1
|
van der Heijden EMDL, Lefevre L, Gossner A, Tzelos T, Connelley TK, Hassan MA. Comparative transcriptional analysis identifies genes associated with the attenuation of Theileria parva infected cells after long-term in vitro culture. Sci Rep 2024; 14:8976. [PMID: 38637584 PMCID: PMC11026401 DOI: 10.1038/s41598-024-59197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Autologous administration of attenuated Theileria parva-infected cells induces immunity to T. parva in cattle. The mechanism of attenuation, however, is largely unknown. Here, we used RNA sequencing of pathogenic and attenuated T. parva-infected T-cells to elucidate the transcriptional changes underpinning attenuation. We observed differential expression of several host genes, including TRAIL, PD-1, TGF-β and granzymes that are known to regulate inflammation and proliferation of infected cells. Importantly, many genes linked with the attenuation of the related T. annulata-infected cells were not dysregulated in this study. Furthermore, known T. parva antigens were not dysregulated in attenuated relative to pathogenic cells, indicating that attenuation is not due to enhanced immunogenicity. Overall this study suggests that attenuation is driven by a decrease in proliferation and restoration of the inflammatory profile of T. parva-infected cells. Additionally, it provides a foundation for future mechanistic studies of the attenuation phenotype in Theileria-infected cells.
Collapse
Affiliation(s)
- Elisabeth M D L van der Heijden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Lucas Lefevre
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Anton Gossner
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Thomas Tzelos
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Timothy K Connelley
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Centre for Tropical Livestock Genetics and Health, Easter Bush Campus, Edinburgh, UK
| | - Musa A Hassan
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK.
- Centre for Tropical Livestock Genetics and Health, Easter Bush Campus, Edinburgh, UK.
| |
Collapse
|
2
|
Connelley T, Nicastri A, Sheldrake T, Vrettou C, Fisch A, Reynisson B, Buus S, Hill A, Morrison I, Nielsen M, Ternette N. Immunopeptidomic Analysis of BoLA-I and BoLA-DR Presented Peptides from Theileria parva Infected Cells. Vaccines (Basel) 2022; 10:vaccines10111907. [PMID: 36423003 PMCID: PMC9699068 DOI: 10.3390/vaccines10111907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The apicomplexan parasite Theileria parva is the causative agent of East Coast fever, usually a fatal disease for cattle, which is prevalent in large areas of eastern, central, and southern Africa. Protective immunity against T. parva is mediated by CD8+ T cells, with CD4+ T-cells thought to be important in facilitating the full maturation and development of the CD8+ T-cell response. T. parva has a large proteome, with >4000 protein-coding genes, making T-cell antigen identification using conventional screening approaches laborious and expensive. To date, only a limited number of T-cell antigens have been described. Novel approaches for identifying candidate antigens for T. parva are required to replace and/or complement those currently employed. In this study, we report on the use of immunopeptidomics to study the repertoire of T. parva peptides presented by both BoLA-I and BoLA-DR molecules on infected cells. The study reports on peptides identified from the analysis of 13 BoLA-I and 6 BoLA-DR datasets covering a range of different BoLA genotypes. This represents the most comprehensive immunopeptidomic dataset available for any eukaryotic pathogen to date. Examination of the immunopeptidome data suggested the presence of a large number of coprecipitated and non-MHC-binding peptides. As part of the work, a pipeline to curate the datasets to remove these peptides was developed and used to generate a final list of 74 BoLA-I and 15 BoLA-DR-presented peptides. Together, the data demonstrated the utility of immunopeptidomics as a method to identify novel T-cell antigens for T. parva and the importance of careful curation and the application of high-quality immunoinformatics to parse the data generated.
Collapse
Affiliation(s)
- Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
- Correspondence:
| | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| | - Tara Sheldrake
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Christina Vrettou
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Andressa Fisch
- Ribeirão Preto College of Nursing, University of São Paulo, Av Bandeirantes, Ribeirão Preto 3900, Brazil
| | - Birkir Reynisson
- Department of Health Technology, Technical University of Denmark, DK-2800 Copenhagen, Denmark
| | - Soren Buus
- Laboratory of Experimental Immunology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Adrian Hill
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| | - Ivan Morrison
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Copenhagen, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín CP1650, Argentina
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
3
|
Kolakowski J, Connelley T, Lukacik P, Pfuhl M, Werling D. East Coast fever, a neglected tropical disease with an outdated vaccine approach? Trends Parasitol 2022; 38:930-932. [PMID: 36041933 DOI: 10.1016/j.pt.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
Since its discovery, bovine theileriosis has caused major socioeconomic losses in sub-Saharan Africa. Acaricide resistance of the intermediate host, paucity of therapeutics, and lack of sufficiently cross-protective vaccines increase the risk of parasite spread due to global warming. Here, we highlight three important areas that require investigation to develop next-generation vaccines.
Collapse
Affiliation(s)
- Jeannine Kolakowski
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - Tim Connelley
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Petra Lukacik
- Department of Life Science, Diamond Light Source Ltd, Harwell, UK
| | - Mark Pfuhl
- Department of Muscle Biology, King's College London, London, UK
| | - Dirk Werling
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
4
|
Gurav N, Macleod OJ, MacGregor P, Ellen R. Nisbet R. In silico identification of Theileria parva surface proteins. Cell Surf 2022; 8:100078. [PMID: 35647418 PMCID: PMC9133732 DOI: 10.1016/j.tcsw.2022.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
East Coast Fever is a devastating African cattle disease caused by the apicomplexan parasite, Theileria parva. Little is known about the cell surface, and few proteins have been identified. Here, we take an in silico approach to identify novel cell surface proteins, and predict the structure of four key proteins.
Collapse
|
5
|
Svitek N, Saya R, Zhang H, Nene V, Steinaa L. Systematic Determination of TCR–Antigen and Peptide–MHC Binding Kinetics among Field Variants of a Theileria parva Polymorphic CTL Epitope. THE JOURNAL OF IMMUNOLOGY 2022; 208:549-561. [PMID: 35031580 PMCID: PMC8802549 DOI: 10.4049/jimmunol.2100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Positions 1–3 in the Tp9 CTL epitope are required for binding to BoLA-1*023:01. Positions 5–8 in the Tp9 epitope are required for TCR recognition in diverse CTLs. Tp9-specific CTLs from Muguga-immunized animals can cross-react with variants 4 and 7.
CTLs are known to contribute to immunity toward Theileria parva, the causative agent of East Coast fever. The Tp967–75 CTL epitope from the Muguga strain of T. parva is polymorphic in other parasite strains. Identifying the amino acids important for MHC class I binding, as well as TCR recognition of epitopes, can allow the strategic selection of Ags to induce cellular immunity toward T. parva. In this study, we characterized the amino acids important for MHC class I binding and TCR recognition in the Tp967–75 epitope using alanine scanning and a series of variant peptide sequences to probe these interactions. In a peptide–MHC class I binding assay, we found that the amino acids at positions 1, 2, and 3 were critical for binding to its restricting MHC class I molecule BoLA-1*023:01. With IFN-γ ELISPOT and peptide–MHC class I Tet staining assays on two parasite-specific bovine CTL lines, we showed that amino acids at positions 5–8 in the epitope were required for TCR recognition. Only two of eight naturally occurring polymorphic Tp9 epitopes were recognized by both CTLs. Finally, using a TCR avidity assay, we found that a higher TCR avidity was associated with a stronger functional response toward one of two variants recognized by the CTL. These data add to the growing knowledge on the cross-reactivity of epitope-specific CTLs and specificities that may be required in the selection of Ags in the design of a wide-spectrum vaccine for East Coast fever.
Collapse
Affiliation(s)
- Nicholas Svitek
- International Livestock Research Institute, Animal and Human Health Program, Nairobi, Kenya; and
| | - Rosemary Saya
- International Livestock Research Institute, Animal and Human Health Program, Nairobi, Kenya; and
| | - Houshuang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang District, Shanghai, China
| | - Vishvanath Nene
- International Livestock Research Institute, Animal and Human Health Program, Nairobi, Kenya; and
| | - Lucilla Steinaa
- International Livestock Research Institute, Animal and Human Health Program, Nairobi, Kenya; and
| |
Collapse
|