 738:150906. [PMID: 39527850 DOI: 10.1016/j.bbrc.2024.150906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Natural killer (NK) cells are important innate immune effector cells for controlling tumor growth and metastasis. Differentiated mature NK cells preferentially reside in the peripheral tissues and express higher levels of self-major histocompatibility complex class I (MHC-I)-recognizing inhibitory receptors. MHC-I recognition by NK cells are known to be important for their development and maturation processes, however, the role of homeostatic MHC-I recognition in maintaining effector functions of mature NK cells in the peripheral tissues needs to be elucidated. In this study, we utilized a pan anti-MHC-I blocking monoclonal antibody (anti-MHC-I) to examine the role of homeostatic MHC-I recognition in the response of pulmonary mature NK cells in an experimental lung metastasis model of B16F10 melanoma. Anti-MHC-I treatment showed significant inhibition of the lung metastasis of B16F10 melanoma in NK cell- and IFN-γ-dependent mechanisms. The blockade of homeostatic MHC-I recognition increased mature lung NK cell responsiveness, such as direct cytotoxicity and IFN-γ production, rather than the number of lung NK cells. Mechanistically, the gene expression of activating receptors including DNAX accessory molecule-1 (DNAM-1) was upregulated in NK cells treated with anti-MHC-I, and further the enhanced NK cell cytotoxicity against B16F10 cells was DNAM-1-dependent. Collectively, homeostatic self-MHC-I recognition regulates anti-metastatic function of mature lung NK cells by restraining the expression of activating receptors.
Collapse
Affiliation(s)
- Ka He
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama-shi, Toyama, 930-0194, Japan.
| | - Yui Shinzawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama-shi, Toyama, 930-0194, Japan.
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, 641-8509, Wakayama, Japan.
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama-shi, 641-8509, Wakayama, Japan.
| | - So-Ichiro Sasaki
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama-shi, Toyama, 930-0194, Japan.
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama-shi, Toyama, 930-0194, Japan.
| |
Collapse
|
3
|
Boyd LF, Jiang J, Ahmad J, Natarajan K, Margulies DH. Experimental Structures of Antibody/MHC-I Complexes Reveal Details of Epitopes Overlooked by Computational Prediction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1366-1380. [PMID: 38456672 PMCID: PMC10982845 DOI: 10.4049/jimmunol.2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
mAbs to MHC class I (MHC-I) molecules have proved to be crucial reagents for tissue typing and fundamental studies of immune recognition. To augment our understanding of epitopic sites seen by a set of anti-MHC-I mAb, we determined X-ray crystal structures of four complexes of anti-MHC-I Fabs bound to peptide/MHC-I/β2-microglobulin (pMHC-I). An anti-H2-Dd mAb, two anti-MHC-I α3 domain mAbs, and an anti-β2-microglobulin mAb bind pMHC-I at sites consistent with earlier mutational and functional experiments, and the structures explain allelomorph specificity. Comparison of the experimentally determined structures with computationally derived models using AlphaFold Multimer showed that although predictions of the individual pMHC-I heterodimers were quite acceptable, the computational models failed to properly identify the docking sites of the mAb on pMHC-I. The experimental and predicted structures provide insight into strengths and weaknesses of purely computational approaches and suggest areas that merit additional attention.
Collapse
Affiliation(s)
- Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Persky J, Cruz SM, Darrow MA, Judge SJ, Li Y, Bold RJ, Karnezis AN, Matsukuma KE, Qi L, Canter RJ. Characterization of natural killer and cytotoxic T-cell immune infiltrates in pancreatic ductal adenocarcinoma. J Surg Oncol 2024; 129:885-892. [PMID: 38196111 PMCID: PMC10980567 DOI: 10.1002/jso.27581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND AND OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor response to systemic therapies, including immunotherapy. Given the immunotherapeutic potential of natural killer (NK) cells, we evaluated intratumoral NK cell infiltrates along with cytotoxic T cells in PDAC to determine their association with patient outcomes. METHODS We analyzed tumors from 93 PDAC patients treated from 2012 to 2020. Predictor variables included tumor-infiltrating lymphocytes (TILs), T-cell markers (CD3, CD8, CD45RO), NK marker (NKp46), and NK inhibitory marker (major histocompatibility complex class I [MHC-I]) by immunohistochemistry. Primary outcome variables were recurrence-free survival (RFS) and overall survival (OS). RESULTS Mean TILs, CD3, and NKp46 scores were 1.3 ± 0.63, 20.6 ± 17.5, and 3.1 ± 3.9, respectively. Higher expression of CD3 and CD8 was associated with higher OS, whereas NK cell infiltration was not associated with either RFS or OS. There was a tight positive correlation between MHC-I expression and all T-cell markers, but not with NKp46. CONCLUSIONS Overall NK cell infiltrates were low in PDAC and did not predict clinical outcomes, whereas T-cell infiltrates did. Further characterization of the immune infiltrate in PDAC, including inhibitory signals and suppressive cell types, may yield better biomarkers of prognosis and immune targeting in this refractory disease.
Collapse
Affiliation(s)
- Julia Persky
- Division of Surgical Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA
| | - Sylvia M. Cruz
- Division of Surgical Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA
| | - Morgan, A. Darrow
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA
| | - Sean J. Judge
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yueju Li
- Division of Biostatistics, Department of Public Health Sciences, UC Davis
| | - Richard J. Bold
- Division of Surgical Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA
| | - Anthony N. Karnezis
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA
| | - Karen E. Matsukuma
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA
| | - Lihong Qi
- Division of Biostatistics, Department of Public Health Sciences, UC Davis
| | - Robert J. Canter
- Division of Surgical Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA
| |
Collapse
|
5
|
Boyd LF, Jiang J, Ahmad J, Natarajan K, Margulies DH. Experimental structures of antibody/MHC-I complexes reveal details of epitopes overlooked by computational prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569627. [PMID: 38106040 PMCID: PMC10723347 DOI: 10.1101/2023.12.01.569627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Monoclonal antibodies (mAb) to major histocompatibility complex class I (MHC-I) molecules have proved to be crucial reagents for tissue typing and fundamental studies of immune recognition. To augment our understanding of epitopic sites seen by a set of anti-MHC-I mAb, we determined X-ray crystal structures of four complexes of anti-MHC-I antigen-binding fragments (Fab) bound to peptide/MHC-I/β2m (pMHC-I). An anti-H2-Dd mAb, two anti-MHC-I α3 domain mAb, and an anti-β2-microglobulin (β2m) mAb bind pMHC-I at sites consistent with earlier mutational and functional experiments, and the structures explain allelomorph specificity. Comparison of the experimentally determined structures with computationally derived models using AlphaFold Multimer (AF-M) showed that although predictions of the individual pMHC-I heterodimers were quite acceptable, the computational models failed to properly identify the docking sites of the mAb on pMHC-I. The experimental and predicted structures provide insight into strengths and weaknesses of purely computational approaches and suggest areas that merit additional attention.
Collapse
Affiliation(s)
| | | | - Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892-1892
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892-1892
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892-1892
| |
Collapse
|
6
|
Panda AK, Kim YH, Shevach EM. Control of Memory Phenotype T Lymphocyte Homeostasis: Role of Costimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:851-860. [PMID: 35039334 DOI: 10.4049/jimmunol.2100653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Foxp3+ T regulatory cells (Tregs), CD4+Foxp3- T cells, and CD8+ T cells are composed of naive phenotype (NP) and memory phenotype (MP) subsets. Ten to 20% of each MP T cell population are cycling (Ki-67+) in vivo. We investigated the contribution of costimulatory (CD28) and coinhibitory (CTLA-4, PD-1) receptors on MP T cell homeostatic proliferation in vivo in the mouse. Blockade of CD28-CD80/CD86 signaling completely abolished MP Tregs and profoundly inhibited MP CD4+Foxp3- T cell proliferation, but it did not affect MP CD8+ T cell proliferation. Marked enhancement of homeostatic proliferation of MP Tregs and MP CD4+Foxp3- T cells was seen after blocking CTLA4-CD80/CD86 interactions and PD-1-PD-L1/2 interactions, and greater enhancement was seen with blockade of both pathways. The CD28 pathway also played an important role in the expansion of Tregs and MP T cells after treatment of mice with agonistic Abs to members of the TNF receptor superfamily, which can act directly (anti-GITR, anti-OX40, anti-4-1BB) or indirectly (anti-CD40) on T cells. Induction of a cytokine storm by blocking the interaction of NK inhibitory receptors with MHC class I had no effect on Treg homeostasis, enhanced MP CD4+ proliferation, and expansion in a CD28-dependent manner, but it enhanced MP CD8+ T cell proliferation in a CD28-independent manner. Because MP T cells exert potent biologic effects primarily before the induction of adaptive immune responses, these findings have important implications for the use of biologic agents designed to suppress autoimmune disease or enhance T effector function in cancer that may have negative effects on MP T cells.
Collapse
Affiliation(s)
- Abir K Panda
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Yong-Hee Kim
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ethan M Shevach
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|