1
|
Nakakuki N, Maekawa S, Takano S, Osawa L, Komiyama Y, Takada H, Muraoka M, Suzuki Y, Sato M, Enomoto N. TCR Repertoire Analysis During Therapeutic Interventions in Liver Diseases Using Next-Generation Sequencing. J Gastroenterol Hepatol 2025; 40:537-547. [PMID: 39618197 DOI: 10.1111/jgh.16835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 11/10/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND AND AIM The T cell receptor (TCR) can recognize a vast number of antigens and is closely associated with the pathogenesis of various diseases including autoimmune diseases and malignancies. However, the clinical significance of the TCR repertoire and its post-treatment changes remain unclear in liver diseases. METHODS We performed next-generation sequencing (NGS)-based TCR analysis using DNA obtained from peripheral blood mononuclear cells (PBMCs) of healthy donors (HD, n = 5), primary biliary cholangitis (PBC, n = 5), autoimmune hepatitis (AIH, n = 5), and hepatocellular carcinoma (HCC, n = 5) and evaluated the changes after treatment. RESULTS Baseline TCR repertoire analysis demonstrated that TCR clonotype usage is restricted and diversity is low in all three disease groups (PBC, AIH, and HCC), particularly in PBC and AIH compared to HD (p < 0.05). Following treatment, clonotype usage and diversity did not change significantly, except in AIH, where diversity decreased further (p < 0.05 for clone Shannon diversity and clone evenness). Disease-specific usage of TCR beta genes and specific changes after therapy were observed in all groups. Analysis of clonotypes shared with other individuals (public clonotypes) revealed that nine public clonotypes in PBC, eight in AIH, and eight in HCC disappeared after treatment. Motif analysis identified one characteristic motif (NQPQH) in PBC. CONCLUSIONS The diversity of the TCR repertoire, TCR beta chain usage, clonotypes, and motifs and their post-treatment changes are disease-specific in each liver disease, indicating that further TCR repertoire studies are needed to accelerate the understanding of liver disease pathogenesis from an immunological perspective.
Collapse
MESH Headings
- Humans
- High-Throughput Nucleotide Sequencing/methods
- Receptors, Antigen, T-Cell/genetics
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/therapy
- Liver Cirrhosis, Biliary/genetics
- Liver Cirrhosis, Biliary/immunology
- Liver Cirrhosis, Biliary/therapy
- Male
- Liver Diseases/genetics
- Liver Diseases/therapy
- Liver Diseases/immunology
- Middle Aged
- Hepatitis, Autoimmune/genetics
- Hepatitis, Autoimmune/immunology
- Hepatitis, Autoimmune/therapy
- Female
- Adult
- Leukocytes, Mononuclear/immunology
- Aged
Collapse
Affiliation(s)
- Natsuko Nakakuki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Shinya Maekawa
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Shinichi Takano
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Leona Osawa
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yasuyuki Komiyama
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hitomi Takada
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masaru Muraoka
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yuichiro Suzuki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Mitsuaki Sato
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Nobuyuki Enomoto
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
2
|
Eisa M, Flores N, Khedr O, Gomez-Escobar E, Bédard N, Abdeltawab NF, Bruneau J, Grakoui A, Shoukry NH. Activation-Induced Marker Assay to Identify and Isolate HCV-Specific T Cells for Single-Cell RNA-Seq Analysis. Viruses 2024; 16:1623. [PMID: 39459954 PMCID: PMC11512294 DOI: 10.3390/v16101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Identification and isolation of antigen-specific T cells for downstream transcriptomic analysis is key for various immunological studies. Traditional methods using major histocompatibility complex (MHC) multimers are limited by the number of predefined immunodominant epitopes and MHC matching of the study subjects. Activation-induced markers (AIM) enable highly sensitive detection of rare antigen-specific T cells irrespective of the availability of MHC multimers. Herein, we have developed an AIM assay for the detection, sorting and subsequent single-cell RNA sequencing (scRNA-seq) analysis of hepatitis C virus (HCV)-specific T cells. We examined different combinations of the activation markers CD69, CD40L, OX40, and 4-1BB at 6, 9, 18 and 24 h post stimulation with HCV peptide pools. AIM+ CD4 T cells exhibited upregulation of CD69 and CD40L as early as 6 h post-stimulation, while OX40 and 4-1BB expression was delayed until 18 h. AIM+ CD8 T cells were characterized by the coexpression of CD69 and 4-1BB at 18 h, while the expression of CD40L and OX40 remained low throughout the stimulation period. AIM+ CD4 and CD8 T cells were successfully sorted and processed for scRNA-seq analysis examining gene expression and T cell receptor (TCR) usage. scRNA-seq analysis from this one subject revealed that AIM+ CD4 T (CD69+ CD40L+) cells predominantly represented Tfh, Th1, and Th17 profiles, whereas AIM+ CD8 T (CD69+ 4-1BB+) cells primarily exhibited effector and effector memory profiles. TCR analysis identified 1023 and 160 unique clonotypes within AIM+ CD4 and CD8 T cells, respectively. In conclusion, this approach offers highly sensitive detection of HCV-specific T cells that can be applied for cohort studies, thus facilitating the identification of specific gene signatures associated with infection outcome and vaccination.
Collapse
Affiliation(s)
- Mohamed Eisa
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
| | - Nicol Flores
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Omar Khedr
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
| | - Elsa Gomez-Escobar
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
| | - Nourtan F. Abdeltawab
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 3296121, Egypt
- School of Pharmacy, Newgiza University, Giza 3296121, Egypt
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Département de Médecine Familiale et Département d’Urgence, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Arash Grakoui
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
3
|
Tatsi EB, Filippatos F, Bello T, Syriopoulou V, Michos A. Comparative Study of T-Cell Repertoires after COVID-19 Immunization with Homologous or Heterologous Vaccine Booster. Pathogens 2024; 13:284. [PMID: 38668239 PMCID: PMC11054887 DOI: 10.3390/pathogens13040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
Sequencing of the T-cell repertoire is an innovative method to assess the cellular responses after immunization. The purpose of this study was to compare T-cell repertoires after COVID-19 immunization with homologous (HOB) and heterologous (HEB) boosting. The study included 20 participants with a median age of 27.5 (IQR:23) years, who were vaccinated with one dose of the Ad26.COV2.S vaccine and were boosted with either Ad26.COV2.S (n = 10) or BNT162b2 (n = 10) vaccine. Analysis of the T-cell receptor beta locus (TCRβ) sequencing one month after the booster dose identified that the HEB compared to the HOB group exhibited a higher number of both total and COVID-19-related functional T-cell rearrangements [mean of total productive rearrangements (TPRs): 63151.8 (SD ± 18441.5) vs. 34915.4 (SD ± 11121.6), p = 0.001 and COVID-19-TPRs: 522.5 (SD ± 178.0) vs. 298.3 (SD ± 101.1), p = 0.003]. A comparison between the HOB and HEB groups detected no statistically significant differences regarding T-cell Simpson clonality [0.021 (IQR:0.014) vs. 0.019 (IQR:0.007)], richness [8734.5 (IQR:973.3) vs. 8724 (IQR:383.7)] and T-cell fraction [0.19 (IQR:0.08) vs. 0.18 (IQR:0.08)]. HEB also exhibited a substantially elevated humoral immune response one month after the booster dose compared to HOB [median antibody titer (IQR): 10115.0 U/mL (6993.0) vs. 1781.0 U/mL (1314.0), p = 0.001]. T-cell repertoire sequencing indicated that HEB had increased SARS-CoV-2-related T-cell rearrangements, which was in accordance with higher humoral responses and possibly conferring longer protection. Data from the present study indicate that the administration of different COVID-19 vaccines as a booster may provide better protection.
Collapse
Affiliation(s)
- Elizabeth-Barbara Tatsi
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (F.F.)
| | - Filippos Filippatos
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (F.F.)
| | - Thomas Bello
- Adaptive Biotechnologies, Seattle 98109, WA, USA;
| | - Vasiliki Syriopoulou
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (F.F.)
| | - Athanasios Michos
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (F.F.)
| |
Collapse
|
4
|
Kirk AM, Crawford JC, Chou CH, Guy C, Pandey K, Kozlik T, Shah RK, Chung S, Nguyen P, Zhang X, Wang J, Bell M, Mettelman RC, Allen EK, Pogorelyy MV, Kim H, Minervina AA, Awad W, Bajracharya R, White T, Long D, Gordon B, Morrison M, Glazer ES, Murphy AJ, Jiang Y, Fitzpatrick EA, Yarchoan M, Sethupathy P, Croft NP, Purcell AW, Federico SM, Stewart E, Gottschalk S, Zamora AE, DeRenzo C, Strome SE, Thomas PG. DNAJB1-PRKACA fusion neoantigens elicit rare endogenous T cell responses that potentiate cell therapy for fibrolamellar carcinoma. Cell Rep Med 2024; 5:101469. [PMID: 38508137 PMCID: PMC10983114 DOI: 10.1016/j.xcrm.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.
Collapse
Affiliation(s)
- Allison M Kirk
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Tanya Kozlik
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ravi K Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shanzou Chung
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaoyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jin Wang
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Matthew Bell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hyunjin Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Walid Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Resha Bajracharya
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Toni White
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Donald Long
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Morrison
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan S Glazer
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Andrew J Murphy
- Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yixing Jiang
- Department of Medical Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Sara M Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anthony E Zamora
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott E Strome
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
5
|
Mazouz S, Salinas E, Bédard N, Filali A, Khedr O, Swadling L, Abdel-Hakeem MS, Siddique A, Barnes E, Bruneau J, Grakoui A, Shoukry NH. Differential immune transcriptomic profiles between vaccinated and resolved HCV reinfected subjects. PLoS Pathog 2022; 18:e1010968. [PMID: 36378682 PMCID: PMC9707775 DOI: 10.1371/journal.ppat.1010968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/29/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Successive episodes of hepatitis C virus (HCV) infection represent a unique natural rechallenge experiment to define correlates of long-term protective immunity and inform vaccine development. We applied a systems immunology approach to characterize longitudinal changes in the peripheral blood transcriptomic signatures in eight subjects who spontaneously resolved two successive HCV infections. Furthermore, we compared these signatures with those induced by an HCV T cell-based vaccine regimen. We identified a plasma cell transcriptomic signature during early acute HCV reinfection. This signature was absent in primary infection and following HCV vaccine boost. Spontaneous resolution of HCV reinfection was associated with rapid expansion of glycoprotein E2-specifc memory B cells in three subjects and transient increase in E2-specific neutralizing antibodies in six subjects. Concurrently, there was an increase in the breadth and magnitude of HCV-specific T cells in 7 out of 8 subjects. These results suggest a cooperative role for both antibodies and T cells in clearance of HCV reinfection and support the development of next generation HCV vaccines targeting these two arms of the immune system.
Collapse
Affiliation(s)
- Sabrina Mazouz
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Salinas
- Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
- Emory National Primate Research Center, Atlanta, Georgia, United States of America
| | - Nathalie Bédard
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Ali Filali
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Omar Khedr
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mohamed S. Abdel-Hakeem
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Asiyah Siddique
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Julie Bruneau
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de médecine familiale et de médecine d’urgence, Université de Montréal, Montréal, Québec, Canada
| | - Arash Grakoui
- Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
- Emory National Primate Research Center, Atlanta, Georgia, United States of America
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|