1
|
Yang J, des Rieux A, Malfanti A. Stimuli-Responsive Nanomedicines for the Treatment of Non-cancer Related Inflammatory Diseases. ACS NANO 2025. [PMID: 40249331 DOI: 10.1021/acsnano.5c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Nanomedicines offer a means to overcome the limitations associated with traditional drug dosage formulations by affording drug protection, enhanced drug bioavailability, and targeted drug delivery to affected sites. Inflamed tissues possess unique microenvironmental characteristics (including excessive reactive oxygen species, low pH levels, and hypoxia) that stimuli-responsive nanoparticles can employ as triggers to support on-demand delivery, enhanced accumulation, controlled release, and activation of anti-inflammatory drugs. Stimuli-responsive nanomedicines respond to physicochemical and pathological factors associated with diseased tissues to improve the specificity of drug delivery, overcome multidrug resistance, ensure accurate diagnosis and precision therapy, and control drug release to improve efficacy and safety. Current stimuli-responsive nanoparticles react to intracellular/microenvironmental stimuli such as pH, redox, hypoxia, or specific enzymes and exogenous stimuli such as temperature, magnetic fields, light, and ultrasound via bioresponsive moieties. This review summarizes the general strategies employed to produce stimuli-responsive nanoparticles tailored for inflammatory diseases and all recent advances, reports their applications in drug delivery, and illustrates the progress made toward clinical translation.
Collapse
Affiliation(s)
- Jingjing Yang
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Anne des Rieux
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
2
|
Zhang X, Chen X, Bai T, Meng X, Wu Y, Yang A, Lin M, Chen H, Li X. Reducing Luminal Extracellular Adenosine Triphosphate Levels Alleviates Food Allergy Induced by an Egg White Diet in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5562-5572. [PMID: 40040493 DOI: 10.1021/acs.jafc.4c12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The development of food allergies is typically associated with extensive intestinal inflammation. As a key inflammatory signaling molecule, the precise roles of extracellular adenosine triphosphate in food allergies require further elucidation. Our previous research reported that continuous food allergen exposure led to increased accumulation of luminal extracellular adenosine triphosphate (eATP). In the present study, we demonstrate that the deficient expression of intestinal ENTPD1, an eATP ectoenzyme that can quickly hydrolyze ATP to AMP, likely contributes to the excessive accumulation of luminal eATP in allergic mice. Furthermore, we also illustrate that reducing luminal eATP levels can relieve food allergy manifestations and intestinal inflammation through the effects of lowering local and systemic pro-inflammatory cytokine secretion, diminishing intestinal T helper cell activities, decreasing crosstalk between Tfh cells and B cells in Peyer's patches, and improving gut dysbiosis. These findings may offer new perspectives for understanding the roles of eATP in food allergies and the mechanisms of food allergy development.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Tianliang Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Anshu Yang
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Min Lin
- Department of Dermatology, Jiangxi Provincial Children's Hospital, Nanchang 330006, Jiangxi, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| |
Collapse
|
3
|
Wang J, Zhu W, Li X, Wu Y, Ma W, Wang Y, Zhao W, Wei F, Wang W. Transcriptome analysis of ovarian cancer uncovers association between tumor-related inflammation/immunity and patient outcome. Front Pharmacol 2025; 16:1500251. [PMID: 39981173 PMCID: PMC11839622 DOI: 10.3389/fphar.2025.1500251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Background Epithelial ovarian cancer (EOC) is a cancer that affects the female reproductive system and is highly lethal. It poses significant challenges in terms of treatment and often has a poor prognosis. In recent years, with the advent of PARPi, the treatment of ovarian cancer has entered a new stage of full-process management. Although more and more drugs have been approved, the therapeutic effect of PARPi is still very limited. With the rapid development of PD-1/PD-L1, CTLA-4, oncolytic viruses, cancer vaccines, adoptive cell therapy, etc., tumor immunotherapy has provided new opportunities for the treatment of ovarian cancer. Methods This study used comprehensive transcriptome analysis across multiple databases to gather gene transcripts and clinical features of normal ovarian samples and tissue samples from ovarian cancer. The aim was to explore the mechanisms underlying tumor immunotherapy resistance and to reveal the relationship between ovarian cancer's immune microenvironment and genes linked to inflammation. Various R packages were used for differential gene analysis, enrichment analysis, co-expression network construction, and prognostic model building. Results It has been found that the prognosis of ovarian cancer patients is closely associated with sets of genes involved in inflammation. The immune infiltration microenvironment, clinicopathological features, and survival rates differed significantly between two inflammatory gene expression patterns identified using cluster and immune microenvironment analyses. Further analysis revealed that the high-risk group had a higher abundance of M2-type macrophage infiltration, more active anti-tumor immune response, higher tumor stemness score, potentially worse prognosis, and lower response rates to multiple chemotherapy drugs and immune checkpoint inhibitors. Conclusion These findings provide new perspectives and potential targets for immunotherapy and prognostic evaluation of ovarian cancer and offer new strategies and directions for clinical treatment and patient management. This study provides crucial information to further our comprehension of drug response mechanisms and tumor immunotherapy. It offers new strategies and methods for the treatment and prognostic improvement of ovarian cancer.
Collapse
Affiliation(s)
- Jingfang Wang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenrui Zhu
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xia Li
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuanyuan Wu
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenhui Ma
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yangzhou Wang
- Department of Stomatology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Weihong Zhao
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fang Wei
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenhao Wang
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2025; 21:23-38. [PMID: 37966629 PMCID: PMC11904000 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
5
|
Rodríguez-Martínez A, Torrejón-Escribano B, Eritja N, Dorca-Arévalo J, Gabaldón C, Sévigny J, Matias-Guiu X, Martín-Satué M. Endometrial epithelial cell organoids as tools for studying the CD39 family of enzymes and for validating enzyme inhibitors. Histol Histopathol 2025; 40:171-182. [PMID: 38967084 DOI: 10.14670/hh-18-782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Extracellular adenosine triphosphate (ATP) conducts a complex dynamic system of broadly represented cell signaling. Ectonucleotidases are the enzymes with nucleotide hydrolytic ability that regulate ATP levels in physiological and pathological conditions, thus playing a key role in the so-called purinergic signaling. Altered ectonucleotidase expression has been reported in cancer, and the ectonucleoside triphosphate diphosphohydrolase (NTPDase) family of enzymes, with its best-known form NTPDase1 (CD39), is targeted in cancer immunotherapy. The tandem of enzymes CD39-CD73 is responsible for the generation of immunosuppressive adenosine in the tumor microenvironment, and inhibition strategies are of great interest. Organoids have emerged as very convenient models for the study of tumors since they are three-dimensional cultures that retain many of the features of tissue. The present study aims to contribute to improving the methodology and the molecular tools needed for the study of ectonucleotidases in healthy and disease conditions. The study, performed in an endometrial cancer cell model, could be extended to other types of tumors and pathologies in which the purinergic system is involved. We generated organoids from endometrial cancer cells overexpressing NTPDase2 (CD39L1) and NTPDase3 (CD39L3) as fusion proteins with EGFP, and we performed functional assays by adapting in situ cytochemistry protocols. This allowed us to simultaneously detect enzyme activity and protein expression and to demonstrate that organoids can be used to test ectonucleotidase inhibitors-a result that can be used to develop new cancer treatment options.
Collapse
Affiliation(s)
- Aitor Rodríguez-Martínez
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, Barcelona, Spain
| | - Benjamín Torrejón-Escribano
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
- Scientific and Technological Centers (CCiTUB), Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
| | - Núria Eritja
- Departament de Patologia i Genètica Molecular, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Oncologic Pathology Group, Institut d'Investigació Biomèdica de Lleida (IRBLleida), CIBERONC, Universitat de Lleida, Lleida, Spain
| | - Jonatan Dorca-Arévalo
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
| | - Clara Gabaldón
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Xavier Matias-Guiu
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, Barcelona, Spain
- Departament de Patologia i Genètica Molecular, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Oncologic Pathology Group, Institut d'Investigació Biomèdica de Lleida (IRBLleida), CIBERONC, Universitat de Lleida, Lleida, Spain
- Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Mireia Martín-Satué
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, Barcelona, Spain
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Zhou P, Mo D, Huang H, Xu J, Liao B, Wang Y, Mao D, Zeng Z, Huang Z, Zhang C, Yang Y, Yu Y, Pan H, Li R. Integrated transcriptomic analysis reveals dysregulated immune infiltration and pro-inflammatory cytokines in the secretory endometrium of recurrent implantation failure patients. LIFE MEDICINE 2024; 3:lnae036. [PMID: 39872439 PMCID: PMC11749484 DOI: 10.1093/lifemedi/lnae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/19/2024] [Indexed: 01/30/2025]
Abstract
Recurrent implantation failure (RIF) is a leading impediment to assisted reproductive technology, yet the underlying pathogenesis of RIF remains elusive. Recent studies have sought to uncover novel biomarkers and etiological factors of RIF by profiling transcriptomes of endometrial samples. Nonetheless, the inherent heterogeneity among published studies and a scarcity of experimental validations hinder the identification of robust markers of RIF. Hence, we integrated six publicly accessible datasets with 209 samples, including microarray profiles of endometrial samples in the secretory phase. After removing batch effects, we identified 175 differentially expressed genes. Gene set enrichment analysis identified dysregulation of immunological pathways in RIF. We also observed altered immune infiltration and pro-inflammatory cytokines in RIF. Protein-protein interaction network analysis identified ten hub genes, representing two co-expression modules significantly related to RIF. Knockdown of ENTPD3, one of the hub genes, promoted the epithelial-mesenchymal transition process and resulted in elevated levels of pro-inflammatory cytokines. Collectively, our study reveals abnormal gene expressions involving the regulation of epithelial-mesenchymal transition and immune status in RIF, providing valuable insights into its pathogenesis.
Collapse
Affiliation(s)
- Ping Zhou
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Dan Mo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hanji Huang
- Department of Reproductive Medicine, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jiaqi Xu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Baoying Liao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yinxue Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Di Mao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Zhonghong Zeng
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ziying Huang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Chao Zhang
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yihua Yang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Heng Pan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Center for Reproductive Medicine, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| |
Collapse
|
7
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
8
|
Oliva P, Pramanik A, Jung YH, Lewicki SA, Mwendwa JM, Park JH, Jacobson KA. Functionalized Congeners of 2 H-Chromene P2Y 6 Receptor Antagonists. Cells 2024; 13:1366. [PMID: 39195256 PMCID: PMC11352859 DOI: 10.3390/cells13161366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The P2Y6 receptor (P2Y6R), a Gq-coupled receptor, is a potential drug discovery target for various inflammatory and degenerative conditions. Antagonists have been shown to attenuate colitis, acute lung injury, etc. In the search for competitive antagonists, we have investigated the SAR of 3-nitro-2-(trifluoromethyl)-2H-chromene derivatives, although high affinity is lacking. We now reveal that long-chain amino-functionalized congeners display greatly enhanced affinity in the antagonism of UDP-induced Ca2+ mobilization in human (h) P2Y6R-transfected 1321N1 astrocytoma cells. A 6-(Boc-amino-n-heptylethynyl) analogue 30 (MRS4940) had an IC50 of 162 nM, which was a 123-fold greater affinity than the corresponding unprotected primary alkylamine, 107-fold greater than the corresponding pivaloyl derivative 30, and 132-fold selective compared to the P2Y14R. However, similar Boc-amino chains attached at the 8-position produced weak µM affinity. Thus, the P2Y6R affinity depended on the chain length, attachment point, and terminal functionality. Off-target activities, at 45 sites, were tested for acylamino derivatives 20, 24, 26, 30, 31, and 37, which showed multiple interactions, particularly at the biogenic amine receptors. The more potent analogues may be suitable for evaluation in inflammation and cancer models, which will be performed in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (P.O.); (A.P.); (Y.-H.J.); (S.A.L.); (J.M.M.); (J.H.P.)
| |
Collapse
|
9
|
Sharafat RH, Saeed A. Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review. Purinergic Signal 2024:10.1007/s11302-024-10031-0. [PMID: 38958821 DOI: 10.1007/s11302-024-10031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.
Collapse
Affiliation(s)
- R Huzaifa Sharafat
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan.
| |
Collapse
|
10
|
Shafaghat Z, Ghomi AHK, Khorramdelazad H, Safari E. Purinergic signaling: decoding its role in COVID-19 pathogenesis and promising treatment strategies. Inflammopharmacology 2023; 31:3005-3020. [PMID: 37805959 DOI: 10.1007/s10787-023-01344-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
The pathogenesis of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2), is complex and involves dysregulated immune responses, inflammation, and coagulopathy. Purinergic signaling, mediated by extracellular nucleotides and nucleosides, has emerged as a significant player in the pathogenesis of COVID-19. Extracellular adenosine triphosphate (ATP), released from damaged or infected cells, is a danger signal triggering immune responses. It activates immune cells, releasing pro-inflammatory cytokines, contributing to the cytokine storm observed in severe COVID-19 cases. ATP also promotes platelet activation and thrombus formation, contributing to the hypercoagulability seen in COVID-19 patients. On the other hand, adenosine, an immunosuppressive nucleoside, can impair anti-viral immune responses and promote tissue damage through its anti-inflammatory effects. Modulating purinergic receptors represents a promising therapeutic strategy for COVID-19. Understanding the role of purinergic signaling in COVID-19 pathogenesis and developing targeted therapeutic approaches can potentially improve patient outcomes. This review focuses on the part of purinergic signaling in COVID-19 pathogenesis and highlights potential therapeutic approaches targeting purinergic receptors.
Collapse
Affiliation(s)
- Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Elaheh Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Leite RO, de Souza PO, Haas CB, da Silveira F, Mohr KR, Bertoni APS, Soares MS, Azambuja JH, Prá MD, da Cruz LLP, Gelsleichter NE, Begnini K, Hasko G, Wink MR, Spanevello RM, Braganhol E. ATPergic signaling disruption in human sepsis as a potential source of biomarkers for clinical use. Clin Exp Med 2023; 23:3651-3662. [PMID: 36943594 PMCID: PMC10511658 DOI: 10.1007/s10238-023-01045-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated inflammatory response to infection. To date, there is no specific treatment established for sepsis. In the extracellular compartment, purines such as adenosine triphosphate (ATP) and adenosine play essential roles in the immune/inflammatory responses during sepsis and septic shock. The balance of extracellular levels among ATP and adenosine is intimately involved in the signals related to immune stimulation/immunosuppression balance. Specialized enzymes, including CD39, CD73, and adenosine deaminase (ADA), are responsible to metabolize ATP to adenosine which will further sensitize the P2 and P1 purinoceptors, respectively. Disruption of the purinergic pathway had been described in the sepsis pathophysiology. Although purinergic signaling has been suggested as a potential target for sepsis treatment, the majority of data available were obtained using pre-clinical approaches. We hypothesized that, as a reflection of deregulation on purinergic signaling, septic patients exhibit differential measurements of serum, neutrophils and monocytes purinergic pathway markers when compared to two types of controls (healthy and ward). It was observed that ATP and ADP serum levels were increased in septic patients, as well as the A2a mRNA expression in neutrophils and monocytes. Both ATPase/ADPase activities were increased during sepsis. Serum ATP and ADP levels, and both ATPase and ADPase activities were associated with the diagnosis of sepsis, representing potential biomarkers candidates. In conclusion, our results advance the translation of purinergic signaling from pre-clinical models into the clinical setting opening opportunities for so much needed new strategies for sepsis and septic shock diagnostics and treatment.
Collapse
Affiliation(s)
- R O Leite
- Departamento de Clínica Médica, Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
- Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, UFPel, Pelotas, Brazil
| | - P O de Souza
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - C B Haas
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - F da Silveira
- Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil
| | - K R Mohr
- Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil
| | - A P S Bertoni
- Programa de Pós-Graduação em Ciências da Saúde, UFCSPA, Porto Alegre, Brazil
| | - M S Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, UFPel, Pelotas, Brazil
| | - J H Azambuja
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - M Dal Prá
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - L L P da Cruz
- Programa de Pós-Graduação em Ciências da Saúde, UFCSPA, Porto Alegre, Brazil
| | - N E Gelsleichter
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - K Begnini
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - G Hasko
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - M R Wink
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, UFCSPA, Porto Alegre, Brazil
| | - R M Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, UFPel, Pelotas, Brazil
| | - E Braganhol
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, UFPel, Pelotas, Brazil.
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, UFCSPA, Porto Alegre, Brazil.
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite St, 245-Main Building-Room 304, Porto Alegre, RS, 90.050-170, Brazil.
| |
Collapse
|
12
|
Scherlinger M, Richez C, Tsokos GC, Boilard E, Blanco P. The role of platelets in immune-mediated inflammatory diseases. Nat Rev Immunol 2023; 23:495-510. [PMID: 36707719 PMCID: PMC9882748 DOI: 10.1038/s41577-023-00834-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/28/2023]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are characterized by excessive and uncontrolled inflammation and thrombosis, both of which are responsible for organ damage, morbidity and death. Platelets have long been known for their role in primary haemostasis, but they are now also considered to be components of the immune system and to have a central role in the pathogenesis of IMIDs. In patients with IMIDs, platelets are activated by disease-specific factors, and their activation often reflects disease activity. Here we summarize the evidence showing that activated platelets have an active role in the pathogenesis and the progression of IMIDs. Activated platelets produce soluble factors and directly interact with immune cells, thereby promoting an inflammatory phenotype. Furthermore, platelets participate in tissue injury and promote abnormal tissue healing, leading to fibrosis. Targeting platelet activation and targeting the interaction of platelets with the immune system are novel and promising therapeutic strategies in IMIDs.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, Centre de référence des maladies auto-immunes systémiques rares RESO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Laboratoire d'ImmunoRhumatologie Moléculaire UMR_S 1109, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.
| | - Christophe Richez
- Service de Rhumatologie, Centre de référence des maladies auto-immunes systémiques rares RESO, Hôpital Pellegrin, Centre Hospitalier Universitaire, Bordeaux, France
- CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, Bordeaux, France
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche ARThrite, Université Laval, Quebec City, Quebec, Canada
| | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, Bordeaux, France.
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Bordeaux, France.
| |
Collapse
|
13
|
Synthesis, biological evaluation, and molecular modeling studies of a new series of imidazothiazole or imidazooxazole derivatives as inhibitors of ectonucleoside triphosphate diphosphohydrolases (NTPDases). Med Chem Res 2022. [DOI: 10.1007/s00044-022-03000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Zhang G, Pan Y, Cheng H, Gong S, Chu Q, Chen P. Theaflavin: a natural candidate to restrain thrombosis. Food Funct 2022; 13:7572-7581. [PMID: 35815842 DOI: 10.1039/d2fo00152g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many clinical studies have demonstrated the beneficial effects of black tea on cardiovascular diseases. However, the antiplatelet and antithrombotic activities of theaflavin (TF-1) remain unknown. In this study, we aimed to investigate the beneficial effects of TF-1 on platelet activation and thrombosis formation both in vitro and in vivo. Firstly, the in vitro antiplatelet activity of TF-1 was analyzed using platelets isolated from human blood via aggregometry, flow cytometry, the ELISA kit, western blot and fluorescence microscopy. Subsequently, the in vivo analysis of the hemostatic state and thrombosis formation was carried out in C57BL/6 mice based on the tail bleeding time and an FeCl3-induced arterial thrombus model. The results showed that TF-1 could prominently inhibit platelet aggregation in a dose-dependent manner, and attenuate P-selectin expression, fibrinogen binding, spreading and thromboxane A2 (TxA2) formation. Western blot analysis showed that TF-1 potently inhibited spleen tyrosine kinase (Syk) and Akt (ser473/474) phosphorylation. The in vivo data further confirmed the inhibition of platelet activation by TF-1 with a prolonged arterial occlusion time (from 15.0 ± 1.1 minutes to 40.0 ± 5.4 minutes). All the results indicated that TF-1 is a powerful inhibitor of platelet activation and thrombosis formation in C57BL/6 mice, and could be developed as a novel food-based inhibitor of thrombotic disorders.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Yani Pan
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Hao Cheng
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Shuying Gong
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Qiang Chu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Ping Chen
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Arneth B. The roles of nucleotide signaling and platelets in inflammation. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:910-941. [PMID: 35727041 DOI: 10.1080/15257770.2022.2085295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Nucleotides and platelets have been associated with a wide range of activities that affect the host inflammatory response. The main goal of this study is to examine the roles of nucleotide signaling and platelets in inflammation. The study analysis entailed conducting a systematic search to identify relevant articles in PsycINFO, PubMed, Web of Science, and CINAHL. The evidence gathered from the identified articles shows the roles of nucleotides and platelets in inflammation. In the extracellular environment, nucleotides act as signaling molecules that can activate nucleotide receptors to promote inflammation. Inflammation is an essential process through which the innate immune system responds to pathogens, microbes, and damage-associated molecular patterns. Moreover, research evidence shows that the mechanisms through which platelets affect inflammatory responses and regulate hemostasis are the same. The roles of nucleotides and platelets in inflammation have been explored in several studies worldwide. Although platelets and nucleotides have unique structures, both of them influence the host response to pathogens and tumors. Analysis of platelets and nucleotides will offer valuable insight for the development of new treatments for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Borros Arneth
- Institute for Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the University of Giessen and Marburg (UKGM), Justus Liebig University, Giessen, Germany
| |
Collapse
|
16
|
Schäkel L, Mirza S, Pietsch M, Lee SY, Keuler T, Sylvester K, Pelletier J, Sévigny J, Pillaiyar T, Namasivayam V, Gütschow M, Müller CE. 2-Substituted thienotetrahydropyridine derivatives: Allosteric ectonucleotidase inhibitors. Arch Pharm (Weinheim) 2021; 354:e2100300. [PMID: 34697820 DOI: 10.1002/ardp.202100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/10/2022]
Abstract
The antithrombotic prodrugs ticlopidine and clopidogrel are thienotetrahydro-pyridine derivatives that are metabolized in the liver to produce thiols that irreversibly block adenosine diphosphate (ADP)-activated P2Y12 receptors on thrombocytes. In their native, nonmetabolized form, both drugs were reported to act as inhibitors of ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39). CD39 catalyzes the extracellular hydrolysis of nucleoside tri- and diphosphates, mainly adenosine 5'-triphosphate (ATP) and ADP, yielding adenosine monophosphate, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to produce adenosine. While ATP has proinflammatory effects, adenosine is a potent anti-inflammatory, immunosuppressive agent. Inhibitors of CD39 and CD73 have potential as novel checkpoint inhibitors for the immunotherapy of cancer and infection. In the present study, we investigated 2-substituted thienotetrahydropyridine derivatives, structurally related to ticlopidine, as CD39 inhibitors. Due to their substituent on the 2-position, they will not be metabolically transformed into reactive thiols and can, therefore, be expected to be devoid of P2Y12 receptor-antagonistic activity in vivo. Several of the investigated 2-substituted thienotetrahydropyridine derivatives showed concentration-dependent inhibition of CD39. The most potent derivative, 32, showed similar CD39-inhibitory potency to ticlopidine, both acting as allosteric inhibitors. Compound 32 showed an improved selectivity profile: While ticlopidine blocked several NTPDase isoenzymes, 32 was characterized as a novel dual inhibitor of CD39 and CD73.
Collapse
Affiliation(s)
- Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Markus Pietsch
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Faculty of Medicine and University Hospital Cologne, Institute II of Pharmacology, Centre of Pharmacology, University of Cologne, Cologne, Germany
| | - Sang-Yong Lee
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Tim Keuler
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Katharina Sylvester
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada.,Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Thanigaimalai Pillaiyar
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Vigneshwaran Namasivayam
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Extracellular ectonucleotidases are differentially regulated in murine tissues and human polymorphonuclear leukocytes during sepsis and inflammation. Purinergic Signal 2021; 17:713-724. [PMID: 34604944 DOI: 10.1007/s11302-021-09819-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022] Open
Abstract
Sepsis is life-threatening organ dysfunction caused by a dysregulated inflammatory and immune response to infection. Sepsis involves the combination of exaggerated inflammation and immune suppression. During systemic infection and sepsis, the liver works as a lymphoid organ with key functions in regulating the immune response. Extracellular nucleotides are considered damage-associated molecular patterns and are involved in the control of inflammation. Their levels are finely tuned by the membrane-associated ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family. Although previous studies have addressed the role of NTPDase1 (CD39), the role of the other extracellular NTPDases, NTPDase2, -3, and -8, in sepsis is unclear. In the present studies we identified NTPDase8 as a top downregulated gene in the liver of mice submitted to cecal ligation-induced sepsis. Immunohistochemical analysis confirmed the decrease of NTPDase8 expression at the protein level. In vitro mechanistic studies using HepG2 hepatoma cells demonstrated that IL-6 but not TNF, IL-1β, bacteria, or lipopolysaccharide are able to suppress NTPDase8 gene expression. NTPDase8, as well as NTPDase2 and NTPDase3 mRNA was downregulated, whereas NTPDase1 (CD39) mRNA was upregulated in polymorphonuclear leukocytes from both inflamed and septic patients compared to healthy controls. Although the host's inflammatory response of polymicrobial septic NTPDase8 deficient mice was no different from that of wild-type mice, IL-6 levels in NTPDase8 deficient mice were higher than IL-6 levels in wild-type mice with pneumonia. Altogether, the present data indicate that extracellular NTPDases are differentially regulated during sepsis.
Collapse
|