1
|
Hollis WC, Farooq S, Khoshi MR, Patel M, Karnaukhova E, Eller N, Holada K, Scott DE, Simak J. Submicron immunoglobulin particles exhibit FcγRII-dependent toxicity linked to autophagy in TNFα-stimulated endothelial cells. Cell Mol Life Sci 2024; 81:376. [PMID: 39212707 PMCID: PMC11364738 DOI: 10.1007/s00018-024-05342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024]
Abstract
In intravenous immunoglobulins (IVIG), and some other immunoglobulin products, protein particles have been implicated in adverse events. Role and mechanisms of immunoglobulin particles in vascular adverse effects of blood components and manufactured biologics have not been elucidated. We have developed a model of spherical silica microparticles (SiMPs) of distinct sizes 200-2000 nm coated with different IVIG- or albumin (HSA)-coronas and investigated their effects on cultured human umbilical vein endothelial cells (HUVEC). IVIG products (1-20 mg/mL), bare SiMPs or SiMPs with IVIG-corona, did not display significant toxicity to unstimulated HUVEC. In contrast, in TNFα-stimulated HUVEC, IVIG-SiMPs induced decrease of HUVEC viability compared to HSA-SiMPs, while no toxicity of soluble IVIG was observed. 200 nm IVIG-SiMPs after 24 h treatment further increased ICAM1 (intercellular adhesion molecule 1) and tissue factor surface expression, apoptosis, mammalian target of rapamacin (mTOR)-dependent activation of autophagy, and release of extracellular vesicles, positive for mitophagy markers. Toxic effects of IVIG-SiMPs were most prominent for 200 nm SiMPs and decreased with larger SiMP size. Using blocking antibodies, toxicity of IVIG-SiMPs was found dependent on FcγRII receptor expression on HUVEC, which increased after TNFα-stimulation. Similar results were observed with different IVIG products and research grade IgG preparations. In conclusion, submicron particles with immunoglobulin corona induced size-dependent toxicity in TNFα-stimulated HUVEC via FcγRII receptors, associated with apoptosis and mTOR-dependent activation of autophagy. Testing of IVIG toxicity in endothelial cells prestimulated with proinflammatory cytokines is relevant to clinical conditions. Our results warrant further studies on endothelial toxicity of sub-visible immunoglobulin particles.
Collapse
Affiliation(s)
- Wanida C Hollis
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Sehrish Farooq
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - M Reza Khoshi
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Mehulkumar Patel
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
- Center for Devices and Radiological Health, FDA, Silver Spring, MD, USA
| | - Elena Karnaukhova
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Nancy Eller
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dorothy E Scott
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Jan Simak
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA.
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, OBRR, 10903 New Hampshire Avenue, WO Bldg. 52/72, Rm. 4210, Silver Spring, MD, USA.
| |
Collapse
|
2
|
Wang J, An H, Ding M, Liu Y, Wang S, Jin Q, Wu Q, Dong H, Guo Q, Tian X, Liu J, Zhang J, Zhu T, Li J, Shao Z, Briles DE, Veening JW, Zheng H, Zhang L, Zhang JR. Liver macrophages and sinusoidal endothelial cells execute vaccine-elicited capture of invasive bacteria. Sci Transl Med 2023; 15:eade0054. [PMID: 38117903 DOI: 10.1126/scitranslmed.ade0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Vaccination has substantially reduced the morbidity and mortality of bacterial diseases, but mechanisms of vaccine-elicited pathogen clearance remain largely undefined. We report that vaccine-elicited immunity against invasive bacteria mainly operates in the liver. In contrast to the current paradigm that migrating phagocytes execute vaccine-elicited immunity against blood-borne pathogens, we found that invasive bacteria are captured and killed in the liver of vaccinated host via various immune mechanisms that depend on the protective potency of the vaccine. Vaccines with relatively lower degrees of protection only activated liver-resident macrophage Kupffer cells (KCs) by inducing pathogen-binding immunoglobulin M (IgM) or low amounts of IgG. IgG-coated pathogens were directly captured by KCs via multiple IgG receptors FcγRs, whereas IgM-opsonized bacteria were indirectly bound to KCs via complement receptors of immunoglobulin superfamily (CRIg) and complement receptor 3 (CR3) after complement C3 activation at the bacterial surface. Conversely, the more potent vaccines engaged both KCs and liver sinusoidal endothelial cells by inducing higher titers of functional IgG antibodies. Endothelial cells (ECs) captured densely IgG-opsonized pathogens by the low-affinity IgG receptor FcγRIIB in a "zipper-like" manner and achieved bacterial killing predominantly in the extracellular milieu via an undefined mechanism. KC- and endothelial cell-based capture of antibody-opsonized bacteria also occurred in FcγR-humanized mice. These vaccine protection mechanisms in the liver not only provide a comprehensive explanation for vaccine-/antibody-boosted immunity against invasive bacteria but also may serve as in vivo functional readouts of vaccine efficacy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Ding
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanhong Liu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shaomeng Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qian Jin
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qi Wu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haodi Dong
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qile Guo
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xianbin Tian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | - Tao Zhu
- Cansino Biologics, Tianjin 300301, China
| | | | - Zhujun Shao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102299, China
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Linqi Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Stam JC, de Maat S, de Jong D, Arens M, van Lint F, Gharu L, van Roosmalen MH, Roovers RC, Strokappe NM, Wagner R, Kliche A, de Haard HJ, van Bergen En Henegouwen PM, Nijhuis M, Verrips CT. Directing HIV-1 for degradation by non-target cells, using bi-specific single-chain llama antibodies. Sci Rep 2022; 12:13413. [PMID: 35927444 PMCID: PMC9352707 DOI: 10.1038/s41598-022-15993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
While vaccination against HIV-1 has been so far unsuccessful, recently broadly neutralizing antibodies (bNAbs) against HIV-1 envelope glycoprotein were shown to induce long-term suppression in the absence of antiretroviral therapy in patients with antibody-sensitive viral reservoirs. The requirement of neutralizing antibodies indicates that the antibody mediated removal (clearance) of HIV-1 in itself is not efficient enough in these immune compromised patients. Here we present a novel, alternative approach that is independent of a functional immune system to clear HIV-1, by capturing the virus and redirecting it to non-target cells where it is internalized and degraded. We use bispecific antibodies with domains derived from small single chain Llama antibodies (VHHs). These bind with one domain to HIV-1 envelope proteins and with the other domain direct the virus to cells expressing epidermal growth factor receptor (EGFR), a receptor that is ubiquitously expressed in the body. We show that HIV envelope proteins, virus-like particles and HIV-1 viruses (representing HIV-1 subtypes A, B and C) are efficiently recruited to EGFR, internalized and degraded in the lysosomal pathway at low nM concentrations of bispecific VHHs. This directed degradation in non-target cells may provide a clearance platform for the removal of viruses and other unwanted agents from the circulation, including toxins, and may thus provide a novel method for curing.
Collapse
Affiliation(s)
- Jord C Stam
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| | - Steven de Maat
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Dorien de Jong
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mathia Arens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Fenna van Lint
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark H van Roosmalen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Intervet, Wim de Körverstraat 35, 5831 AN, Boxmeer, The Netherlands
| | - Rob C Roovers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
- LAVA Therapeutics, Yalelaan 60, 3584CM, Utrecht, The Netherlands
| | - Nika M Strokappe
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Ralf Wagner
- Molecular Microbiology and Gene Therapy, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Alexander Kliche
- Molecular Microbiology and Gene Therapy, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Hans J de Haard
- Argenx, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Belgium
| | - Paul M van Bergen En Henegouwen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Theo Verrips
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
- QVQ Holding BV, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
4
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
Affiliation(s)
- Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
| | - Wei-Lin Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China.
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
5
|
Spencer DA, Goldberg BS, Pandey S, Ordonez T, Dufloo J, Barnette P, Sutton WF, Henderson H, Agnor R, Gao L, Bruel T, Schwartz O, Haigwood NL, Ackerman ME, Hessell AJ. Phagocytosis by an HIV antibody is associated with reduced viremia irrespective of enhanced complement lysis. Nat Commun 2022; 13:662. [PMID: 35115533 PMCID: PMC8814042 DOI: 10.1038/s41467-022-28250-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Increasingly, antibodies are being used to treat and prevent viral infections. In the context of HIV, efficacy is primarily attributed to dose-dependent neutralization potency and to a lesser extent Fc-mediated effector functions. It remains unclear whether augmenting effector functions of broadly neutralizing antibodies (bNAbs) may improve their clinical potential. Here, we use bNAb 10E8v4 targeting the membrane external proximal region (MPER) to examine the role of antibody-mediated effector and complement (C’) activity when administered prophylactically against SHIV challenge in rhesus macaques. With sub-protective dosing, we find a 78–88% reduction in post-acute viremia that is associated with 10E8v4-mediated phagocytosis acting at the time of challenge. Neither plasma nor tissue viremic outcomes in vivo is improved with an Fc-modified variant of 10E8v4 enhanced for C’ functions as determined in vitro. These results suggest that effector functions inherent to unmodified 10E8v4 contribute to efficacy against SHIVSF162P3 in the absence of plasma neutralizing titers, while C’ functions are dispensable in this setting, informing design of bNAb modifications for improving protective efficacy. While antibodies neutralize HIV via Fab recognition of viral surface antigens, antibody Fc domains mediate effector functions, including antibody-dependent cellular phagocytosis (ADCP) and cytotoxicity (ADCC), and complement (C') activity. Here, Spencer et al. modify bNAb 10E8v4 to enhance C'-mediated potency in SHIV challenged rhesus macaques to probe its function in protection, showing that in the absence of neutralization, enhancing C' activities in vitro adds no value toward reducing viremia in either blood or tissue.
Collapse
Affiliation(s)
- David A Spencer
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.,Absci Corp, 1810 SE Mill Plain Blvd., Vancouver, WA, 98683, USA
| | | | - Shilpi Pandey
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Tracy Ordonez
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jérémy Dufloo
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Institute for Integrative Systems Biology, University of Valencia-CSIC, Calle Catedràtic Agustín Escardino Benlloch 9, 46980, Paterna, Valencia, Spain
| | - Philip Barnette
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - William F Sutton
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Heidi Henderson
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Rebecca Agnor
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lina Gao
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.,Department of Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | - Ann J Hessell
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| |
Collapse
|
6
|
Cabral F, Al-Rahem M, Skaggs J, Thomas TA, Kumar N, Wu Q, Fadda P, Yu L, Robinson JM, Kim J, Pandey E, Sun X, Jarjour WN, Rajaram MV, Harris EN, Ganesan LP. Stabilin receptors clear LPS and control systemic inflammation. iScience 2021; 24:103337. [PMID: 34816100 PMCID: PMC8591421 DOI: 10.1016/j.isci.2021.103337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 01/17/2023] Open
Abstract
Lipopolysaccharides (LPSs) cause lethal endotoxemia if not rapidly cleared from blood circulation. Liver sinusoidal endothelial cells (LSEC) systemically clear LPS by unknown mechanisms. We discovered that LPS clearance through LSEC involves endocytosis and lysosomal inactivation via Stabilin-1 and 2 (Stab1 and Stab2) but does not involve TLR4. Cytokine production was inversely related to clearance/endocytosis of LPS by LSEC. When exposed to LPS, Stabilin double knockout mice (Stab DK) and Stab1 KO, but not Stab2 KO, showed significantly enhanced systemic inflammatory cytokine production and early death compared with WT mice. Stab1 KO is not significantly different from Stab DK in circulatory LPS clearance, LPS uptake and endocytosis by LSEC, and cytokine production. These data indicate that (1) Stab1 receptor primarily facilitates the proactive clearance of LPS and limits TLR4-mediated inflammation and (2) TLR4 and Stab1 are functionally opposing LPS receptors. These findings suggest that endotoxemia can be controlled by optimizing LPS clearance by Stab1.
Collapse
Affiliation(s)
- Fatima Cabral
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Mustafa Al-Rahem
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John Skaggs
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thushara A. Thomas
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Naresh Kumar
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Paolo Fadda
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - John M. Robinson
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jonghan Kim
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, MA 01854, USA
| | - Ekta Pandey
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Wael N. Jarjour
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Murugesan V.S. Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Latha P. Ganesan
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|